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Abstract

The polytope of integer partitions of n is the convex hull of the corresponding n-
dimensional integer points. Its vertices are of importance because every partition is
their convex combination. Computation shows intriguing features of v(n), the number
of the polytope vertices: its graph has a saw-toothed shape with the highest peaks
at prime n’s. We explain the shape of v(n) by the large number of partitions of even
n’s that were counted by N. Metropolis and P. R. Stein. These partitions are convex
combinations of two others. We reveal that divisibility of n by 3 also reduces the
value of v(n), which is caused by partitions that are convex combinations of three
but not two others, and characterize convex representations of such integer points in
arbitrary integral polytope. To approach the prime n phenomenon, we use a specific
classification of integers and demonstrate that the graph of v(n) is stratified to layers
corresponding to resulting classes. Our main conjecture claims that v(n) depends on
collections of divisors of n. We also offer an initial argument for that the number of
vertices of the Gomory’s master corner polyhedron on the cyclic group has features
similar to those of v(n).

1 Introduction

Integer partitions are related to divergent problems in mathematics and statistical mechanics
[1]. A partition of a positive integer n is any finite non-decreasing sequence ρ of positive
integers n1, n2, . . . , nr such that

r∑
j=1

nj = n.

The integers n1, n2, . . . , nr are called parts of the partition ρ.
In this paper we develop the polyhedral approach to integer partitions proposed in [10].

It is based on the n-dimensional geometrical interpretation of partitions [17]. Every partition
ρ is referred to as a non-negative integer point x = (x1, x2, . . . , xn) ∈ Rn, a solution to the
equation

x1 + 2x2 + . . .+ nxn = n, (1)

with xi, i = 1, . . . , n, being the number of parts i in ρ. For example, the partition 8 =
4 + 2 + 1 + 1 with three distinct parts 1, 2, 4 is identified with x = (2, 1, 0, 1, 0, 0, 0, 0) ∈ R8.
We keep on writing x ` n to indicate that x ∈ Rn is a partition of n.
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We consider the polytope Pn ⊂ Rn defined as the convex hull of the set P (n) of partitions
of n :

Pn := convP (n) = conv {x = (x1, x2, . . . , xn) ∈ Rn | x ` n}.

The conversion from the set to a polytope reveals the geometrical structure of P (n). As
for every polytope, the key elements of Pn are its facets and vertices. The facets were
characterized in [10] and the vertices were studied in [11, 12, 14].

Vertices of Pn and their number are of special importance since, by Carathéodory’s
theorem [2], every partition is a convex combination of some vertices. It is proved in [8]
that the problem of recognizing vertices can be decided in polynomial time with the use of
linear programming technique. However, no combinatorial characterization of vertices of Pn
is available as yet. The only result in this direction is the criterion for a partition to be a
convex combination of two others [12], see Theorem 2 below.

Let VertPn denote the set of vertices of Pn and v(n) := |VertPn| be the number of its
vertices. We computed vertices of Pn for n ≤ 100, see [16], and presented the values of v(n)
in the On-Line Encyclopedia of Integer Sequences (OEIS), sequence A203898. It turned
out that the graph of v(n) exhibits peculiar features, one can see this graph in Fig. 1. In
contrast to p(n) = |P (n)|, the number of partitions of n, the function v(n) does not increase
monotonously. It drops down at every even n and its peaks at prime n’s seem to be higher
than others. Inspired by these perplexing peculiarities, we concentrate on the asymptotic
dependence of v(n) on the multiplicative properties of n.

Fig. 1. Graph of the function v(n), number of vertices of Pn.

To analyse the observed phenomena we study the structure of the set P (n) \ VertPn of
partitions of n that ’fail’ to be vertices of Pn. In section 2, we divide this set to subsets of
partitions x ` n according to the minimal number of partitions that are necessary to express
x as their convex combination. We characterize the coefficients in such representations in
the case when x needs three partitions. In fact, we do that for analogous integer points in an
arbitrary integral polytope. In section 3, we establish that an important role in identifying
vertices belongs to a class of partitions that were counted by N. Metropolis and P. R. Stein
[7]. Gradually, from the obvious dependence of v(n) on the evenness of n, it becomes clear
that other divisors of n also affect the value of v(n). In section 4, we use the known numbers
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of knapsack partitions of n, that were introduced by R. Ehrenborg and M.A. Readdy [3], to
disclose dependence of v(n) on divisibility of n by 3.

We suggest several conjectures. Of primary interest is the Conjecture 4 in section 5.
Grounded on the visual but quite convincing arguments, it claims that the value of v(n)
depends on factorization of n. The relatively largest values of v(n) are attained at prime n’s.
For a composite n, the smaller its every subsequent prime divisor is, the smaller the value
of v(n) gets.

In section 6, we offer an initial argument that the number of vertices of the master corner
polyhedron on the cyclic group has features similar to those of v(n). It is based on less than
a dozen numbers of vertices computed by R. E. Gomory [4] and can be considered as no
more than a hint. However, in view of the closeness of these two serial polyhedra revealed
in [13], we believe that this argument deserves further examination.

Finally, in section 7, we outline the most promising directions for the future study.

2 Partitions that are not vertices and coefficients in

their convex representations

Recall that for arbitrary polytope P, a point x ∈ P is a vertex of P if it cannot be expressed
as a convex combination x =

∑k
j=1 λjy

j,
∑k

j=1 λj = 1, λj > 0, of some other points yj ∈ P,
j = 1, . . . , k, in particular, of vertices. So, every partition x ∈ P (n) \ VertPn is a convex
combination of some partitions of n. Denote by ξ(x) the minimal number of partitions of n,
which are needed for such a representation of an x` n, x /∈ VertPn, and let Cξ(n) be the set
of partitions x` n, for which ξ(x) = ξ. It is easy to see that the sets Cξ(n), ξ = 2, 3, 4, ...,
are pairwise different and

VertPn = P (n)\
⋃
ξ≥2

Cξ(n). (2)

While computing vertices of Pn, we saw that for all n the most of x` n, x /∈ VertPn,
belong to C2(n). For n < 15 this is true for all x /∈ VertPn. For n = 15, 21, 24, 25, 27, 28
and n ≥ 30 there exist non-vertices of Pn that belong to C3(n). The minimal n for which
some x` n belongs to C4(n) is n = 36. So, for n sufficiently large, C2(n), C3(n), C4(n) 6= ∅.
Non-emptiness of Cξ(n) for ξ ≥ 5 is not confirmed yet but we dare to suggest the following
conjecture.

Conjecture 1 For every ξ, Cξ(n) 6= ∅ for sufficiently large n > n0(ξ). For every n, |Cξ(n)|
decreases when ξ grows.

If this conjecture is true then the union in (2) can consist of arbitrarily large number of
sets. However, the next theorem shows that for every fixed n, this union is finite.

Theorem 1 For every ξ > 2 and n < 2ξ−1 − 1, Cξ(n) = ∅.

Proof. Let a partition x ∈ Cξ(n), ξ > 2, have m parts {n1, n2, . . . , nm}. It is proved in [12]
that if m > log2(n+ 1) then x ∈ C2(n). Hence m ≤ log2(n+ 1) since C2(n) ∩ Cξ(n) = ∅.

Let x be a convex combination of y1, y2, . . . , yξ ` n. Then yji = 0 for i /∈ {n1, n2, . . . , nm},
j = 1, 2, . . . , ξ. Since x /∈ Ck(n) for k < ξ, then y1, y2, . . . , yξ are vertices of some (ξ − 1)-
dimensional simplex in Rn and are affinely independent. Then the matrix with the rows
(yjn1

, yjn2
, . . . , yjnm

), j = 1, 2, . . . , ξ − 1, is of rank ξ − 1 and therefore ξ − 1 ≤ m. The two
inequalities imply that ξ − 1 ≤ log2(n+ 1). Thus n ≥ 2ξ−1 − 1. �
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Figure 2 shows the structure of the set P (n) provided Conjecture 1 holds. The whole rect-
angle corresponds to all partitions of n. Vertices of Pn form the utmost right rectangle. Other
inner rectangles in order from left to right correspond to C2(n), C3(n), C4(n), . . . , Ck(n),
where k depends on n. The set M2(n), whose exact definition will be given in Section 3,
consists of two parts: one, a subset of C2(n) depicted as the large rectangle from the left
edge to the dashed line, and the other part, a small subset of vertices forming a tiny rect-
angle at the bottom right of the picture. The set K(n) = P (n) \C2(n) will be considered in
Section 4.

K(n)




M2(n)

VertPnC4(n)C3(n)C2(n)

M2(n)

Fig. 2. Conjectured structure of the set of partitions of n.

Remark 1 ξ(x) can be defined for any integer point in any integral polytope P. It could
be called ’the index of convex embeddedness of x’. Then, in particular, vertices of P would
be of index 1. However, we refrain from coining a special term. The common state, for
example, in combinatorial optimization, is that when a polytope is generated by a set of
integral points, each of these points is a vertex. In particular this is true for the travelling
salesman polyhedron and other (0, 1)-polytopes. Perhaps, this is a reason why the classes of
points similar to Cξ were not considered earlier.

A criterion for a partition x` n to belong to C2(n) is given in the following theorem.

Theorem 2 ([11]) A partition x` n is a convex combination of two partitions of n if and
only if there exist two different collections of parts of x with equal sums.

No criterion for x ∈ C3(n) is known but the computations show that such an x always

admits a representation x =
3∑
j=1

λjy
j, yj ` n, λj ≥ 0,

3∑
j=1

λj = 1, with all λj = 1
3
. The

following theorem states that this holds for every integral polytope. Recall that a polytope
is called integral if all its vertices are integer points.

Theorem 3 If P ∈ Rn is an integral polytope and an integer point x ∈ P is a convex
combination of three integer points in P but is not a convex combination of any two integer
points in P then there exist integer points y1, y2, y3 ∈ P such that

x =
1

3
y1 +

1

3
y2 +

1

3
y3 . (3)

Proof. We begin with the general case of arbitrary integer k > 2 and an integer x ∈ P,
which is a convex combination of k integer points in P and is not a convex combination
of any less than k integer points in P. Then x is a strictly interior point in the (k − 1)-
dimensional simplex S with vertices in these k points. Assume there is one more integer
point z ∈ S, z 6= x.

If z is strictly interior to S then it divides S to integral simplices S1, S2, . . . , Sk with
vertices z and any k − 1 vertices of S. Since x is not a convex combination of any less than
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k integer points in S, it does not lie in any facet of any Sj. Hence x lies strictly inside one
of these simplices, say x ∈ S1. If z lies on the boarder of S let q be the smallest number
such that z is strictly interior to some q-dimensional face F of S. Then z divides F to q + 1
integral simplices F1, F2, . . . , Fq+1. This implies that the simplex S can be also divided to
q + 1 integral simplices, each of whose vertices are vertices of some Fj and the vertices of
S not belonging to F. As in the previous case, x lies strictly inside one of these simplices,
denote it again by S1.

Applying the same reasoning to S1, if it contains an integer point z1 6= x, we come to
a (k − 1)-dimensional integral simplex S2 ⊂ S1 with analogous condition on x ∈ S2. After
repeating this procedure a finite number of times, we obtain a (k − 1)-dimensional integral
simplex T ⊂ S2 ⊂ S1 ⊂ P with x as its single strictly interior integer point satisfying
conditions of the theorem and no integer points on the boarder of T.

From here on, we consider that P is the triangle T and k = 3, as in the theorem statement.
The rest of the proof can be carried with the help of the Pick’s theorem as, for example, in
[9]. We will continue using only elementary geometry. In Figure 3, we show the triangle T
with vertices indicated by A,B,C and the point x denoted by O.

Fig. 3. To the proof of Theorem 3.

We will use the following property of the lattice HI of integer points in the plain H that
contains T : if for some u0 ∈ HI and some n-dimensional vector c̄, the point u0 + c̄ belongs
to HI then for every u ∈ HI the point u± c̄ belongs to HI .

Let A1, B1, C1 be the midpoints of the sides of T and M be the barycenter of T. Assume
O 6= M. Then O lies strictly inside the triangle A1B1C1 since otherwise, if for example
O ∈ 4A1B1C, we would have the point O + CO 6= O in ∈ T ∩ HI . (Here CO is the
vector from C to O.) Hence O lies in one of the triangles A1B1M, A1C1M, B1C1M or on
a common side of some two of them. Let O ∈ 4A1B1M. Draw the parallelogram BOCO1

on the straight line segments OB and OC. By the above property, O1 ∈ HI . The diagonal
OO1 of the parallelogram passes through A1. Draw the ray L parallel to OO1 from A inside
the triangle ABC. Since A1O goes between A1M and A1B1, where A1M is allowed but
A1B1 is not, L goes between AM and AB and can contain AM but not AB. Put the point
O′ on L at the distance |AO′| = |OO1| from A. By the above property, O′ is an integer
point. The triangles ABM and A1B1M are congruent with the congruence coefficient 2 and
|AO′| = 2|A1O|. Hence O ∈ 4A1B1M implies O′ ∈ 4ABM. Note that O′ can lie on AM
or BM. In any case O′ is in T and integrality of O′ implies O′ = O.

Since M is the single common point in 4A1B1M ∩ 4ABM the assumption O 6= M
implies O′ 6= O. The contradiction proves that O is the barycenter of T and satisfies (3). �

Since all integer points in Pn are partitions of n [10], Theorem 3 implies the following
corollary.
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Corollary 1 A partition x` n belongs to C3(n) if and only if x is a convex combination of
some three partitions y1, y2, y3 ` n such that the equality (3) holds.

All known partitions x ∈ C4(n) admit convex representations with coefficients 1
4
. However

the analogue of Theorem 3 does not hold for such an x. This follows from the results of B.
Reznik [9]: in the case of an integral simplex P with 4 vertices (a 3-dimensional tetrahedron)
there are 7 variants for the values of coefficients in a convex representation of a single
integer point in P via its vertices. It is interesting that in each variant all denominators are
simultaneously equal to one of the numbers 4, 5, 7, 11, 13, 17, 19. Nothing is known about
the coefficients in convex representations via 5 integer points but we expect that 1

5
is far

from being the only one possible value.

3 Numbers of partitions of even, odd, and prime n and

Metropolis partitions

Let us return to Figure 1 that presents the graph of the function v(n) for n ≤ 100. One
immediately sees that the value of v(n) depends on the evenness of n:

v(2r − 1) > v(2r) (4)

except small r. So, we can refer to the v(n) graph as consisting of two subgraphs: for odd
and even n’s, the latter lying below the former. This radically differs from the monotone
increasing of p(n), the number of partitions of n.

Upon careful examination of Figure 1 we noticed that some points (n, v(n)) with n odd
are disposed slightly higher than the main line. It turned out that they correspond to prime
n’s. Comparison of their heights v(n) with the half-sums 1

2
(v(n− 2) + v(n + 2)) confirmed

this observation for all prime n ≥ 43 except n = 61. The observed tooth-shaped form of
the v(n) graph and special role of prime numbers raised the question of what multiplicative
property of n affects the value of v(n).

We know from the computation that for every n, the majority of partitions that are not
vertices belong to C2(n). By Theorem 2, these partitions have two collections of parts with
equal sums. In particular, for even n = 2r, C2(n) contains partitions of the form

[partition 1 of r] + [partition 2 of r], (5)

where
partition 1 6= partition 2 . (6)

Denote the number of partitions (5), disregarding condition (6), by m2(2r). It is not hard
to see that

m2(2r) =
1

2

(
p(r)2 + p(r)

)
− [number of duplicates in (5)], (7)

but it is far from clear how to count the duplicates. Note that if a partition of the form
(5) satisfies (6) it can be a vertex. The partition (0, 2, 2, 07) ` 10 (with 7 zero parts) is an
instance. The number of such vertices is less than p(r), which is a rough estimate. Thus,
when we are interested in the asymptotics of C2(n) and v(n), we can ignore vertices of the
form (5). Note that these vertices are shown in Figure 1 by the small rectangle in the VertPn
area. The following conjecture may explain inequality (4) and the tooth-shaped form of the
v(n) graph.
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Conjecture 2 For n even, m2(n) is large relative to v(n).

After having searched in the OEIS by the sequence of the first values of m2(n), we
got to the sequence A002219 and the work of Metropolis and Stein [7], where the authors
had counted partitions of n that can be obtained by joining r, r divides n, not necessarily
different partitions of n

r
(for convenience, we slightly changed the original notation in [7]).

We will call these partitions Metropolis r-partitions. For n multiple of r, denote the set
of Metropolis r-partitions of n by Mr(n) and set mr(n) := |Mr(n)|. Note that Metropolis
2-partitions coincide with partitions (5). The main result of [7] is the formula for mr(n) in
the form of a finite series of binomial coefficients multiplied by certain integer coefficients,
which depend only on r. For m2(n) this formula reads

m2(n) =

(
g + 2

2

)
+ (g + 2)c1 + c2, g =

⌊ n
2

+ 1

2

⌋
,

n

2
> 5, (8)

where c1 and c2 ’must be determined by direct calculation’ [7]. The values of m2(n) are
presented in the sequence A002219 for even n ≤ 178. Using (8), we obtain an upper bound
b(n) for the number of vertices of Pn.

Theorem 4

v(n) ≤ b(n) :=

{
p(n)−m2(n), n even,

p(n)−m2(n− 1), n odd,
(9)

where values of m2(·) are calculated with the use of (8).

Proof. The proof follows from the inclusion M2(n) ⊂ C2(n), if we ignore the small number
of vertices belonging to M2(n), and the fact that adding the part 1 to every partition in
M2(n− 1), n odd, results in a partition in C2(n). �

Disregarding the duplicates, we can obtain from (7) an upper bound on m2(n). However,
Metropolis and Stein pointed that, for large n, much better is the bound m2(n) < p(n, n

2
),

where p(n, k) is the number of partitions of n with no part greater than k. It is not hard to
shaw that p(n, n

2
) is asymptotically equal to p(n). An anonymous author under the nickname

’joriki’ presented the following proof of this fact in Stackexchange [15]. Every partition of n
has at most one part m larger than n

2
, and the remaining parts form a partition of n −m.

Thus

p
(
n,
n

2

)
= p(n)−

n
2
−1∑
i=0

p(i).

For large n, the terms in the sum are exponentially smaller than p(n), so asymptotically

p
(
n,
n

2

)
∼ p(n).

One can draw the graph of m2(n) over the known values and see that the equivalence

m2(n) ∼ p(n) (10)

is also very likely to be true.
Let us turn to the relations between m2(n), p(n), and v(n), whose values are known

for n ≤ 100. Table 1 presents some data for a few values of n. We see that the ratios
v(n)/p(n) and v(n)/m2(n) are small and very close, and the ratio (p(n)−m2(n)) /p(n)
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n p(n) v(n) m2(n) v(n)
p(n)

v(n)
m2(n)

p(n)−m2(n) p(n)−m2(n)
p(n)

60 966467 5148 924522 0.005327 0.005568 41945 0.0434
78 12132164 17089 11850304 0.001409 0.001442 281860 0.0232

100 190569292 59294 188735609 0.000311 0.000314 1833683 0.0096

Table 1: Relations between p(n), v(n), and m2(n)

rapidly decreasses when n grows, though the difference p(n) −m2(n) also increasses. This
corroborates (10) and gives an additional argument in favor of Conjecture 2.

The expression (9) for b(n), the upper bound on the number of vertices of Pn, may help
to clarify, though not prove, the cause of the tooth-shaped form of the graph of v(n) under
Conjecture 2. For n odd, it yields

b(n)− 1

2

(
b(n− 1) + b(n+ 1)

)
=
(
p(n)− 1

2
(p(n− 1) + p(n+ 1))

)
+

1

2

(
m(n+ 1)−m(n− 1)

)
,

where the first term is asymptotically zero and the second term is positive. This means that
b(n) has a peak at every large odd n and the graph of b(n) is of the tooth-shaped form,
similar to that in Figure 1 for v(n).

Let us consider two examples to see what happens when n is even. For n = 78, we have
b(78) = p(78)−m2(78) = 281 860, while b(77) = p(77)−m2(76) = 1 549 719. So, the bound
for v(78) is less than 0.19b(77). In the same way we have b(100) < 0.09b(99) ! Hence it is
more than likely that, for n even, v(n) is not only less than 1

2
(v(n − 1) + v(n + 1)) but

v(n) < v(n − 1). Thus, Conjecture 2 and the asymptotic equivalence (10), as its stronger
form observed from the numerical data, reasonably justify the inequality (4) and the gap
between the values of v(n) for even and odd n’s.

The next theorem provides a supplemental indication of the importance of Metropolis
2-partitions for recognizing vertices of Pn. Call a partition x` n an extension of a partition
y ` m, m < n, if every part of y is a part of x.

Theorem 5 For every n, every partition x ∈ C2(n) is either a Metropolis 2-partition or an
extension of some Metropolis 2-partition y ` m, m < n.

Proof. Consider arbitrary n and x ∈ C2(n), x /∈ M2(n) if n is even. By Theorem 2, there
exist two collections of parts of x with the same sum. Let s be the minimal possible value
of such a sum. Clearly, s ≤ n

2
. The corresponding collections are disjoint and their union is

a Metropolis 2-partition y of m = 2s ≤ n. Hence x = y if m = n or x is an extension of y if
m < n. �

4 Vertices and knapsack partitions

R. Ehrenborg and M. A. Readdy [3] called a partition x a knapsack partition if for every
integer, there is utmost one way to represent it as a sum of some parts of x. Denote the set
of knapsack partitions of n by K(n) and set k(n) := |K(n)|. Theorem 2 implies relations

K(n) = P (n)\C2(n),

Cξ(n) ⊂ K(n), ξ > 2,

VertPn ⊂ K(n).

8



The smallness of |VertPn ∩M2(n)| implies that for large n,

v(n) < k(n) < p(n)−m2(n).

Ehrenborg and Readdy computed the values k(n) for n ≤ 50 and exhibited them in the
OEIS, sequence A108917. We extended this sequence till n = 165 as a by-product of our
computation of vertices of Pn. Table 2 enhances Table 1 by the k(n) values. Consider its first
three rows with even n. Looking at the columns v(n)/(p(n)−m2(n)) and k(n) − v(n) and
comparing the columns k(n) and p(n)−m2(n), we see that there are quite many partitions
of n that are not vertices of Pn and do not belong to the class of Metropolis 2-partitions.
They are convex combinations of 2, 3, or more partitions of n. Note that k(n) is a much
better upper bound on v(n) than b(n) in (9) but no formula for k(n) is known.

n p(n) v(n) m2(n) p(n)−m2(n)
v(n)

p(n)−m2(n)
k(n)

v(n)
k(n) k(n)− v(n)

60 966 467 5 148 924 522 41 945 0.12 5 341 0.964 193

78 12 132 164 17 089 11 850 304 281 860 0.06 17 871 0.956 782

100 190 569 292 59 294 188 735 609 1 833 683 0.03 61 692 0.967 2 398

77 10 619 863 21 393 22 128 0.967 735

Table 2: Relations between p(n), v(n), m2(n), and k(n)

One can check that the graph of k(n), like that of v(n), disintegrates into two graphs,
for n odd and n even. However in the column v(n)/k(n) we see that for n = 78 this ratio is
less than those for even n = 60 and n = 100. Moreover, this ratio is approximately the same
for odd n = 77 and even n = 100, which are rather far from each other. Figure 4 presents
the graph of v(n)/k(n). We obviously see that the n’s multiple of 3 are the local minima of
v(n)/k(n). This means that such n’s have more partitions that are not vertices of Pn and
do not belong to C2(n) than the n’s not multiple of 3.

Fig. 4. Ratio v(n)/k(n) of the number of vertices to the number of knapsack partitions.

The following conjecture naturally explains this phenomenon.

Conjecture 3 The majority of partitions in K(n) that are not vertices of Pn are convex
combinations of three partitions of n.

Conjecture 3 is consistent with our computation experience, from which we know that for
n multiple of 3, most partitions in C3(n) have a part n

3
or are extensions of some partitions

in C3(q), where q < n, q multiple of 3, with the additional part n − q. In any case one
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of the partitions involved in the convex combination has three parts n
3

or q
3
. For example,

the non-vertex x = (13, 9, 17, 22)` 51 has a part 17 = 51
3
, and its convex representation is

1

3
(17, 222) +

1

3
(12, 93, 22) +

1

3
(173).

As for the obvious tendency of v(n)/k(n) to decrease, we see its explanation in the
increase of the number of partitions in Cξ(n), ξ > 3, with the growth of n.

5 Stratification of the numbers of vertices

To reveal the discovered dependence of the number of vertices of the polytope Pn on multi-
plicative properties of n and examine it in more details, we consider the classes of integers

Nk := {n|n = pk, p prime} , k = 2, 3, 4, 5, ...

and the corresponding numbers of vertices

vk(n) := v(n), n ∈ Nk.

Remark 2 It would be better to add the condition k ≤ p in the definition of Nk. We do not
do this because of the lack of known values of v(n).

Figure 5 demonstrates the graphs of the functions vk(n) for k = 1, 7, 5, 3, 2, 4, 6 in order
from top to bottom. They are generated with the use of the FindFit method of Wolfram
Mathematica. We approximated the known values of vk(n) by the functions of the form
AeB

√
n with parameters A and B. The segment n ∈ [60, 70] is chosen to split the graphs

vk(n) visually. It also lies in the most interesting part of the segment [1, 100], where we can
expect our approximations to reveal a reliable picture of what happens. We do not include
the graphs of vk(n), k > 7, in Figure 5 because they are little informative. For these k, there
are too few prime numbers p ≥ k such that kp ∈ [1, 100].

Fig. 5. Stratification of the number of vertices of the polytope Pn function
to the vk(n) functions, k = 1, 2, . . . , 7.

We see that the graph of v(n) is neither a single line nor a conjunction of two lines, for
odd and even n, as in Figure 1. It is stratified into layers corresponding to the classes Nk and
resembles a layered cake. Its layers are of the same shape but are disposed at different levels.
The topmost line corresponds to N1, the class of primes. The graph of v3(n) is disposed
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below it. Between them, one below another, are disposed the graphs of v7(n) and v5(n), and
the graphs of vk(n), k even, are disposed below v3(n).

The levels of the graphs of v1(n), v2(n), v3(n) agree with Conjectures 2 and 3. The
intermediate position of v7(n) and v5(n) and Conjecture 1 move us to suggest a more general
conjecture that for prime k, k divides n, the determining influence on the level of vk(n) is
exerted by the number of partitions of n ∈ Nk that belong to Ck(n). If k1, k2 are two primes,
k1 > k2, then, in accordance with Conjecture 1, for large and sufficiently close to each other
n1 ∈ Nk1 and n2 ∈ Nk2 , the inequality |Ck1(n1)| < |Ck2(n2)| holds and therefore the vk1(n)
graph is disposed above the vk2(n) graph.

The case of k, a composite divisor of n, can be explained using the graphs of v6(n)
and v4(n). v6(n) is disposed below v2(n) and v3(n) because the level of v6(n) is affected by
partitions in C2(n) and partitions in C3(n). Similarly, v4(n) goes between v2(n) and v6(n)
because 4 is an additional (to 2) divisor of n and |C4(n)| < |C3(n)|.

We summarize the above in the final conjecture.

Conjecture 4 For n = kp, k ≤ p, p prime, the level of the graph of vk(n) depends on
factorization of k. If k1, k2, k3, . . . are divisors of k sorted in ascending order, then the major
influence on the level of the vk(n) graph is rendered by the divisor k1. Every successive divisor
makes its additional contribution to lowering the level of vk(n).

Generalizing, we might say that the value of v(n) is determined by the proximity of n to
its greatest prime divisor, which is defined by the lexicographic order on the set of sequences
of divisors of n. For example, 38 = 2 · 19 would be more prime than 39 = 3 · 13, hence
the layer v2(n), that contains v(38), is disposed lower than the layer v3(n) containing v(39).
The same holds for 78 = 2 · 3 · 13 and 70 = 2 · 5 · 7. If we extend this speculation, we might
come to a fractal structure of the graph of v(n). For example, the graph of v5(n) together
with v10(n), v15(n), v20(n), . . . may have a structure similar to that of v(n). However, it is too
early to foresee so far ahead — more numerical data of v(n) is needed. Then the Conjecture
4 might be further detalized.

6 Remark on the Gomory’s corner polyhedron

There is another serial integral polyhedron that is a close relative of the polytope of integer
partitions. This is the well-known master corner polyhedron, the atom of integer linear
programming [4, 5]. It is defined as follows. Let G be a finite Abelian group and some
g0 ∈ G. The master corner polyhedron P (G, g0) is the convex hull of solutions

t = (t(g); g ∈ G+) ∈ R|G+|, t(g) integer, t(g) ≥ 0,

to the equation ∑
g∈G+

t(g)g = g0, (11)

where G+ is the set of nonzero group elements. For Gn+1 := Z/(n + 1)Z, the cyclic group
of order n+ 1, and g0 = n, the equation (11) reads

t1 + 2t2 + . . .+ ntn ≡ n mod (n+ 1),

which differs from (1) only in that the addition here is modulo n+ 1.
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Our experience in studying both polyhedra showed that the vertex structure of Pn is
more transparent and easy for understanding than that of the P (G, g0), even in the case of
the cyclic group. In our opinion, this is because the standard addition on the segment of
integers [1, n], albeit defined only partially, is much easier to comprehend than the group
addition. Most results on vertices of Pn were successfully transferred to vertices of the master
corner polyhedron [13].

Statistics on vertices of P (G, g0) is unbelievably poor. All that we know about their
numbers comes from the R. E. Gomory’s seminal paper [4]. Gomory computed vertices of
P (G, g0) for all groups G of the order up to 11 and all g0 ∈ G. 1 The numbers of vertices
of the corner polyhedra P (Gn+1, n), n = 1, 2, . . . , 10, are 1, 2, 3, 5, 7, 10, 16, 19, 31, 32, the
sequence A300795 in the OEIS. Figure 6 exhibits the graph of this sequence.

Fig. 6. Graph of the number of vertices function for the master corner polyhedron
P (Gn+1, n) on the cyclic group Gn+1, 1 ≤ n ≤ 10.

We perceive this picture as an embryo of Figure 1. In our view, the tooth-shaped form of
the |VertP (Gn+1, n)| graph is foreshadowed in this initial part. Some of the above features
of v(n) may also become visible when the sequence of numbers of vertices of P (Gn+1, n) will
be extended.

7 Concluding remarks

In order to study the number of vertices v(n) of the polytope Pn of integer partitions of n
we investigated the structure of the set of partitions that are not vertices. We divided this
set to disjoint subsets Cξ(n) according to the minimum number ξ of partitions necessary to
represent a partition x /∈ VertPn as their convex combination. Using the available numerical
data, we demonstrated that M2(n), the set of Metropolis 2-partitions of n, constitutes a
larger part of partitions that are not vertices of Pn. As a consequence, vertices of Pn form
a small subset of partitions of n. We proved that an integer point in an arbitrary integral
polytope P, which belongs to the subset of integer points in P analogous to C3(n), admits
a convex representation via three integer points with all coefficients equal to 1

3
.

Thorough analysis of the computed values of v(n) revealed intriguing properties of this
function. Comparing this data with available numbers of knapsack and Metropolis 2-
partitions moved us to suggest several conjectures that explain observed peculiarities. The

1One extra point t ∈ P (G11, 10), with t(5) = 1, t(9) = 3 and all other t(i) = 0, indicated in [4] as a vertex
was excluded in [13].
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main conjecture claims that v(n) depends on factorization of n. We presented visual but,
in our view, convincing arguments in its favor. We showed that the graph of v(n) is strati-
fied into layers, the subgraphs corresponding to the classes of integers that are determined
by factorization of n. The upper layer corresponds to prime numbers and the others corre-
spond to collections of small divisors of n. Every prime divisor makes its own contribution
to lowering the level of the layer. The smaller the divisor the more significant its effect.

We provided an embryonic argument in favor of a similar dependence for the number of
vertices of the master corner polyhedron on the cyclic group. The master corner polyhedron
is of key importance in integer programming, though, regrettably, after the Gomory’s pio-
neering work [4] its vertices fell out of research for about 40 years in pursuit of efficient cuts
for integer programs.

This work draws forth new questions. Formal proof and detailed study of the dependence
of the number of vertices of Pn on factorization of n remain open problems for the future
research. Further computation of v(n) would be of great help. One of the most important
problems is to find a combinatorial criterion for vertices of Pn. More specific problems are
concerned with the nature of partitions in Cξ(n). Counting knapsack partitions does not
look unworkable. This problem looks easier than enumerating vertices. Its solution will
provide a rather good estimate for v(n). We also hope that this work will give an impetus
to further study of vertices of the corner polyhedron.
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[2] C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von pos-
itiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 1911, 193-217.

[3] R. Ehrenborg and M.A. Readdy, The Möbius function of partitions with restricted block
sizes. Adv. in Appl. Math., 2007, 39, 283-292.

[4] R.E. Gomory, Some Polyhedra Related to Combinatorial Problems. Linear Algebra
Appl., 1969, 2(4), 451-558.

[5] R.E. Gomory, The atoms of integer programming. Ann. Oper. Res., 2007, 149(1), 99-
102.

[6] R.E. Gomory, Origin and early evolution of corner polyhedra. European J. Oper. Res.,
2016, 253(3), 543-556.

[7] N. Metropolis and P.R. Stein, An elementary solution to a problem in restricted parti-
tions. J. of Combinatorial Theory, 1970, 9, 365-376.

13



[8] S. Onn and V.A. Shlyk, Some Efficiently solvable problems over integer partition poly-
topes. Discrete Appl. Math., 2015, 180, 135-140.

[9] B. Reznik, Lattice point simplices. Discrete Math., 1986, 60, 219-242.

[10] V.A. Shlyk, Polytopes of partitions of numbers. European J. Combin., 2005, 26, 1139-
1153.

[11] V.A. Shlyk, On the vertices of the polytopes of partitions of numbers. Dokl. Nats. Akad.
Nauk Belarusi, 2008, 52/3, 5-10 (in Russian).

[12] V.A. Shlyk, Integer partitions from the polyhedral point of view. Electron. Notes Dis-
crete Math., 2013, 43, 319-327.

[13] V.A. Shlyk, Master Corner Polyhedron: Vertices. European J. Oper. Res., 2013, 226/2,
203-210.

[14] V.A. Shlyk, Polyhedral approach to integer partitions, J. Combin. Math. Combin. Com-
put., 2014, 89, 113-128.

[15] Number of partitions of 2n with no element greater than n.
https://math.stackexchange.com/questions/96085/number-of-partitions-of-2n-with-
no-element-greater-than-n.

[16] A.S. Vroublevski and V.A. Shlyk, Computing vertices of integer partition polytopes.
Informatics, 2015, 4(48), 34-48 (in Russian).

[17] E.W. Weisstein, Partition. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/Partition.html.

14

http://mathworld.wolfram.com/Partition.html

	1 Introduction
	2 Partitions that are not vertices and coefficients in their convex representations
	3 Numbers of partitions of even, odd, and prime n and Metropolis partitions
	4 Vertices and knapsack partitions
	5 Stratification of the numbers of vertices
	6 Remark on the Gomory's corner polyhedron
	7 Concluding remarks
	8 Acknowledgements

