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Abstract

There are only 10 Euclidean forms, that is flat closed three dimensional man-

ifolds: six are orientable and four are non-orientable. The aim of this paper is to

describe all types of n-fold coverings over orientable Euclidean manifolds G2 and

G4, and calculate the numbers of non-equivalent coverings of each type. We classify

subgroups in the fundamental groups π1(G2) and π1(G4) up to isomorphism and

calculate the numbers of conjugated classes of each type of subgroups for index

n. The manifolds G2 and G4 are uniquely determined among the others orientable

forms by their homology groups H1(G2) = Z2 × Z2 × Z and H1(G4) = Z2 × Z.

Key words: Euclidean form, platycosm, flat 3-manifold, non-equivalent cover-

ings, crystallographic group.
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Introduction

Let M be a manifold with fundamental group Γ = π1(M). Two coverings p1 : M1 → M
and p2 : M2 → M are said to be equivalent if there exists a homeomorphism h : M1 →
M2 such that p1 = p2 ◦ h. According to the general theory of covering spaces, any
n-fold covering is uniquely determined by a subgroup of index n in the group Γ. The

∗This work was supported by the Russian Foundation for Basic Research (grant 18−01−00036/18).
†This work was supported by the Russian Foundation for Basic Research (grant 16-31-00138).
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equivalence classes of n-fold covering of M are in one-to-one correspondence with the
conjugacy classes of subgroups of index n in the fundamental group π1(M). (see, for
example, [5], p. 67). A similar statement formulated in the language of orbifolds is valid
for branched coverings.

In such a way the following two natural problems arise. The first one is to calculate
the number of subgroups of given finite index n in π1(M). The second problem is to find
the number of conjugacy classes of subgroups of index n in π1(M).

The problem of enumeration for nonequivalent coverings over a Riemann surface
with given branch type goes back to the paper [7] by Hurwitz, in which the number of
coverings over the Riemann sphere with given number of simple (of order two) branching
points was determined. Later, in [8], it was found that this number has an adequate
expression in terms of irreducible characters of symmetric groups, the theory of which
was developed by Frobenius in the beginning of the twentieth century. The Hurwitz
problem was considered by many authors. A detailed survey of the related results is
contained in ([14], [10]). For closed Riemann surfaces, this problem was completely
solved in [17]. However, of most interest is the case of unramified coverings. Let sΓ(n)
denote the number of subgroups of index n in the group Γ, and let cΓ(n) be the number of
conjugacy classes of such subgroups. According to what was said above, cΓ(n) coincides
with the number of nonequivalent n-fold coverings over a manifold M with fundamental
group Γ. If M is a compact surface with nonempty boundary of Euler characteristic
χ(M) = 1 − r, where r ≥ 0 (e.g., a disk with r holes), then its fundamental group
Γ = Fr is the free group of rank r. For this case, M. Hall [6] calculated the number
sΓ(n) and V. A. Liskovets [11] found the number cΓ(n) by using his own method for
calculating the number of conjugacy classes of subgroups in free groups. An alternative
approach for counting conjugacy classes of subgroups in Fr was suggested by J. H. Kwak
and Y. Lee [9]. The numbers sΓ(n) and cΓ(n) for the fundamental group of a closed
surface (orientable or not) were calculated in ([15], [16], [18]). In the paper [19], a
general method for calculating the number cΓ(n) of conjugacy classes of subgroups in an
arbitrary finitely generated group Γ was given. Asymptotic formulas for sΓ(n) in many
important cases were obtained by T. W. Müller and his collaborators ([20], [21], [22]).

In the three-dimensional case, for a large class of Seifert fibrations, the value of sΓ(n)
was determined in [12] and [13]. In the previous paper by the authors [2], the numbers
sΓ(n) and cΓ(n) were determined for the fundamental groups of non-orientable Euclidian
manifolds B1 and B2 whose homologies are H1(B1) = Z2 × Z2 and H1(B2) = Z2.

The aim of the present paper is to investigate n-fold coverings over orientable Eu-
clidean three dimensional manifolds G2 and G4, whose homologies are H1(G2) = Z2 ×
Z2 × Z and H1(G4) = Z2 × Z. We classify subgroups of finite index in the fundamental
groups of π1(G2) and π1(G4) up to isomorphism and calculate the numbers of conjugated
classes of each type of subgroups for index n.

We note that numerical methods to solve these and similar problems for the three-
dimensional crystallogical groups were developed by the Bilbao group [1]. The first
homologies of such groups are determined in [23].

.
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Notations

According to Wolf notation, there are six orientable Euclidean 3-manifold G1, G2, G3, G4,
G5, G6, and four non-orientable ones B1, B2, B3, B4, see [24]. One can find the correspon-
dence between Wolf and Conway-Rossetti notations of the Euclidean 3-manifold and its
fundamental groups in Table 1. During the paper, we prefer to use Wolf notation.

name
Conway-
Rosetti

other names Wolf
fund.group
(internatl.
no name)

Homology
group

torocosm c1 3-torus G1 1.P1 Z3

dicosm c2
half turn

space
G2 4.P21 Z2

2 ⊕ Z

tricosm c3
one-third
turn space

G3
144.P31
145.P32

Z3 ⊕ Z

tetracosm c4
quarter

turn space
G4

76.P41
78.P43

Z2 ⊕ Z

hexacosm c6
one-sixth
turn space

G5
169.P61
170.P65

Z

didicosm c22
Hantzsche-

Wendt space
G6 19.P212121 Z2

4

first amphicosm +a1
Klein bottle
times circle

B1 7.Pc Z2 ⊕ Z2

second amphicosm −a1 B2 9.Cc Z2

first amphidicosm +a2 B3 29.Pca21 Z2
2 ⊕ Z

second amphidicosm −a2 B4 33.Pa21 Z4 ⊕ Z

Table 1

During this paper we will use the following notations: sH,G(n) is the number of
subgroups of index n in the group G, isomorphic to the group H ; cH,G(n) is the number
conjugacy classes of subgroups of index n in the group G, isomorphic to the group H .
Also we will need the following combinatorial functions:

σ0(n) =
∑

k|n

1 if n is natural, σ0(n) = 0 otherwise,

σ1(n) =
∑

k|n

k if n is natural, σ1(n) = 0 otherwise,

σ2(n) =
∑

k|n

σ1(k) if n is natural, σ2(n) = 0 otherwise.

ω(n) =
∑

k|n

kσ1(k) if n is natural, ω(n) = 0 otherwise.

τ(n) = |{(s, t)|s, t ∈ Z, s > 0, t ≥ 0, s2 + t2 = n}| if n is natural, ω(n) = 0 otherwise.
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1 The brief overview of achieved results

Since the problem of enumeration of n-fold coverings reduces to the problem of enumera-
tion of conjugacy classes of some subgroups, it is natural to expect that the enumeration
of subgroups without respect of conjugacy would be helpful. The manifoldG1 have the
Abelian fundamental group Z3. Thus the number of subgroups of a given finite index n
coincides with the number of conjugacy classes and well known:

sZ3(n) = cZ3(n) =
∑

k|n

kσ1(k).

In this paper we enumerate subgroups of a given finite index n and conjugacy classes
of such subgroups with respect of their isomorphism class in groups π1(G2) and π1(G4).
Similar results for manifolds B1 and B2 are achieved in [2]. Analogous results for other
five Euclidean 3-manifolds are coming soon.

The next theorem provides the complete solution of the problem of enumeration of
subgroups of a given index in π1(G2).

Theorem 1. Every subgroup ∆ of finite index n in π1(G2) is isomorphic to either π1(G2)
or Z3. The respective numbers of subgroups are

(i) sπ1(G2),π1(G2)(n) = ω(n)− ω(
n

2
),

(ii) sZ3,π1(G2)(n) = ω(
n

2
);

where ω(n) =
∑

k|n kσ1(k).

The next theorem provides the number of conjugacy classes of subgroups of index
n in π1(G2) for each isomorphism type. That is the number of non-equivalent n-fold
covering G2, which have a prescribe fundamental group.

Theorem 2. Let N → G2 be an n-fold covering over G2. If n is odd then N is home-
omorphic to G2. If n is even then N is homeomorphic to G2 or G1. The corresponding
numbers of nonequivalent coverings are given by the following formulas:

cπ1(G2),π1(G2)(n) = σ2(n) + 2σ2(
n

2
)− 3σ2(

n

4
). (i)

cZ3,π1(G2)(n) =
1

2

(
σ2(

n

2
) + 3σ2(

n

4
) + ω(

n

2
)
)
. (ii)

Theorem 3 and Theorem 4 count the numbers of subgroups and the numbers of
conjugacy classes of subgroups of index n in π1(G4). That is this theorems are analogues
of Theorem 1 and Theorem 2 respectively for the manifold G4. We will need one more
combinatorial function for the compact formulation of the results.

Notation. Denote τ(m) = |{(s, t)|s, t ∈ Z, s > 0, t ≥ 0, s2 + t2 = m}|.
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Theorem 3. Every subgroup ∆ of finite index n in π1(G4) is isomorphic to either π1(G4),
or π1(G2), or Z3. The respective numbers of subgroups are

(i) sπ1(G4),π1(G4)(n) =
∑

a|n

aτ(a)−
∑

a|n
2

aτ(a).

(ii) sπ1(G2),π1(G4)(n) = ω(
n

2
)− ω(

n

4
),

(iii) sZ3,π1(G4)(n) = ω(
n

4
).

Theorem 4. Let N → G4 be an n-fold covering over G4. If n is odd then N is home-
omorphic to G4. If n is even but not divisible by 4 then N is homeomorphic to G4 or
G2. Finely, if n is divisible by 4 then N is homeomorphic to one of G4, G2 and G1. The
corresponding numbers of nonequivalent coverings are given by the following formulas:

(i) cπ1(G4),π1(G4) =
∑

a|n

τ(
n

a
)−

∑

a|n
4

τ(
n

4a
)

(ii) cπ1(G2),π1(G4) =
1

2

(
σ2(

n

2
) + 2σ2(

n

4
)− 3σ2(

n

4
) +

∑

a|n
2

τ(a)−
∑

a|n
8

τ(a)
)
,

(iii) cZ3,π1(G4) =
1

2

∑

a|n
4

τ(a) +
1

2

∑

a|n
8

τ(a) +
1

4
σ2(

n

4
) +

3

4
σ2(

n

8
) +

1

4
ω(

n

4
).

2 Preliminaries

Further we use the following representations for the fundamental groups π(G2) and π(G4),
see [24] or [3].

π1(G2) = 〈x, y, z : xyx−1y−1 = 1, zxz−1 = x−1, zyz−1 = y−1〉. (2.1)

π1(G4) = 〈x̃, ỹ, z̃ : x̃ỹx̃−1ỹ−1 = 1, z̃x̃z̃−1 = ỹ, z̃ỹz̃−1 = x̃−1〉. (2.2)

Further we will widely use the following statement.

Proposition 1. The sublattices of index k in the 2-dimensional lattice Z2 are in one-to-

one correspondence with the matrices

(
b c
0 a

)
, where ab = k, 0 ≤ c < b. Consequently,

the number of such sublattices is σ1(k).
The sublattices of index k in the 3-dimensional lattice Z3 are in one-to-one corre-

spondence with the integer matrices




c e f
0 b d
0 0 a



, where a, b, c > 0, abc = k, 0 ≤ d < b

and 0 ≤ f, e < c. Consequently, the number of such sublattices is ω(k).
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Despite this statement is well-known we will quote here its proof, since we will need
the technique for a number of more subtle questions.

Proof. We will prove the statement about 3-dimension lattice. The two dimensional
case can be done similarly. Consider the group Z3 = {(x, y, z)| x, y, z ∈ Z}, we use the
additive notation. Let G be a subgroup of index k in Z3.

Let w̄ = (f, d, a) ∈ G be an element with the minimal positive third coordinate
among all elements of G. Such element exists, otherwise the index |Z3 : G| is infinite.
Denote h̄(G) = (f, d, 0) and H(G) = G

⋂
(Z,Z, 0).

Let v̄ = (e, b, 0) ∈ H(G) be an element with the minimal positive second coordinate
among all elements of H(G). Such element exists, otherwise the index |Z2 : H(G)| is
infinite. Let ū = (c, 0, 0) ∈ H(G) be the element with the minimal possible positive
c. Replacing w̄ with w̄ + iv̄ + jū i, j ∈ Z we may assume 0 ≤ d < b and 0 ≤ f < c.
Similarly we achieve 0 ≤ e < c.

Thus we got the map form the subgroups to matrices. Now we prove its injectivity.
Indeed, the number a and the subgroup H(G) are uniquely defined by G. In its turn,
H(G) uniquely defines b, c, e. Finally, the set (Z,Z, a)

⋂
G is uniquely defined by G.

But (Z,Z, a)
⋂
G = h + H(G), that means that the coset of the element h in the

coset decomposition (Z,Z, a)/H(G) is uniquely defined. Keeping in mind that H(G) =
〈(c, 0, 0), (e, b, 0)〉, we get that the pair (d, f) where 0 ≤ d < b and 0 ≤ f < c is unique.

The fact that each matrix corresponds to some subgroup of index k is obvious.

3 On the coverings of G2

3.1 The structure of the group π1(G2)

The following proposition provides the canonical form of an element in π1(G2).

Proposition 2. (i) Each element of π1(G2) can be represented in the canonical form
xaybzc for some integer a, b, c.

(ii) The product of two canonical forms is given by the formula

xaybzc · xdyezf = xa+(−1)cdyb+(−1)cezc+f . (3.3)

(iii) The canonical epimorphism φG2 : π1(G2) → π1(G2)/〈x, y〉 ∼= Z, given by the formula
xaybzc → c is well-defined.

(iv) The representation in the canonical form g = xaybzc for each element g ∈ π1(G2)
is unique.

Proof. Part (ii) can be verified directly using the relations 2.1. To prove part (i) consider
an arbitrary word in generators, say sd11 sd22 · · · sdkk , where s1, s2, . . . , sk ∈ {x, y, z}. We
prove by induction on k that such a word can be represented in the form xaybzc. Indeed,

6



for k = 1 the word already have the desired representation; in this case two numbers
among a, b, c equal zero. Suppose for some k the statement is proved, and consider
sd11 sd22 · · · s

di+1

i+1 = xaybzc · s
di+1

i+1 . Since s
di+1

i+1 = xdyezf (two among d, e, f equal 0) the use
of part (ii) finishes the proof.

Part (ii) implies that 〈x, y〉 is a normal subgroup in π1(G2). Substituting x = y = 1
to (2.1) we get that there is no relations containing z, this proves (iii). To prove (iv)
consider an arbitrary element g ∈ π1(G2) and an arbitrary representation of this element
in the canonical form g = xaybzc. The value of c is uniquely defined by (iii), indeed
c = φG2(g). The numbers a and b are also uniquely defined, since x and y are generators
of the free abelian group 〈x, y〉 = Z2.

Notation. Set Γ = 〈x, y〉.

In the next definition we introduce the invariants, similar to one used in Proposition 1.

Definition 1. Suppose ∆ is a subgroup of finite index n in π1(G2). Put H(∆) = ∆
⋂

Γ.
We consider all elements of π1(G2) represented in the canonical form, given by Propo-
sition 2. By a(∆) denote the minimal positive degree at z among the elements of ∆.
Let Z(∆) be some element with such degree at z, put Z(∆) = hza(∆), where h ∈ Γ. By
ν(∆) = hH(∆) denote the coset in coset decomposition Γ/H(∆). For the coset decom-
position Γ/H(∆) we will use the additive notation. By Y (∆) and X(∆) denote a pair of
generators of H(∆) of the form, provided by Proposition 1, that is Y (∆) = xe(∆)yb(∆),
X(∆) = xc(∆) where 0 ≤ e(∆) < c(∆). Further we will omit ∆ for X(∆), Y (∆), Z(∆).

It is worth noting that, despite the choice of Z and h is not unique, the choice of
ν(∆), X and Y is unique. More precisely:

Lemma 1. The number a(∆), the subgroup H(∆) and the coset ν(∆) are well-defined.
Furthermore a(∆)b(∆)c(∆) = a(∆)[Γ : H(∆)] = [π1(G2) : ∆].

Proof. The number a(∆) exists, otherwise the elements z, z2, z3, . . . belong to mutually
different cosets of ∆ in π1(G2). Thus the index of ∆ is infinite, which is a contradiction.

The number a(∆) and the subgroup H(∆) are unique by definition. Let s1H(∆), . . . , smH(∆)
be a complete system of cosets of H(∆) in Γ. Then zisjH(∆), 0 ≤ i < a(∆), 1 ≤ j ≤

|Γ : H(∆)| is a complete system of cosets of H(∆) in π1(G2), thus k(∆) ·
∣∣∣Γ : H(∆)

∣∣∣ =∣∣∣π1(G2) : ∆
∣∣∣ = n. The equality b(∆)c(∆) = [Γ : H(∆)] is given by Proposition 1.

To prove that ν(∆) does not depends upon a choice of Z consider Z1 = h1z
a(∆) ∈ ∆

and Z2 = h2z
a(∆) ∈ ∆, where h1, h2 ∈ Γ. Since Z1Z

−1
2 ∈ H(∆), we have Z1Z

−1
2 =

h1z
a(∆)z−a(∆)h−1

2 = h1h
−1
2 ∈ H(∆). That is h1 and h2 belongs to the same coset of

H(∆) in Γ.

Definition 2. A 3-plet (a,H, ν) is called n-essential if the following conditions holds:

(i) a is a positive divisor of n,

(ii) H is a subgroup of index n/a in Γ

7



(iii) ν is an element of Γ/H.

Lemma 2. For arbitrary n-essential 3-plet (a,H, ν) there exists a subgroup ∆ in the
group π1(G2) such that (a,H, ν) = (k(∆), H(∆), ν(∆)).

Proof. Let h be a representative of the coset ν. In case a is odd consider the set

{hz(2l+1)aH|l ∈ Z}
⋃

{z2laH|l ∈ Z}.

This set is a subgroup of index n in π1(G2), which fact can be proven directly.
Similarly, in case a is even the set

{hlzlaH|l ∈ Z}

form a subgroup of index n in π1(G2).

Proposition 3. There is a bijection between the set of n-essential 3-plets (a,H, ν)
and the set of subgroups ∆ of index n in π1(G2), given by the correspondence ∆ ↔
(a(∆), H(∆), ν(∆)). Moreover, ∆ ∼= π1(G1) if a(∆) is even and ∆ ∼= π1(G2) if a(∆) is
odd.

Proof. Consider the family of subgroups ∆ of index n in π1(G2).Lemma 1 builds the map
of the family of subgroups ∆ to n-essential 3-plets. Lemma 2 shows that this map is a
bijection. Now we describe the isomorphism type of a subgroup.

If a(∆) is even Lemma 2 implies that ∆ is a subgroup of 〈x, y, z2〉. Substituting the
canonical representations with even degrees at z into (3.3) one gets that 〈x, y, z2〉 ∼= Z3,
thus ∆ is a subgroup of finite index in Z3. As a result ∆ is isomorphic to Z3.

Consider the case a(∆) is odd. For the sake of brevity, we write X = X(∆),
Y = Y (∆) and Z = Z(∆). Recall ∆ is generated by X, Y, Z. Direct verification
shows that the relations XYX−1Y −1 = 1, ZXZ−1 = X−1, and ZY Z−1 = Y −1 holds.
Further we call this relations the proper relations of the subgroup ∆. Thus the map
x → X, y → Y, z → Z can be extended to an epimorphism π1(G2) → ∆. To prove
that this epimorphism is really an isomorphism we need to show that each relation in
∆ is a corollary of proper relations. We call a relation, that is not a corollary of proper
relations an improper relation.

Assume the contrary, i.e. there are some improper relations in ∆. Since in ∆ the
proper relations holds, each element can be represented in the canonical form, given
by Proposition 2 in terms of X, Y, Z, by using just the proper relations. That is each
element g can be represented as

g = XrY sZt.

If there is an improper relation then there is an equality

XrY sZt = Xr′Y s′Zt′, (3.4)

where at least one of the inequalities r 6= r′, s 6= s′, t 6= t′ holds. Applying φG2 to both
parts we get ta(∆) = t′a(∆), thus t = t′. Then XrY s = Xr′Y s′, that means

{
c(∆)r + e(∆)s = c(∆)r′ + e(∆)s′

b(∆)s = b(∆)s′
(3.5)

8



Keep in mind that b(∆)c(∆) 6= 0 since a(∆)b(∆)c(∆) = n. The contradiction of
equations (3.5) with (r, s) 6= (r′, s′) proves that ∆ ∼= π1(G2).

3.2 The proof of Theorem 1

Proceed to the proof of Theorem 1. Proposition 3 claims that each subgroup ∆ of finite
index n is isomorphic to π1(G2) or Z3, depending upon whether a(∆) is odd or even.
Consider these two cases separately.

Case (i). To find the number of subgroups isomorphic to π1(G2), by Proposition 3
we need to calculate the cardinality of the set of n-essential 3-plets with odd a.

For each odd a | n there are σ1(
n
a
) subgroups H in Γ, such that

∣∣Γ : H
∣∣ = n

a
. Also

there are n
a

different choices of a coset ν. Thus, for each odd a the number of n-essential
3-plets is n

a
σ1(

n
a
). So, the total number of subgroups is given by

sπ1(G2),π1(G2)(n) =
∑

a|n, 2∤a

n

a
σ1(

n

a
).

Equivalently,

sπ1(G2),π1(G2)(n) =
∑

a|n

n

a
σ1(

n

a
)−

∑

2a|n

n

2a
σ1(

n

2a
) = ω(n)− ω(

n

2
).

Case (ii). Similarly to the previous case, we get the formula

sZ3,π1(G2)(n) =
∑

2a|n

n

2a
σ1(

n

2a
) = ω(

n

2
).

3.3 The proof of Theorem 2

The isomorphism types of subgroups are already provided by Proposition 3. Thus we
just have to calculate the number of conjugacy classes for each type.

Notation. By ξ denote the canonical homomorphism Γ → Γ/H(∆).

To prove case (ii) consider a subgroup ∆ of index n in π1(G2) isomorphic to Z3. By
Proposition 3, a subgroup ∆ is uniquely defined by the n-essential 3-plet (a(∆), H(∆), ν(∆)),
where a is even. Consider the conjugacy class of subgroups ∆g, g ∈ π1(G2). It consists
of subgroups corresponding to 3-plets

(
a(∆g), H(∆g), ν(∆g)

)
, g ∈ π1(G2).

Obviously, a(∆g) = a(∆) and H(∆g) = H(∆). Furthermore, ν(∆) = ν(∆x) =
ν(∆y) = ν(∆z2) and ν(∆) = −ν(∆z), thus ν(∆g) = ±ν(∆). So, the conjugacy class
of the subgroup ∆ consists of one or two subgroups, depending on does the condition
2ν(∆) = 0 holds or not. In the former case, ∆ is normal in π1(G2).

By M1 and M2 denote the set of normal subgroups, and the set of subgroups having
exactly two subgroups in their conjugacy class, respectively. The obvious formula for
the number of conjugacy classes is cZ3,π1(G2) = |M1| +

|M2|
2

, we rewrite it in the form

cZ3,π1(G3) =
|M1|
2

+ |M1|+|M2|
2

. Note that M1

⋃
M2 is the set of all subgroups, thus |M1|+

|M2| is given by Theorem 1. So we have to find |M1|.
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Lemma 3. Let a be an even divisor of n. Then the number of normal subgroups ∆ of
index n in π1(G2) isomorphic to Z3 and satisfying a(∆) = a is given by

σ1(
n

a
) + 3σ1(

n

2a
).

Proof. For the given even a(∆) = a we need to calculate the number of pairs (H(∆), ν(∆)),
such that 2ν(∆) = 0. By Proposition 1, subgroups H(∆) bijectively correspond to pairs
of generators X = xc, Y = xeyb, that is H(∆) is uniquely defined by integers b, c, e such
that b, c > 0, bc = n

a
and 0 ≤ e < c.

The cosets of Γ/H(∆) bijectively correspond to elements of the set F = {xiyj| 0 ≤
i < c, 0 ≤ j < b}. The condition 2ν(∆) = 0 means (2i, 2j) ∈ 〈(c, 0), (e, b)〉.

Fix a subgroup H(∆). If both b and c are odd then there is only one element ν with
2ν = 0, namely ν = ξ(x0y0) = 0. If c is even and b is odd then there are two elements:
ν = 0 and ν = ξ(xc/2). If c is odd and b is even then among the numbers e

2
and e+c

2

exactly one is integer, thus there are two elements ν, satisfying 2ν = 0: namely 0 and
one of ξ(x

e

2 y
b

2 ) or ξ(x
e+c

2 y
b

2 ).
Finally, let both c and b are even. For odd e there are only two different ν: ν = 0 and

ν = ξ(xc/2); for even e there are four different choices: ν = 0, ν = ξ(xc/2), ν = ξ(xe/2yb/2)
and ν = ξ(x(e+c)/2y(b)/2). So, if one fix a pair of even (b, c), the subgroups H(∆) with
(b(∆), c(∆)) = (b, c) bijectively corresponds to the values of 0 ≤ e(∆) < c. For c

2
values

0 ≤ e < c, 2 ∤ e, there are 2 choices of ν, for other c
2

values of 0 ≤ e < c, 2 | e there are
4 choices of ν.

Summarizing, for a fixed pair (b, c) the number of pairs (H(∆), ν(∆)), such that
(b(∆), c(∆)) = (b, c) and 2ν = 0 is

• c if both b and c are odd

• 2c if exactly one of b and c is even

• 3c if both b and c are even.

Summing over all possible values of c we get the required number of pairs equals

|{(H(∆), ν(∆)}| =
∑

c|n
a

c+
∑

c| n

2a

2c+
∑

c| n

2a

c = σ1(
n

a
) + 3σ1(

n

2a
).

Now, using the value of |M1|+ |M2|, provided by Theorem 1 and summing over all
possible values of a(∆) one gets the proof of case (ii) of Theorem 2

cZ3,π1(G2)(n) =
1

2

(
σ2(

n

2
) + 3σ2(

n

4
) + ω(

n

2
)
)
.

This finishes the proof of case (ii) of Theorem 2.
The proof of case (i) resembles the proof of (ii). Consider a subgroup ∆ of index n in

π1(G2) isomorphic to π1(G2). By Proposition 3, a subgroup ∆ is uniquely defined by the
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n-essential 3-plet (a(∆), H(∆), ν(∆)) with odd a(∆). Consider the conjugacy class of
subgroups ∆g, g ∈ π1(G2). It consists of subgroups, bijectively corresponding to 3-plets
(a(∆g), H(∆g), ν(∆g)).

Obviously, a(∆g) = a(∆) and H(∆g) = H(∆). Furthermore, ν(∆x) = ν(∆) + 2ξ(x),
ν(∆y) = ν(∆) + 2ξ(y) and ν(∆) = −ν(∆z). So, ν(∆g) = ν(∆) + 2rξ(x) + 2sξ(y)
for integer r and s. Thus, the number of conjugacy classes of subgroups ∆ with the

given a(∆) and H(∆) is equal to the index
∣∣∣
(
Γ/H(∆)

)
: 〈2ξ(x), 2ξ(y)〉

∣∣∣, or in terms of

Proposition 1, to the number
∣∣∣
(
Z2/〈(c(∆), 0), (e(∆), b(∆)), (2, 0), (0, 2)〉

∣∣∣.

Similarly to the previous case, we get that
∣∣∣
(
Γ/H(∆)

)
: 〈2ξ(x), 2ξ(y)〉

∣∣∣ is equal to

• 1 if both b(∆) and c(∆) are odd

• 2 if exactly one of b(∆) and c(∆) is even

• 2 if both b(∆) and c(∆) are even and e(∆) is odd

• 4 if b(∆), c(∆) and e(∆) are even.

Fix some value a(∆) = a. Counting all integer triplets b(∆), c(∆), e(∆) : b(∆)c(∆) =
n
a
, 0 ≤ e(∆) < c(∆) one gets |{(H(∆), ν(∆)}| = σ1(

n
a
) + 3σ1(

n
2a
). Summing this over all

possible values of a, which are odd divisors of n, we get the final formula

cπ1(G2),π1(G2)(n) =
∑

k|n 2∤k

(
σ1(

n

k
) + 3σ1(

n

2k
)
)
= σ2(n) + 2σ2(

n

2
)− 3σ2(

n

4
).

4 On the coverings of G4

4.1 The structure of the group π1(G4)

Recall that π1(G4) is given by generators and relations by π1(G4) = 〈x̃, ỹ, z̃ : x̃ỹx̃−1ỹ−1 =
1, z̃x̃z̃−1 = ỹ, z̃ỹz̃−1 = x̃−1〉 The following proposition provides the canonical form of an
element in π1(G4).

Proposition 4. (i) Each element of π1(G4) can be represented in the canonical form
x̃aỹbz̃c for some integer a, b, c.

(ii) The product of two canonical forms is given by the formula

x̃aỹbz̃c · x̃dỹez̃f =





x̃a+dỹb+ez̃c+f if c ≡ 0 mod 4

x̃a−eỹb+dz̃c+f if c ≡ 1 mod 4

x̃a−dỹb−ez̃c+f if c ≡ 2 mod 4

x̃a+eỹb−dz̃c+f if c ≡ 3 mod 4

(4.6)

(iii) The canonical epimorphism φG4 : π1(G4) → π1(G4)/〈x̃, ỹ〉 ∼= Z, given by the formula
x̃aỹbz̃c → c is well-defined.

11



(iv) The representation in the canonical form g = x̃aỹbz̃c for each element g ∈ π1(G2)
is unique.

Proof. The proof is similar to the proof of Proposition 2.

Notation. Set Γ = 〈x̃, ỹ〉.

In the next definition we introduce the invariants, similar to one used in Proposition 1.

Definition 3. Suppose ∆ is a subgroup of finite index n in π1(G4). Put H(∆) = ∆
⋂

Γ.
We consider all elements of π1(G4) represented in the canonical form, given by Propo-
sition 4. By a(∆) denote the minimal positive degree at z among the elements of ∆.
Let Z(∆) be some element with such degree at z, put Z(∆) = hza(∆), where h ∈ Γ.
By ν(∆) = hH(∆) denote the coset in coset decomposition Γ/H(∆). For the coset
decomposition Γ/H(∆) we will use the additive notation.

It is worth noting that, despite the choice of Z and h is not unique, the choice of
ν(∆) is.

Lemma 4. The number a(∆), the subgroup H(∆) and the coset ν(∆) are well-defined.
Furthermore a(∆)[Γ : H(∆)] = [π1(G4) : ∆].

The proof is similar to Lemma 1.

Lemma 5. If a(∆) is odd then H(∆)✁ π1(G4).

Proof. Recall that Z = hz̃a(∆) ∈ ∆, where a(∆) is odd and h ∈ 〈x̃, ỹ〉. First H(∆)Z =
H(∆). Also H(∆)x̃ = H(∆)ỹ = H(∆)z̃

2

= H(∆). The former fact means that H(∆)g =
H(∆), g ∈ π1(G4), hence 〈x̃, ỹ, z̃2, Z〉 = π1(G4) in the case of odd a(∆).

Lemma 6. Let G be a subgroup in Γ. Then G✁ π1(G4) if and only if there exist a pair
of generators of G of the form (x̃pỹq, x̃−qỹp). In this case [Γ : G] = p2 + q2.

Proof. Obvious.

Lemma 7. The number of subgroups of index m in Γ normal in π1(G4) is τ(m), where
τ(m) = |{(s, t)|s, t ∈ Z, s > 0, t ≥ 0, s2 + t2 = m}|.

Proof. The trivial corollary of the previous lemma.

Definition 4. A 3-plet (a,H, ν) is called n-essential if the following conditions holds:

(i) a is a positive divisor of n,

(ii) H is a subgroup of index n/a in Γ also if a is odd then H ✁ π1(G4),

(iii) ν is an element of Γ/H.

Lemma 8. For an arbitrary n-essential 3-plet (a,H, ν) there exists a subgroup ∆ of
π1(G4) such that (a,H, ν) = (a(∆), H(∆), ν(∆)).

12



Proof. Consider some n-essential 3-plet (a,H, ν) and let h be a representative of the
coset ν.

If a ≡ 0 mod 4 consider the set

∆ = {hlz̃laH|l ∈ Z}.

Direct verification shows that ∆ is a subgroup of index n in π1(G4) with required char-
acteristics a(∆), H(∆) and ν(∆).

In three remained cases the structure of subgroup is defined the following way: in
case a ≡ 2 mod 4 put

∆ = {hz̃(2l+1)aH|l ∈ Z}
⋃

{z̃2laH|l ∈ Z}.

In case a ≡ 1 mod 4 put

∆ = {hz̃(4l+1)aH|l ∈ Z}
⋃

{hhz̃ z̃(4l+2)aH|l ∈ Z}
⋃

{hz̃ z̃(4l+3)aH|l ∈ Z}
⋃

{z̃4la(∆)H|l ∈ Z},

keep in mind that ggz̃
2

= 1 for all g ∈ Γ.
In the same way, if k ≡ 3 mod 4 put

∆ = {hz̃(4l+1)kH|l ∈ Z}
⋃

{hhz̃3 z̃4lk+2H|l ∈ Z}
⋃

{hz̃3 z̃(4l+3)kH|l ∈ Z}
⋃

{z̃4lk(∆)H|l ∈ Z}.

Proposition 5. There is a bijection between the set of n-essential 3-plets (a,H, ν) and
the set of subgroups of index n in π1(G4) given by the correspondence ∆ ↔ (a(∆), H(∆), ν(∆)).
Moreover, ∆ ∼= Z3 if a(∆) ≡ 0 mod 4, ∆ ∼= π1(G2) if a(∆) ≡ 2 mod 4 and ∆ ∼= π1(G4)
if a(∆) ≡ 1 mod 2.

Proof. Consider the family of subgroups ∆ of index n in π1(G4). Lemma 4 builds the map
of the family of subgroups ∆ to n-essential 3-plets ∆ ↔ (a(∆), H(∆), ν(∆)). Lemma 8
shows that this map is a bijection.

The proof of isomorphism part or the statement is similar to Proposition 3. Consider
canonical forms of all elements in ∆. In case a(∆) ≡ 0 mod 4 equation 4.6 provides
the commutativity, thus ∆ ∼= Z3. The case a(∆) ≡ 2 mod 4 is proven in Proposition 3.
The case a(∆) ≡ 1 mod 2 follows the same way as the proofs of Proposition 3: one

fixes the suitable generators X̃, Ỹ , Z̃, for which all required relations holds, and prove
that any unnecessary relation implies a relation in Γ, which contradiction completes the
proof.
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4.2 The proof of Theorem 3

The isomorphism types of finite index subgroups in π1(G4) are provided by Proposition 5.
The cases of subgroups π1(G2) and Z3 in the group π1(G4) are similar to the cases of
subgroups π1(G2) and Z3 in the group π1(G2) respectively.

In case of a subgroup, isomorphic to π1(G4), for each fixed k ≡ 1 mod 2 there are
τ(n

k
) different H , and n

k
different ν for each fixed H , thus the final value is

sπ1(G4),π1(G4)(n) =
∑

k|n

n

k
τ(

n

k
)−

∑

2k|n

n

2k
τ(

n

2k
) =

∑

k|n

kτ(k)−
∑

k|n
2

kτ(k).

4.3 The proof of Theorem 4

The isomorphism types of subgroups are already provided by Proposition 5. Thus we
just have to calculate the number of conjugacy classes for each type.

Notation. By ξ denote the canonical homomorphism Γ → Γ/H(∆).

4.3.1 Case (iii)

Let ∆ be a subgroup of index n in π1(G4), isomorphic to Z3.

Lemma 9. The conjugacy class of ∆ consists of 1, 2 or 4 subgroups.

Proof. In virtue of Proposition 5 the subgroup ∆ is uniquely determined by its n-essential
3-plet. Also, by Proposition 5 if x̃aỹbz̃c ∈ ∆ then 4 | c.

Again, a(∆g) = a(∆), g ∈ π1(G4) and H(∆x̃) = H(∆ỹ) = H(∆z̃2) = H(∆). Also
ν(∆): ν(∆x̃) = ν(∆ỹ) = ν(∆z̃4) = ν(∆), here it is important that 4 | c.

Thus the conjugacy class of ∆ contains at most 4 groups: ∆, ∆z̃, ∆z̃2 and ∆z̃3 . If
∆ 6= ∆z̃2 then it contains exactly 4 groups, otherwise it contains two or one. In the
latter case ∆ is normal in π1(G4).

Definition 5. By M1, M2 and M4 denote the respective sets of subgroups ∆ ∼= Z3 of
index n: which are normal in π1(G4), which belong to a conjugacy class of exactly two
subgroups, and which belong to a conjugacy class of exactly four subgroups.

The obvious formula for the number of conjugacy classes is cZ3,π1(G4) = |M1|+
|M2|
2

+
|M4|
4

, we rewrite it in the form cZ3,π1(G4) = |M1|
2

+ |M1|+|M2|
4

+ |M1|+|M2|+|M4|
4

. Note that
M1

⋃
M2

⋃
M4 is the set of all subgroups, and M1

⋃
M2 is the set of all subgroups,

which conjugacy class contains at most two subgroups.
Theorem 3 claims |M1|+ |M2|+ |M4| =

∑
4k|n

n
4k
σ1(

n
4k
).

Lemma 10.
|M1|+ |M2| = σ2(

n

4
) + 3σ2(

n

8
).

Proof. We have to calculate the amount of subgroups ∆ ∼= Z3 of index n, which satisfy
∆ = ∆z̃2 . This is done exactly similar to the proof of Lemma 3.
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Lemma 11.
|M1| =

∑

4k|n

τ(
n

4k
) +

∑

8k|n

τ(
n

8k
).

Proof. We have to calculate the amount of subgroups ∆ ∼= Z3 of index n and such
that ∆ = ∆z̃. Proposition 5 claims 4 | a(∆). Since H(∆) = H(∆z̃), H(∆) ✁ π1(G4).
Then by Lemma 7 the number of choices of H(∆) is τ( n

a(∆)
). Finally, ν(∆) = ν(∆z̃),

which is possible for one value if n
a(∆)

is odd and for two values if n
a(∆)

is even. Since

τ( n
2a(∆)

) = τ( n
a(∆)

) if n
a(∆)

is even, and τ( n
2a(∆)

) = 0 otherwise, the number of pairs(
H(∆), ν(∆)

)
equals τ( n

a(∆)
) + τ( n

2a(∆)
). We finish the prove summing the respective

number of pairs over all possible values of a(∆). Keep in mind that 4 | a(∆), so

|M1| =
∑

4a|n

τ(
n

4a
) +

∑

8a|n

τ(
n

8a
).

Summarizing the results of Theorem 3 (iii), Lemma 10 and Lemma 11 one gets

cZ3,π1(G4) =
1

2

∑

4a|n

τ(
n

4a
) +

1

2

∑

8a|n

τ(
n

8a
) +

1

4
σ2(

n

4
) +

3

4
σ2(

n

8
) +

1

4
ω(

n

4
) =

1

2

∑

a|n
4

τ(a) +
1

2

∑

a|n
8

τ(a) +
1

4
σ2(

n

4
) +

3

4
σ2(

n

8
) +

1

4
ω(

n

4
).

4.3.2 Case (ii)

Let ∆ be a subgroup of index n in π1(G4) isomorphic to π1(G2).
Recall that the subgroup is uniquely defined by an n-essential 3-plet. First we have to

describe the triplets of all subgroups, which belongs to the conjugacy class of ∆. Again,
a(∆g) = a(∆), g ∈ π1(G4). Also, H(∆x̃) = H(∆ỹ) = H(∆z̃2) = H(∆), thus for arbitrary
g ∈ π1(G4) either H(∆g) = H(∆) or H(∆g) = H(∆z̃). ν(∆x̃) = ν(∆) + 2ξ(x̃), ν(∆ỹ) =
ν(∆)+2ξ(ỹ), ν(∆z̃2) = −ν(∆). Then the conjugacy class of ∆ consists of all subgroups,
corresponding to 3-plets

(
a(∆), H(∆), ν(∆)+〈2ξ(x̃), 2ξ(ỹ)〉

)
and

(
a(∆), H(∆z̃), ν(∆z̃)+

〈2ξ(x̃), 2ξ(ỹ)〉
)
.

So, to calculate the number of conjugacy classes we need to calculate the number of
pairs consisting of a subgroup H and an element of the factor Γ/(〈x̃2, ỹ2, H〉.

Fix some a(∆) = a. Each conjugacy class corresponds to two pairs of a subgroup
and an element of the factor, unless this two pairs coincide. Analogous to the previous
case, let L1(a) be the family of defined above pairs, such that a(∆) = a and one pair
form a conjugacy class, and L2(a) be the family of pairs, such that a(∆) = a and two
pairs form a conjugacy class. By L1 and L2 denote the union of L1(a) and L2(a) over
all values of a respectively. Certainly,

cπ1(G2),π1(G4) = |L1|+
|L2|

2
=

|L1|

2
+

|L1|+ |L2|

2
. (4.7)
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Lemma 12.
|L1|+ |L2| = σ2(

n

2
) + 2σ2(

n

4
)− 3σ2(

n

4
).

Proof. Consider integer a, such that a ≡ 2 mod 4 and a | n. We claim |L1(a)|+|L2(a)| =
σ1(

n
a
) + 3σ1(

n
2a
). Exactly this was shown in the proof of Lemma 3. If a does not satisfy

the above condition, then |L1(a)| = |L2(a)| = 0.

Summing over all values of a one gets |L1| + |L2| =
∑

2a|n,4∤2a

(
σ1(

n
2a
) + 3σ1(

n
4a
)
)
=

∑
2a|n

(
σ1(

n
2a
) + 3σ1(

n
4a
)
)
−
∑

4a|n

(
σ1(

n
4a
) + 3σ1(

n
8a
)
)
= σ2(

n
2
) + 2σ2(

n
4
)− 3σ2(

n
4
).

Lemma 13.
|L1| =

∑

a|n
2

τ(
n

2a
)−

∑

a|n
8

τ(
n

8a
).

Proof. We claim |L1(a)| = τ(n
a
)+τ( n

2a
) if a ≡ 2 mod 4, |L1(a)| = 0 otherwise. The proof

is similar to Lemma 11. Summing over all values of a we get |L1| =
∑

2a|n,4∤2a

(
τ( n

2a
) +

τ( n
4a
)
)
=

∑
2a|n

(
τ( n

2a
)+ τ( n

4a
)
)
−
∑

4a|n

(
τ( n

4a
)+ τ( n

8a
)
)
=

∑
a|n

2

τ( n
2a
)−

∑
a|n

8

τ( n
8a
).

Substituting Lemma 12 and Lemma 13 to (4.7) one gets

cπ1(G2),π1(G4) =
1

2

(
σ2(

n

2
) + 2σ2(

n

4
)− 3σ2(

n

4
) +

∑

a|n
2

τ(
n

2a
)−

∑

a|n
8

τ(
n

8a
)
)
=

1

2

(
σ2(

n

2
) + 2σ2(

n

4
)− 3σ2(

n

4
) +

∑

a|n
2

τ(a)−
∑

a|n
8

τ(a)
)
.

4.3.3 Case (i)

Let ∆ be a subgroup of index n in π1(G4) isomorphic to π1(G4). The proof is analogous
to Case (ii).

For an odd a | n the number of conjugacy classes of subgroups ∆, such that a(∆) = a
equals τ(n

a
) if n

a
is odd and equals 2τ(n

a
) if n

a
is even. Since τ( n

2a
) = τ(n

a
) if n

a
is even

and τ( n
2a
) = 0 if n

a
is odd, we get

cπ1(G4),π1(G4) =
∑

a|n,2∤a

(
τ(

n

a
) + τ(

n

2a
)
)
=

∑

a|n

(
τ(

n

a
) + τ(

n

2a
)
)
−
∑

2a|n

(
τ(

n

2a
) + τ(

n

4a
)
)
=

∑

a|n

τ(
n

a
)−

∑

a|n
4

τ(
n

4a
).
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5 Appendix

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sπ1(G2),π1(G2)(n) 1 6 13 28 31 78 57 120 130 186 133 364 183 342 403 496
cπ1(G2),π1(G2)(n) 1 6 5 16 7 30 9 36 18 42 13 80 15 54 35 76
sZ3,π1(G2)(n) 1 7 13 35 31 91 57 155
cZ3,π1(G2)(n) 1 7 9 29 19 63 33 107

sπ1(G4),π1(G4)(n) 1 2 1 4 11 2 1 8 10 22 1 4 27 2 11 16
cπ1(G4),π1(G4)(n) 1 2 1 2 3 2 1 2 2 6 1 2 3 2 3 2
sπ1(G2),π1(G4)(n) 1 6 13 28 31 78 57 120
cπ1(G2),π1(G4)(n) 1 4 3 9 5 16 5 19
sZ3,π1(G4)(n) 1 7 13 35
cZ3,π1(G4)(n) 1 5 5 17

Table 2

We note some properties of functions, achieved in theorems 1, 2, 3 and 4. The proofs
follows by direct calculation, based on the explicit formulas for above functions.

A function f(n) is called multiplicative if f(kl) = f(k)f(l) for coprime integers k,
l. The functions sπ1(G2),π1(G2)(n), cπ1(G2),π1(G2)(n), sπ1(G4),π1(G4)(n) and cπ1(G4),π1(G4)(n) are
multiplicative. For other mentioned functions some close relations holds: the func-
tions n → sZ3,π1(G2)(sZ3,π1(G2)(2n)), n → cZ3,π1(G2)(2n), n → sZ3,π1(G4)(4n) and n →
cZ3,π1(G4)(4n) are multiplicative.
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