
ar
X

iv
:1

80
5.

08
25

5v
1 

 [
cs

.D
S]

  2
1 

M
ay

 2
01

8

Algorithmic and algebraic aspects

of unshuffling permutations

Samuele Giraudo, Stéphane Vialette
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Abstract

A permutation is said to be a square if it can be obtained by shuffling two order-isomorphic

patterns. The definition is intended to be the natural counterpart to the ordinary shuffle

of words and languages. In this paper, we tackle the problem of recognizing square per-

mutations from both the point of view of algebra and algorithms. On the one hand, we

present some algebraic and combinatorial properties of the shuffle product of permutations.

We follow an unusual line consisting in defining the shuffle of permutations by means of an

unshuffling operator, known as a coproduct. This strategy allows to obtain easy proofs for

algebraic and combinatorial properties of our shuffle product. We besides exhibit a bijection

between square (213, 231)-avoiding permutations and square binary words. On the other

hand, by using a pattern avoidance criterion on directed perfect matchings, we prove that

recognizing square permutations is NP-complete.
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Introduction

The shuffle product, denoted by �, is a well-known operation on words first defined

by Eilenberg and Mac Lane [EML53]. Given three words u, v1, and v2, u is said to be

a shuffle of v1 and v2 if it can be formed by interleaving the letters from v1 and v2 in

a way that maintains the left-to-right ordering of the letters from each word. Besides

purely combinatorial questions, the shuffle product of words naturally leads to the following

computational problems:

(i) Given two words v1 and v2, compute the set v1 � v2.

(ii) Given three words u, v1, and v2, decide if u is a shuffle of v1 and v2.

(iii) Given words u, v1, . . . , vk, decide if u is in v1 � · · ·� vk.

(iv) Given a word u, decide if there is a word v such that u is in v� v.

Even if these problems seem similar, they radically differ in terms of time complexity. Let us

now review some facts about these. In what follows, n denotes the size of u and mi denotes

the size of each vi. A solution to Problem (i) can be computed in

O

(
(m1 + m2)

(
m1 + m2

m1

))
(0.1)

time [Spe86]. An improvement and a generalization of Problem (i) has been proposed

in [All00], where it is proven that given words v1, . . . , vk, the iterated shuffle v1 � · · ·� vk

can be computed in

O

((
m1 + · · · + mk

m1, . . . , mk

))
(0.2)

time. Problem (ii) is in P; it is indeed a classical textbook exercise to design an efficient

dynamic programming algorithm solving it. It can be tested in O
(
n2/ log(n)

)
time [vLN82].

To the best of our knowledge, the first O(n2) time algorithm for this problem appeared

in [Man83]. This algorithm can easily be extended to check in polynomial-time whether a

word is in the shuffle of any fixed number of given words. Nevertheless, Problem (iii) is NP-

complete [Man83, WH84]. This remains true even if the ground alphabet has size 3 [WH84].

Of particular interest, it is shown in [WH84] that Problem (iii) remains NP-complete even

if all the words vi, i ∈ [k], are identical, thereby proving that, for two words u and v, it is

NP-complete to decide whether or not u is in the iterated shuffle of v. Again, this remains

true even if the ground alphabet has size 3. Let us now finally focus on Problem (iv). It

is shown in [BS14, RV13] that it is NP-complete to decide if a word u is a square (w.r.t.

the shuffle), that is, a word u with the property that there exists a word v such that u is a

shuffle of v with itself. Hence, Problem (iv) is NP-complete.

This paper is intended to study a natural generalization of �, denoted by •, as a shuffle

of permutations. Roughly speaking, given three permutations π, σ1, and σ2, π is said to be a
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shuffle of σ1 and σ2 if π (viewed as a word) is a shuffle of two words that are order-isomorphic

to σ1 and σ2. This shuffle product was first introduced by Vargas [Var14] under the name

of supershuffle. Our intention in this paper is to study this shuffle product of permuta-

tions • both from a combinatorial and from a computational point of view by focusing on

square permutations, that are permutations π being in the shuffle of a permutation σ with

itself. Many other shuffle products on permutations appear in the literature. For instance,

in [DHT02], the authors define the convolution product and the shifted shuffle product. For

this last product, π is a shuffle of σ1 and σ2 if π is in the shuffle, as words, of σ1 and the

word obtained by incrementing all the letters of σ2 by the size of σ1. It is a simple exercise

to prove that, given three permutations π, σ1, and σ2, deciding if π is in the shifted shuffle

of σ1 and σ2 is in P.

This paper is organized as follows. In Section 2, we provide a precise definition of

•. We shall define • in terms of what we call the unshuffling operator ∆. The operator

∆ is in fact a coproduct, endowing the linear span of all permutations with a coalgebra

structure (see [JR79] or [GR14] for the definition of these algebraic structures). By duality,

the unshuffling operator ∆ leads to the definition of our shuffle operation on permutations.

This approach has many advantages. First, some combinatorial properties of • depend on

properties of ∆ and those properties are easier to prove on the coproduct side. Second,

this approach allows us to obtain a clear description of the multiplicities of the elements

appearing in the shuffle of two permutations, which are of interest in their own right from a

combinatorial point of view. Section 3 is devoted to showing that the problems related to the

shuffle of words has links with the shuffle of permutations. In particular, we show that binary

words that are square are in one-to-one correspondence with square permutations avoiding

some patterns (Proposition 3.1). Next, Section 4 presents some algebraic and combinatorial

properties of •. We show that • is associative and commutative (Proposition 4.1), and

that if a permutation is a square, its mirror, complement, and inverse are also squares

(Proposition 4.3). Finally, Section 5 presents the most important result of this paper: the

fact that deciding if a permutation is a square is NP-complete (Proposition 5.10). This

result is obtained by exhibiting a reduction from the NP-complete pattern involvement

problem [BBL98].

1. Notations and basic definitions

General notations

If S is a finite set, the cardinality of S is denoted by |S|, and if P and Q are two disjoint

sets, P ⊔ Q denotes the disjoint union of P and Q. For any nonnegative integer n, [n] is the

set {1, . . . , n}.

Words and permutations

We follow the usual terminology on words [CK97]. Let us recall here the most important

ones. Let u be a word. The length of u (also called size) is denoted by |u|. The empty word,
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the only word of null length, is denoted by ǫ. We denote by ũ the mirror image of u, that is

the word u|u|u|u|−1 . . . u1. If P is a subset of [|u|], u|P is the subword of u consisting in the

letters of u at the positions specified by the elements of P . If u is a word of integers and

k is an integer, we denote by u[k] the word obtained by incrementing by k all letters of u.

The shuffle of two words u and v is the set recursively defined by

u� ǫ = {u} = ǫ� u (1.1)

and

ua� vb = (u� vb)a ∪ (ua� v)b, (1.2)

were a and b are letters. For instance,

01� 20 = {0120, 0210, 0201, 2010, 2001}. (1.3)

A word u is a square if there exists a word v such that u belongs to v � v. For example,

202101 is a square since this word belongs to the set 201� 201.

We denote by Sn the set of permutations of size n and by S the set of all permutations.

In this paper, permutations of a size n are specified by words of length n on the alphabet

[n] and without multiple occurrences of a letter, so that all above definitions about words

remain valid on permutations. The only difference lies on the fact that we shall denote

by π(i) (instead of πi) the i-th letter of any permutation π. For any nonnegative integer

n, we write րn (resp. ցn) for the permutation 12 . . . n (resp. n (n − 1) . . . 1). If π is a

permutation of Sn, we denote by π̄ the complement of π, that is the permutation satisfying

π̄(i) = n − π(i) + 1 for all i ∈ [n]. The inverse of π is denoted by π−1.

If u is a word of integers where no letter occurs more than once, we define the stan-

darization of u, s(u), to be the unique permutation of the same size as u such that for all

i, j ∈ [|u|], ui < uj if and only if s(u)(i) < s(u)(j). For instance,

s(814637) = 613425. (1.4)

In particular, the image of the map s is the set S of all permutations. Two words u and v

having the same standarization are order-isomorphic. If σ is a permutation, we say that σ

occurs in π if there is a set of indices P of [|π|] such that σ and π|P are order isomorphic.

When σ does not occur in π, π is said to avoid σ. The set of permutations of size n avoiding

σ is denoted by Sn(σ). The pattern involvement problem consists, given two permutations

π and σ, in deciding if σ occurs in π. This problem is known to be NP-complete [BBL98].

Directed perfect matchings

A directed graph is an ordered pair G = (V, A) where V is a set whose elements are called

vertices and A is a set of ordered pairs of vertices, called arcs (from a source vertex to a

sink vertex). In this paper, we shall exclusively use V ⊂ N. Notice that the aforementioned

definition does not allow a directed graph to have multiple arcs with same source and target
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nodes. We shall not allow directed loops (that is, arcs that connect vertices with themselves).

Two arcs are independent if they do not have a common vertex. An arc (i, i′) contains an

arc (j, j′) if min(i, i′) < min(j, j′) < max(j, j′) < max(i, i′). If no arc of G contains an

other arc, we say that G is containment-free. Two arcs (i, i′) and (j, j′) are crossing if

min(i, i′) < min(j, j′) < max(i, i′) < max(j, j′). If no arcs of G are crossing, we say that G

is crossing-free. A directed graph is a directed matching if all its arcs are independent. A

directed matching is perfect if every vertex is either a source or a sink.

For any permutation π of an even size 2n, a directed perfect matching on π is a pair

M = (G, π) where G is a directed perfect matching on the set [2n] of vertices (see Figure 1).

The word of sources (resp. word of sinks) of M is the subword π(i1)π(i2) . . . π(in) of π where

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 1: A directed perfect matching M on the permutation π = 37268541, represented on the permutation
matrix of π. The set of vertices of M is {1, . . . , 8} and the set of arcs of M is {(1, 5), (3, 2), (4, 8), (7, 6)}.

the indexes i1 < i2 < · · · < in are the sources (resp. sinks) of the arcs of M. Figure 2 shows

an example for these notions.

1 2 3 4 5 6 7 8

4 1 3 2 8 5 7 6

Figure 2: A directed perfect matching M on the permutation π = 41328576. The word of sources of M is
4327 and its word of sinks is 1856. Unlike in Figure 1, M is not drawn on the permutation matrix of π.

We describe here two notions of patterns for directed perfect matchings on permuta-
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tions together with the notions of occurrences of patterns accompanying them. Let π be a

permutation of size 2n and M = (G, π) be a directed perfect matching on π.

1. An unlabeled pattern is a directed perfect matching U = ([2k], A), where k 6 n. We say

that M contains an unlabeled occurrence of U if there is an increasing map φ : [2k] → [2n]

(i.e., i < j ∈ [2k] implies φ(i) < φ(j)) such that, if (i, i′) is an arc of U then (φ(i), φ(i′)) is

an arc of G. Observe that this first notion of pattern occurrence does not depend on the

permutation π. In other words, M contains an unlabeled occurrence of U if G contains a

copy of U as a subgraph by changing some of its labels if necessary.

2. A labeled pattern is a directed perfect matching P = (U , σ) on a permutation σ of size 2k.

We say that M contains a labeled occurrence of P if M contains an unlabeled occurrence

of the directed perfect matching U = ([2k], A) such that s(π(φ(1))π(φ(2)) . . . π(φ(2k))) = σ,

where φ is a map defined as above. In other words, M contains a labeled occurrence of P if

G contains a copy of U as a subgraph and the word consisting in the letters of π associated

with each vertices of this copy in G is order-isomorphic to σ.

When M does not contain any unlabeled occurrence (resp. labeled occurrence) of an un-

labeled pattern U (resp. labeled pattern P), we say that M avoids U (resp. P). This

definition naturally extends to sets of patterns by setting that M avoids the set of unla-

beled patterns (resp. labeled patterns) U = {U1, . . . , Uℓ} (resp. P = {P1, . . . , Pℓ}) if M

avoids every Ui of U (resp. Pi of P ).

In this paper, we shall consider only patterns of size 4. The set of all unlabeled patterns

of this size is

P = Pprec ∪ Pcont ∪ Pcros, (1.5)

where

Pprec =
{

, , ,
}

, (1.6)

Pcont =
{

, , ,
}

, (1.7)

Pcros =
{

, , ,
}

. (1.8)

In these drawings, the vertices of each pattern are implicitly indexed from left to right by 1

to 4. Besides, any labeled pattern P = (U , σ) is depicted by drawing U and by labeling all

its vertices i by σi.

To give some examples of the previous notions, observe that a directed perfect matching

M on a permutation contains an occurrence of the unlabeled pattern if there are four

vertices i1 < i2 < i3 < i4 of M such that (i1, i4) and (i3, i2) are arcs of M. Moreover, M

is containment-free (resp. crossing-free) if it avoids all patterns of Pcont (resp. Pcros). For

example, the directed perfect matching on the permutation of Figure 2

• contains exactly two unlabeled occurrences of the pattern corresponding to the

arcs (1, 6) and (4, 2), or (3, 8) and (7, 5);
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• contains exactly one unlabeled occurrence of corresponding to the arcs (4, 2)

and (3, 8);

• avoids the unlabeled pattern .

The directed perfect matching on the permutation of Figure 1

• contains a labeled occurrence of the pattern
2 3 1 4

corresponding to the arcs (1, 5) and

(3, 2);

• contains a labeled occurrence of the pattern
2 3 4 1

corresponding to the arcs (1, 5) and

(4, 8);

• contains a labeled occurrence of the pattern
1 4 3 2

corresponding to the arcs arcs (1, 5)

and (7, 6);

• contains a labeled occurrence of the pattern
4 2 3 1

corresponding to the arcs (3, 2)

and (4, 8);

• contains a labeled occurrence of the pattern
4 1 3 2

corresponding to the arcs (3, 2)

and (7, 6);

• contains a labeled occurrence of the pattern
4 3 2 1

corresponding to the arcs (4, 8)

and (7, 6);

• avoids all other labeled patterns of size 4.

2. Shuffle product on permutations

The main purpose of this section is to give a formal definition of the shuffle product

• on permutations. We shall define • by first defining a co-product called the unshuffling

operator ∆ on permutations. Then • is defined to be the dual of ∆. The reason that we

define • in terms of ∆ is due to the fact that many properties of • depend on properties

of ∆ and those properties are easier to prove on the co-product side. We invite the reader

unfamiliar with the concepts of coproduct and duality to consult [JR79] or [GR14].

Let us denote by Q[S] the linear span of all permutations. We define a linear coproduct

∆ on Q[S] in the following way. For any permutation π, we set

∆(π) =
∑

P1⊔P2=[|π|]

s
(
π|P1

)
⊗ s

(
π|P2

)
. (2.1)

We call ∆ the unshuffling coproduct of permutations. For instance,

∆(213) = ǫ ⊗ 213 + 2 · 1 ⊗ 12 + 1 ⊗ 21 + 2 · 12 ⊗ 1 + 21 ⊗ 1 + 213 ⊗ ǫ, (2.2)
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∆(1234) = ǫ ⊗ 1234 + 4 · 1 ⊗ 123 + 6 · 12 ⊗ 12 + 4 · 123 ⊗ 1 + 1234 ⊗ ǫ, (2.3)

∆(1432) = ǫ ⊗ 1432 + 3 · 1 ⊗ 132 + 1 ⊗ 321 + 3 · 12 ⊗ 21

+ 3 · 21 ⊗ 12 + 3 · 132 ⊗ 1 + 321 ⊗ 1 + 1432 ⊗ ǫ.
(2.4)

Observe that the coefficient of the tensor 1⊗132 is 3 in (2.4) because there are exactly three

ways to extract from the permutation 1432 two disjoint subwords which are, respectively,

order-isomorphic to the permutations 1 and 132.

We can now define our shuffle product • as the product that corresponds to the co-

product ∆ under duality. From (2.1), for any permutation π, we have

∆(π) =
∑

σ,ν∈S

λπ
σ,ν σ ⊗ ν, (2.5)

where the λπ
σ,ν are nonnegative integers. By the definition (2.1) of ∆, the λπ

σ,ν are equal

to the number of different ways to extract from π two disjoint subwords respectively order-

isomorphic to σ and ν. Now, by definition of duality, the dual product of ∆, denoted by •,

is a linear binary product on Q[S]. It satisfies, for any permutations σ and ν,

σ • ν =
∑

π∈S

λπ
σ,ν π, (2.6)

where the coefficients λπ
σ,ν are the ones of (2.5). We call • the shuffle product of permutations.

For instance,

12 • 21 = 1243 + 1324 + 2 · 1342 + 2 · 1423 + 3 · 1432 + 2134 + 2 · 2314

+ 3 · 2341 + 2413 + 2 · 2431 + 2 · 3124 + 3142 + 3 · 3214 + 2 · 3241

+ 3421 + 3 · 4123 + 2 · 4132 + 2 · 4213 + 4231 + 4312.

(2.7)

Observe that the coefficient 3 of the permutation 1432 in (2.7) comes from the fact that the

coefficient of the tensor 12 ⊗ 21 is 3 in (2.4).

Intuitively, the product • shuffles the values and the positions of the letters of the per-

mutations. One can observe that the empty permutation ǫ is a unit for • and that this

product is graded by the sizes of the permutations (i.e., the product of a permutation of

size n with a permutation of size m produces a sum of permutations of size n + m).

We say that a permutation π appears in the shuffle σ • ν of two permutations σ and ν

if the coefficient λπ
σ,ν defined above is different from zero. In a more combinatorial way,

this is equivalent to say that there are two sets P1 and P2 of disjoints indexes of letters of

π satisfying P1 ⊔ P2 = [|π|] such that the subword π|P1
is order-isomorphic to σ and the

subword π|P2
is order-isomorphic to ν.

A permutation π is a square if there is a permutation σ such that π appears in σ • σ. In

this case, we say that σ is a square root of π. Equivalently, π is a square with σ as square

root if and only if in the expansion of ∆(π), there is a tensor σ⊗σ with a nonzero coefficient.

In a more combinatorial way, this is equivalent to saying that there are two sets P1 and P2
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of disjoints indexes of letters of π satisfying P1 ⊔ P2 = [|π|] such that the subwords π|P1

and π|P2
are order-isomorphic. Computer experiments give us the first numbers of square

permutations with respects to their size, which are, from size 0 to 10,

1, 0, 2, 0, 20, 0, 504, 0, 21032, 0, 1293418. (2.8)

This sequence (and its subsequence obtained by removing the 0’s) is for the time being not

listed in [Slo]. The first square permutations are listed in Table 1.

Size 0 Size 2 Size 4

ǫ 12, 21
1234, 1243, 1423, 1324, 1342, 4132, 3124, 3142, 3412, 4312,

2134, 2143, 2413, 4213, 2314, 2431, 4231, 3241, 3421, 4321

Table 1: The square permutations of sizes 0 to 4.

3. Binary square words and permutations

In this section, we shall show that the square binary words are in one-to-one correspon-

dence with square permutations avoiding some patterns. This property establishes a link

between the shuffle of binary words and our shuffle of permutations and allows us to obtain

a new description of square binary words.

Let u be a binary word of length n with k occurrences of 0. We denote by btp (Binary

word To Permutation) the map sending any such word u to the permutation obtained by

replacing from left to right each occurrence of 0 in u by 1, 2, . . . , k, and from right to left

each occurrence of 1 in u by k + 1, k + 2, . . . , n. For instance,

btp(100101101000) = C12B3A948567, (3.1)

where A, B, and C respectively stand for 10, 11, and 12. Observe that for any nonempty

permutation π in the image of btp, there is exactly one binary word u such that btp(u0) =

btp(u1) = π. In support of this observation, when π has an even size, we denote by ptb(π)

(Permutation To Binary word) the word ua such that |ua|0 and |ua|1 are both even, where

a ∈ {0, 1}. For instance,

ptb(615423) = 101100 and ptb(1423) = 0101. (3.2)

Proposition 3.1. For any n > 0, the map btp restricted to the set of square binary words
of length 2n is a bijection between this last set and the set of square permutations of size 2n
avoiding the patterns 213 and 231.

Proof of Proposition 3.1. The statement of the proposition is a consequence of the following
claims implying that ptb is the inverse map of btp over the set of square binary words.

Claim 3.2. The image of btp is the set of all permutations avoiding 213 and 231.
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Proof of Claim 3.2. Let us first show that the image of btp contains only permutations
avoiding 213 and 231. Let u be a binary word, π = btp(u), and P0 (resp. P1) be the set
of the positions of the occurrences of 0 (resp. 1) in u. By definition of btp, from left to
right, the subword v = π|P0

is increasing and the subword w = π|P1
is decreasing, and all

letters of w are greater than those of v. Now, assume that 123 occurs in π. Then, since v is
increasing and w is decreasing, there is an occurrence of 3 (resp. 13, 23) in v and a relative
occurrence of 21 (resp. 2, 1) in w. All these three cases contradict the fact that all letters
of w are greater than those of v. A similar argument shows that π avoids 231 as well.

Finally, observe that any permutation π avoiding 213 and 231 necessarily starts by the
smallest possible letter or the greatest possible letter. This property is then true for the
suffix of π obtained by deleting its first letter, and so on for all of its suffixes. Thus, by
replacing each letter a of π by 0 (resp. 1) if a has the role of a smallest (resp. greatest)
letter, one obtains a binary word u such that btp(u) = π. Hence, all permutations avoiding
213 and 231 are in the image of btp.

Claim 3.3. If u is a square binary word, btp(u) is a square permutation.

Proof of Claim 3.3. Since u is a square binary word, there is a binary word v such that
u ∈ v � v. Then, there are two disjoint sets P and Q of positions of letters of u such that
u|P = v = u|Q. Now, by definition of btp, the words btp(u)|P and btp(u)|Q have the same
standarization σ. Hence, and by definition of the shuffle product of permutations, btp(u)
appears in σ • σ, showing that btp(u) is a square permutation.

Claim 3.4. If π is a square permutation avoiding 213 and 231, ptb(π) is a square binary
word.

Proof of Claim 3.4. Let π be a square permutation avoiding 213 and 231. By Claim 3.2,
π is in the image of btp and hence, u = ptb(π) is a well-defined binary word. Since π is
a square permutation, there are two disjoint sets P1 and P2 of indexes of letters of π such
that π|P1

and π|P2
are order-isomorphic. This implies, by the definitions of btp and ptb,

that u|P1
= u|P2

, showing that u is a square binary word.

This ends the proof of Proposition 3.1

The number of square binary words is Sequence A191755 of [Slo] beginning by

1, 0, 2, 0, 6, 0, 22, 0, 82, 0, 320, 0, 1268, 0, 5102, 0, 020632. (3.3)

According to Proposition 3.1, this is also the sequence enumerating square permutations

avoiding 213 and 231. Notice that it is conjectured in [HRS12] that the number of square

binary words of length 2n is
(

2n

n

)
2n

n+1 −
(

2n−1
n+1

)
2n−1 + O(2n−2).

4. Algebraic issues

The aim of this section is to establish some of properties of the shuffle product of per-

mutations •. It is worth to note that, as we will see, algebraic properties of the unshuffling

coproduct ∆ of permutations defined in Section 2 lead to combinatorial properties of •.

Proposition 4.1. The shuffle product • of permutations is associative and commutative.
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Proof of Proposition 4.1. To prove the associativity of •, it is convenient to show that its
dual coproduct ∆ is coassociative, that is

(∆ ⊗ I)∆ = (I ⊗ ∆)∆, (4.1)

where I denotes the identity map. This strategy relies on the fact that a product is asso-
ciative if and only if its dual coproduct is coassociative. For any permutation π, we have

(∆ ⊗ I)∆(π) = (∆ ⊗ I)
∑

P1⊔P2=[|π|]

s
(
π|P1

)
⊗ s

(
π|P2

)

=
∑

P1⊔P2=[|π|]

∆
(
s

(
π|P1

))
⊗ I

(
s

(
π|P2

))

=
∑

P1⊔P2=[|π|]

∑

Q1⊔Q2=[|P1|]

s
(

s
(
π|P1

)
|Q1

)
⊗ s

(
s

(
π|P1

)
|Q2

)
⊗ s

(
π|P2

)

=
∑

P1⊔P2⊔P3=[|π|]

s
(
π|P1

)
⊗ s

(
π|P2

)
⊗ s

(
π|P3

)
.

(4.2)

An analogous computation shows that (I ⊗ ∆)∆(π) is equal to the last member of (4.2),
whence the associativity of •.

Finally, to prove the commutativity of •, we shall show that ∆ is cocommutative, that is
for any permutation π, if in the expansion of ∆(π) there is a tensor σ ⊗ ν with a coefficient
λ, there is in the same expansion the tensor ν ⊗ σ with the same coefficient λ. Clearly, a
product is commutative if and only if its dual coproduct is cocommutative. Now, from the
definition (2.1) of ∆, one observes that if the pair (P1, P2) of subsets of [|π|] contributes to the
coefficient of s

(
π|P1

)
⊗ s

(
π|P2

)
, the pair (P2, P1) contributes to the coefficient of s

(
π|P2

)
⊗

s
(
π|P1

)
. This shows that ∆ is cocommutative and hence, that • is commutative.

Proposition 4.1 shows that Q[S] under the unshuffling coproduct ∆ is a co-associative

co-commutative coalgebra which implies, by duality, that Q[S] under • is an associative

commutative algebra

Lemma 4.2. The three linear maps

φ1, φ2, φ3 : Q[S] → Q[S] (4.3)

linearly sending a permutation π to, respectively, π̃, π̄, and π−1 are endomorphisms of
associative algebras.

Proof of Lemma 4.2. To prove, for j = 1, 2, 3, that φj is a morphism of associative algebras,
we have to prove that for all permutations σ and ν,

φj(σ • ν) = φj(σ) • φj(ν). (4.4)

By duality, this is equivalent to showing that φj is a morphism of coalgebras, that is,

∆φj = (φj ⊗ φj)∆. (4.5)

In the sequel, π is a permutation.
If P is a set of indexes of letters of π, we denote by P̃ the set {|π| − i + 1 : i ∈ P }.

Now, since the operation˜defines a bijection on the set of the subsets of [|π|], and since the

11



standardization operation commutes with the mirror operation on words without multiple
occurrence of a letter, we have

∆(φ1(π)) =
∑

P1⊔P2=[|π|]

s
(
φ1(π)|P1

)
⊗ s

(
φ1(π)|P2

)

=
∑

P1⊔P2=[|π|]

s
(
π̃|P1

)
⊗ s

(
π̃|P2

)

=
∑

P1⊔P2=[|π|]

s
(

π̃
|P̃1

)
⊗ s

(
π̃

|P̃2

)

=
∑

P1⊔P2=[|π|]

˜s
(
π|P1

)
⊗ ˜s

(
π|P2

)

=
∑

P1⊔P2=[|π|]

φ1

(
s

(
π|P1

))
⊗ φ1

(
s
(
π|P2

))

= (φ1 ⊗ φ1)∆(π).

(4.6)

This shows that φ1 is a morphism of coalgebras and hence, that φ1 is a morphism of asso-
ciative algebras.

Next, since by definition of the complementation operation on permutations, for any
permutation τ and any indexes i and k, we have τ(i) < τ(k) if and only if τ̄ (i) > τ̄ (k), we
have

∆(φ2(π)) =
∑

P1⊔P2=[|π|]

s
(
φ2(π)|P1

)
⊗ s

(
φ2(π)|P2

)

=
∑

P1⊔P2=[|π|]

s
(
π̄|P1

)
⊗ s

(
π̄|P2

)

=
∑

P1⊔P2=[|π|]

φ2

(
s

(
π|P1

))
⊗ φ2

(
s
(
π|P2

))

= (φ2 ⊗ φ2)∆(π).

(4.7)

This shows that φ2 is a morphism of coalgebras and hence, that φ2 is a morphism of asso-
ciative algebras.

Finally, for any permutation τ , if P is a set of indexes of letters of τ , we denote by P −1
τ

the set {τ(i) : i ∈ P }. Since the map sending a subset P of [|π|] to P −1
π is a bijection, and

since s
(
π|P

)−1
= s

(
π−1

|P −1

π

)
, we have

∆(φ3(π)) =
∑

P1⊔P2=[|π|]

s
(
φ3(π)|P1

)
⊗ s

(
φ3(π)|P2

)

=
∑

P1⊔P2=[|π|]

s
(

π−1
|P1

)
⊗ s

(
π−1

|P2

)

=
∑

P1⊔P2=[|π|]

s
(

π−1

|P1
−1

π

)
⊗ s

(
π−1

|P2
−1

π

)

=
∑

P1⊔P2=[|π|]

s
(
π|P1

)−1
⊗ s

(
π|P2

)−1

=
∑

P1⊔P2=[|π|]

φ3

(
s

(
π|P1

))
⊗ φ3

(
s
(
π|P2

))

= (φ3 ⊗ φ3)∆(π).

(4.8)
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This shows that φ3 is a morphism of coalgebras and hence, that φ3 is a morphism of asso-
ciative algebras.

We now use the algebraic properties of • exhibited by Lemma 4.2 to obtain combinatorial

properties of square permutations.

Proposition 4.3. Let π be a square permutation and σ be a square root of π. Then,

(i) the permutation π̃ is a square and σ̃ is one of its square roots;

(ii) the permutation π̄ is a square and σ̄ is one of its square roots;

(iii) the permutation π−1 is a square and σ−1 is one of its square roots.

Proof of Proposition 4.3. All statements (i), (ii), and (iii) are consequences of Lemma 4.2.
Indeed, since π is a square permutation and σ is a square root of π, by definition, π appears
in the product σ • σ. Now, by Lemma 4.2, for any j = 1, 2, 3, since φj is a morphism of as-
sociative algebras from Q[S] to Q[S], φj commutes with the shuffle product of permutations
•. Hence, in particular, one has

φj(σ • σ) = φj(σ) • φj(σ). (4.9)

Then, since π appears in σ • σ, φj(π) appears in φj(σ • σ) and appears also in φj(σ) • φj(σ).
This shows that φj(σ) is a square root of φj(π) and implies (i), (ii), and (iii).

Let us make an observation about Wilf-equivalence classes of permutations restrained

on square permutations. Recall that two permutations σ and ν of the same size are Wilf

equivalent if |Sn(σ)| = |Sn(ν)| for all n > 0. The well-known [SS85] fact that there is a single

Wilf-equivalence class of permutations of size 3 together with Proposition 4.3 imply that

123 and 321 are in the same Wilf-equivalence class of square permutations, and that 132,

213, 231, and 312 are in the same Wilf-equivalence class of square permutations. Computer

experiments show us that there are two Wilf-equivalence classes of square permutations of

size 3. Indeed, the number of square permutations avoiding 123 begins by

1, 0, 2, 0, 12, 0, 118, 0, 1218, 0, 14272, (4.10)

while the number of square permutations avoiding 132 begins by

1, 0, 2, 0, 11, 0, 84, 0, 743, 0, 7108. (4.11)

Another consequence of Proposition 4.3 is that its makes sense to enumerate the sets of

square permutations quotiented by the operations of mirror image, complement, and inverse.

The sequence enumerating these sets begins by

1, 0, 1, 0, 6, 0, 81, 0, 2774, 0, 162945. (4.12)

All Sequences (4.10), (4.11), and (4.12) (and their subsequences obtained by removing

the 0s) are for the time being not listed in [Slo].
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5. Algorithmic issues

This section is devoted to proving the NP-hardness of recognizing square permutations.

As in the case of words, we shall use a linear graph framework where deciding whether a

permutation is a square reduces to computing some specific matching in the associated linear

graph [RV13, BS14]. We have, however, to deal with directed graphs/perfect matchings

satisfying some precise properties. Let us first define two properties.

Definition 5.1 (Property P1). Let π be a permutation. A directed perfect matching M on
π is said to have property P1 if it avoids the following set of unlabeled patterns:

P1 =
{

, , , , ,
}

. (5.1)

Observe that the unlabeled patterns of P1 are the four of Pcont and the two of Pcros that

have crossing edges in the opposite directions.

Definition 5.2 (Property P2). Let π be a permutation. A directed perfect matching M on
π is said to have property P2 if, for any two distinct arcs (i, i′) and (j, j′) of M, we have
π(i) < π(j) if and only if π(i′) < π(j′).

The rationale for introducing properties P1 and P2 stems from the following lemma.

Lemma 5.3. Let π be a permutation. The following statements are equivalent:

(i) The permutation π is a square.

(ii) There exists a directed perfect matching M on π satisfying properties P1 and P2.

Proof of Lemma 5.3. Assume that (i) holds. Since π is a square, π has a square root, say σ.
Let 2n = |π| (and hence |σ| = n). Then, by definition, there exist two sets

I1 =
{

i1
1 < i1

2 < · · · < i1
n

}
and I2 =

{
i2
1 < i2

2 < · · · < i2
n

}
(5.2)

of disjoint indexes of letters of π such that π|I1 and π|I2 are both order-isomorphic to σ. Let

G = (V, E) be the directed graph such that V = [2n] and E =
{(

i1
j , i2

j

)
: j ∈ [n]

}
. It is easily

seen that M = (G, π) is a directed perfect matching since I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n].
We first show that M avoids the unlabeled patterns of Pcont. Indeed, suppose, aiming at
a contradiction, that such an occurrence appears for, say, arcs

(
i1
j , i2

j

)
and

(
i1
k, i2

k

)
of M.

Assuming without loss of generality i1
j < i1

k, we are left with the four configurations

i2

k
i2

j
i1

j
i1

k

,
i2

k
i1

j
i2

j
i1

k

,
i1

j
i2

k
i1

k
i2

j

,
i1

j
i1

k
i2

k
i2

j

,

(5.3)

where shadow nodes give the position in the permutation π. Then it follows that i2
j > i2

k.

This is a contradiction since i1
j < i1

k implies j < k, and hence, i2
j < i2

k. We now turn

to proving that M also avoids the unlabeled patterns and . Indeed, suppose,
aiming at a contradiction, that such an occurrence appears for, say, arcs

(
i1
j , i2

j

)
and

(
i1
k, i2

k

)

of M. Assuming without loss of generality i1
j < i1

k, we are left with the two configurations

i2

k
i1

j
i1

k
i2

j

,
i1

j
i2

k
i2

j
i1

k

. (5.4)
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Then it follows that i2
j > i2

k. Again, this is a contradiction since i1
j < i1

k implies j < k,

and hence, i2
j < i2

k. Finally, for any two distinct arcs
(
i1
j , i2

j

)
and

(
i1
k, i2

k

)
of M, we have

π
(
i1
j

)
< π

(
i1
k

)
if and only if π

(
i2
j

)
< π

(
i2
k

)
since we are comparing in both cases two

elements (at positions j and k) in two patterns that are order-isomorphic to σ. Therefore,
M satisfies properties P1 and P2, so that (ii) holds.

Assume now that (ii) holds. Let

I1 =
{

i1
1 < i1

2 < · · · < i1
n

}
and I2 =

{
i2
1 < i2

2 < · · · < i2
n

}
(5.5)

such that I1 is the set the sources of the arcs of M and I2 is the set of the sinks of the arcs
of M. Let us first show that, for every j ∈ [n],

(
i1
j , i2

j

)
is an arc of M. For that, we show

that
(
i1
n, i2

n

)
is an arc of M. Suppose, aiming at a contradiction that this is false. Then,

there exist two vertices i2
p and i1

q of M such that
(
i1
n, i2

p

)
and

(
i1
q, i2

n

)
are arcs of M. Since

p < n and q < n, there is in M one of the four configurations

i2
p i1

q i2
n i1

n

,
i1
q i2

p i2
n i1

n

,
i2
p i1

q i1
n i2

n

,
i1
q i2

p i1
n i2

n

.

(5.6)

This is a contradiction since M satisfies property P1 and hence avoids the unlabeled patterns

, , , and . Therefore,
(
i1
n, i2

n

)
is an arc of M. By iteratively applying

the same reasoning, this also shows that all
(
i1
j , i2

j

)
, j ∈ [n − 1], are arcs of M. Now, let

p1 be the word of sources and p2 be the word of sinks of M. Clearly p1 and p2 are disjoint
in π (since M is a matching) and cover π (since M is perfect). Moreover, the fact that
M satisfies P2 implies immediately that p1 and p2 are order-isomorphic. Hence, this shows
that π is a square, so that (i) holds.

Observe that, given a square permutation π ∈ S2n and a directed perfect matching M

on π satisfying properties P1 and P2, one can recover a square root of π by considering the

standarization permutation of the word of sources (or, equivalently, the word of sinks) of

M. Figure 3 provides an illustration of Lemma 5.3 and of this observation.

1 2 3 4 5 6 7 8 9 A B C

1 8 3 9 2 7 B 5 C 6 A 4

Figure 3: A directed perfect matching M on the permutation π = 183927B5C6A4 satisfying the properties
P1 and P2. From M, it follows that π is a square as it appears in the shuffle of 1892A4 and 37B5C6, both
being order-isomorphic to 145263, a square root of π.

Let π be a permutation. For the sake of clarity, we will say that a bunch of consecutive

positions P of π is above (resp. below) another bunch of consecutive positions P ′ in π if

π(i) > π(j) (resp. π(i) < π(j)) for every i ∈ P and every j ∈ P ′. For example, σ1 is above
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σ2 (in an equivalent manner, σ2 is below σ1) in Figure 6(a), whereas σ1 is below σ2 (in an

equivalent manner, σ2 is above σ1) in Figure 6(b).

Moreover, if π is a permutation satisfying π = π1σ1π2σ2π3 and M is a directed perfect

matching on π, a (σ1, σ2)-arc (resp. (σ2, σ1)-arc) of M is any arc (i, j) (resp. (j, i)) of M

such that the i-th letter of π belongs to σ1 and the j-th letter of π belongs to σ2.

Let us now state and prove some lemmas that will prove extremely useful for simplifying

the proof of upcoming Proposition 5.10. First, whereas Lemma 5.3 states that a directed

perfect matching on a permutation with Property P1 avoids some unlabeled patterns of

length 4 (more specifically, it avoids the unlabeled patterns of P1), the following two lemmas

state that a directed perfect matching on a permutation with Property P2 also avoids some

additional labeled patterns. These two lemmas are easily proved by requiring Property P2.

For example, an occurrence of the labeled pattern
3 4 2 1

induces the existence of two arcs

(i1, i3) and (i2, i4) with i1 < i2 < i3 < i4 and π(i4) < π(i3) < π(i2) < π(i1).

1243 1342 1432 2134

2341 2431 3124 3214

3421 4123 4213 4312

Figure 4: The labeled patterns with crossing edges avoided by any directed perfect matching on a permuta-
tion satisfying Property P2.

Lemma 5.4 (Forbidden crossing patterns). Let π be a permutation and M be a directed
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perfect matching on π satisfying Property P2. Then M avoids the following labeled patterns

1 2 4 3
,

1 2 4 3
,

1 3 4 2
,

1 3 4 2
,

1 4 3 2
,

1 4 3 2
,

2 1 3 4
,

2 1 3 4
,

2 3 4 1
,

2 3 4 1
,

2 4 3 1
,

2 4 3 1
,

3 1 2 4
,

3 1 2 4
,

3 2 1 4
,

3 2 1 4
,

3 4 2 1
,

3 4 2 1
,

4 1 2 3
,

4 1 2 3
,

4 2 1 3
,

4 2 1 3
,

4 3 1 2
,

4 3 1 2
;

(5.7)

see Figure 4.

1423 1432 2314 2341

3214 3241 4123 4132

Figure 5: The labeled patterns with consecutive edges avoided by any directed perfect matching on a
permutation satisfying Property P2.

Lemma 5.5 (Forbidden precedence patterns). Let π be a permutation and M be a directed
perfect matching on π satisfying Property P2. Then M avoids the following labeled patterns

1 4 2 3
,

1 4 2 3
,

1 4 2 3
,

1 4 2 3
,

1 4 3 2
,

1 4 3 2
,

1 4 3 2
,

1 4 3 2
,

2 3 1 4
,

2 3 1 4
,

2 3 1 4
,

2 3 1 4
,

2 3 4 1
,

2 3 4 1
,

2 3 4 1
,

2 3 4 1
,

3 2 1 4
,

3 2 1 4
,

3 2 1 4
,

3 2 1 4
,

3 2 4 1
,

3 2 4 1
,

3 2 4 1
,

3 2 4 1
,

4 1 2 3
,

4 1 2 3
,

4 1 2 3
,

4 1 2 3
,

4 1 3 2
,

4 1 3 2
,

4 1 3 2
,

4 1 3 2
;

(5.8)
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see Figure 5.

i j

i′ j′

σ1

σ2

i′ j′

i j

σ1

σ2

(a) An increasing pattern before and above a
decreasing pattern.

i j

i′ j′

σ1

σ2

i′ j′

i j

σ1

σ2

(b) A decreasing pattern before and below an
increasing pattern.

Figure 6: Illustration of Corollary 5.6.

A useful corollary of Lemma 5.4 reads as follows.

Corollary 5.6. Let π = π1 σ1 π2 σ2 π3 be a permutation and M be a directed perfect match-
ing on π satisfying Properties P1 and P2. The following assertions hold.

(i) If σ1 is increasing, σ2 is decreasing, and σ1 is above σ2 (see Figure 6(a)), then there is
at most one arc between σ1 and σ2 in M (this arc can be a (σ1, σ2)-arc or a (σ2, σ1)-arc).

(ii) If σ1 is decreasing, σ2 is increasing, and σ1 is below σ2 (see Figure 6(b)), then there is
at most one arc between σ1 and σ2 in M (this arc can be a (σ1, σ2)-arc or a (σ2, σ1)-arc).

Proof of Corollary 5.6. Suppose, aiming at a contradiction, that (i) does not hold. Since M
has Property P1, it avoids the unlabelled patterns of P1. Then it follows that M contains

(see Figure 6(a)) either two crossing (σ1, σ2)-arcs (a
3 4 2 1

labeled pattern) or two crossing

(σ2, σ1)-arcs (a
3 4 2 1

labeled pattern). Hence, according to Lemma 5.4, M cannot have

Property P2. This is the sought-after contradiction.

The proof for (ii) is similar (see Figure 6(b)) replacing the labeled patterns
3 4 2 1

and

3 4 2 1
by

2 1 3 4
and

2 1 3 4
.

Lemma 5.7. Let π = π1 σ1 π2 σ2 π3 be a permutation where σ1 is an increasing pattern and
σ2 is (right) below σ1, and M be a directed perfect matching on π that has Properties P1 and
P2. If M contains a (σ1, σ2)-arc or a (σ2, σ1)-arc, then it does not contain a (σ1, σ1)-arc.

Proof of Lemma 5.7. Suppose, aiming at a contradiction, that M contains a (σ1, σ2)-arc or a
(σ2, σ1)-arc (i, i′), and a (σ1, σ1)-arc (j, j′). Since M has Property P1, it avoids the unlabeled
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i

i′

j j′

σ1

σ2

(a)

i

i′

j′ j

σ1

σ2

(b)

i

i′

j j′

σ1

σ2

(c)

i′

i

j j′

σ1

σ2

(d)

i′

i

j′ j

σ1

σ2

(e)

i′

i

j′ j

σ1

σ2

(f)

Figure 7: Illustration of Lemma 5.7.

patterns of P1. Therefore, M contains one of the following labeled patterns:
2 3 4 1

,
2 3 4 1

,

2 3 4 1
,

2 3 4 1
,

2 3 4 1
and

2 3 4 1
(see Figure 7). Hence, according to Lemmas 5.4 and 5.5, M

cannot have Property P2. This is the sought-after contradiction.

Lemma 5.8. Let π be a permutation and M be a directed perfect matching on π. If M has
properties P1 and P2, then so does the directed perfect matching Mr obtained from M by
reversing each of its arcs.

Proof of Lemma 5.8. It is immediate that Mr satisfies Property P2, since, for any two arcs
(i, i′) and (j, j′) of M, we have π(i) < π(j) if and only if π(i′) < π(j′). As for Property P1,
it is enough to observe that the set of unlabeled patterns P1 is closed by arc reversals.

A direct interpretation of Lemma 5.8 is that, if a permutation π is a square, one can

exchange the roles of the two order-isomorphic patterns that cover π. This can also be seen

as a consequence of Proposition 4.1 about the commutativity of •. Besides, an immediate

but useful consequence of Lemma 5.8 reads as follows.
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Corollary 5.9. Let π be a permutation and i and i′ be two distinct indexes of π. There
exists a directed perfect matching on π with Properties P1 and P2 that contains the arc
(i, i′) if and only of there exists a directed perfect matching on π with Properties P1 and P2

that contains the arc (i′, i).

Having disposed of these preliminary observations, we now turn to stating and proving

the NP-hardness of the targeted problem.

Proposition 5.10. Deciding whether a permutation is a square is NP-complete.

Proof of Proposition 5.10. This decision problem is certainly in NP. To prove that it is NP-
complete, we propose a reduction from the pattern involvement problem which is known to
be NP-complete [BBL98].

Let π ∈ Sn and σ ∈ Sk be two permutations. Let us set

N4 = 2(2n + k + 2) + 3,

N3 = 2(2N4 + 2n + 2k + 4) + 3,

N2 = 2(2N3 + 2N4 + 2n + 2k + 4) + 3,

N1 = 2(2N2 + 2N3 + 2N4 + 2n + 2k + 4) + 3.

(5.9)

Notice that N1, N2, N3 and N4 are polynomials in n. The crucial properties are that

(i) the integers N1, N2, N3 and N4 are odd;

(ii) the relation

Ni >




∑

i<j64

2Nj


 + 2n + 2k + 4 (5.10)

holds for every i ∈ [k].

To construct a new permutation µ from π and σ, we now turn to defining various gadgets
(sequences of integers) that will act as building blocks. Recall that, for any permutation
p = p1 p2 · · · px of [x] and any non-negative integer y, p [y] stand for the sequence (p1 +
y) (p + y) · · · (px + y)). Define

σ′ = ((k + 1) σ (k + 2)) [2N2 + N4 + 2n + k + 2],

π′ = ((n + 1) π (n + 2)) [2N2 + N4 + n + k + 2],

σ′′ = σ [2N2 + N4],

π′′ = π [2N2 + N4 + k],

ν1 =րN1
[2N2 + 2N3 + 2N4 + 2n + 2k + 4],

ν′
1 =րN1

[N1 + 2N2 + 2N3 + 2N4 + 2n + 2k + 4],

ν2 =ցN2
[N2],

ν′
2 =ցN2

,

ν3 =րN3
[2N2 + 2N4 + 2n + 2k + 4],

ν′
3 =րN3

[2N2 + N3 + 2N4 + 2n + 2k + 4],

ν4 =ցN4
[2N2 + N4 + 2n + 2k + 4],

ν′
4 =ցN4

[2N2].

(5.11)
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We are now in position to define our target permutation µ (see Figure 8 for an illustration)
as

µ = ν1 ν2 ν′
1 ν3 σ′ ν4 ν′

2 ν′
3 π′ ν′

4 π′′ σ′′. (5.12)

Claim 5.13

Claim 5.24

Claim 5.16

Claim 5.25

Claim 5.22

Claim 5.28

ν1

ν′
1

ν2

ν′
2

ν3

ν′
3

ν4

ν′
4

σ′

π′

π′′

σ′′

N2

N2

N4

k

n

n + 2

k + 2

N4

N3

N3

N1

N1

N1 N2 N1 N3 k + 2 N4 N2 N3 n + 2 N4 n k

Figure 8: Schematic representation of the permutation µ used in the proof of Proposition 5.10. Black arcs
denote the presence of at least one arc between two bunches of positions in µ. Grey arcs denote arcs that
are only considered in the forward direction of the proof.

It is immediate that µ can be constructed in polynomial-time in n and k. We claim
that σ occurs in π if and only if there exists a directed perfect matching M on µ that has
Properties P1 and P2 (that is, by Lemma 5.3, µ is a square).

Suppose first that σ occurs in π and fix any occurrence. Construct a directed matching
M on µ as follows (all arcs are oriented to the right):
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(1) M contains N1 pairwise crossing (ν1, ν′
1)-arcs.

(2) M contains N2 pairwise crossing (ν2, ν′
2)-arcs.

(3) M contains N3 pairwise crossing (ν3, ν′
3)-arcs.

(4) M contains N4 pairwise crossing (ν4, ν′
4)-arcs.

(5) M contains k + 2 pairwise crossing (σ′, π′)-arcs as depicted in Figure 9. More precisely,

σ′

((k + 1) σ (k + 2)) [2N2 + N4 + 2n + k + 2]

k + 1
k + 2

π′

((n + 1) π (n + 2)) [2N2 + N4 + n + k + 2]

n + 1
n + 2

π′′

π[2N2 + N4 + k]

σ′′

σ[2N2 + N4]

Figure 9: Illustration of the directed perfect matching M between gadgets σ′, π′, π′′ and σ′′ assuming two
input permutation σ = 312 and π = 452136 (where a specific occurrence of σ in π is depicted in bold).

(i) the first position of σ′ (i.e., (2N1 + N2 + N3) + 1) is linked to the first position of π′

(i.e., (2N1 + 2N2 + 2N3 + N4 + k + 2) + 1),

(ii) the last position of σ′ (i.e., (2N1 + N2 + N3) + k + 2) is linked to the last position of π′

(i.e., (2N1 + 2N2 + 2N3 + N4 + k + 2) + n + 2), and all other positions in σ′ are linked
by means of k pairwise crossing arcs to the positions in π′ that correspond to the fixed
occurrence of σ in π. (Notice that we use here the fact that σ occurs in π).
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(6) M contains n−k pairwise crossing (π′, π′′)-arcs as depicted in Figure 9. More precisely,
all positions in π′ that do not correspond to the fixed occurrence of σ in π are linked by
means of n − k pairwise crossing arcs to the positions in π′′ that do not correspond to the
fixed occurrence of σ in π.

(7) M contains k pairwise crossing (π′′, σ′′)-arcs as depicted in Figure 9. More precisely,
the positions in π′′ that correspond to the fixed occurrence of σ in π are linked by means
of k pairwise crossing arcs to all positions in σ′′. (Notice that, again, we use here the fact
that σ occurs in π).

It can be easily checked (probably referring to Figure 8) that M is perfect and has Properties
P1 and P2.

Conversely, suppose that there exists an directed perfect matching M on µ that has
Properties P1 and P2. We show that σ occurs as a pattern in π. Whereas the directed
perfect matching M may not be as regular as in the forward direction, the main idea is to
prove that M contains enough structure (more precisely, k + 2 (σ′, π′)-arcs) so that we can
conclude that σ occurs in π. We have divided the reverse direction into a set of basic claims
that progressively defines and refines the overall structure of M.

Claim 5.11. We may assume that there is no (ν′
1, ν1)-arc in M.

Proof of Claim 5.11. We first observe that, according to Property P1, since M avoids the
unlabeled patterns of P1, M cannot contain both a (ν1, ν′

1)-arc and a (ν′
1, ν1)-arc. Now, if M

does not contain a (ν′
1, ν1)-arc we are done. Otherwise, M does contain some (ν′

1, ν1)-arcs
and no (ν1, ν′

1)-arc, and the result follows from Lemma 5.8.

Claim 5.12. There is neither a (ν1, ν2)-arc nor a (ν2, ν1)-arc in M.

Proof of Claim 5.12. First, according to Corollary 5.6, there exists at most one arc between
ν1 and ν2 in M (this arc can be a (ν1, ν2)-arc or a (ν2, ν1)-arc). Suppose now, aiming at
a contradiction, that there exists either one (ν1, ν2)-arc or one (ν2, ν1)-arc, say a = (i, i′),
in M. In this case, according to Lemma 5.7, M does not contain any (ν1, ν1)-arc. We
now claim that M contains N1 − 1 pairwise crossing (ν1, ν′

1)-arcs (and i = 1) if a is a
(ν1, ν2)-arc, or N1 − 1 pairwise crossing (ν′

1, ν1)-arcs (and i′ = 1) if a is a (ν2, ν1)-arc

(recall here that and are forbidden patterns in M). Indeed, observe first that
N1 − 1 > |ν3| + |σ′| + |ν4| + |ν′

2| + |ν′
3| + |π′| + |ν′

4| + |π′′| + |σ1|. Therefore, there exists
at least one (ν1, ν′

1)-arc if a is a (ν1, ν2)-arc or at least one (ν′
1, ν1)-arc if a is a (ν2, ν1)-arc.

Hence, if M does not contain N1 − 1 pairwise crossing (ν1, ν′
1)-arcs or N1 − 1 pairwise

crossing (ν′
1, ν1)-arcs, then it contains one of the following labeled patterns:

2 3 4 1
,

2 3 4 1
,

2 3 4 1
,

2 3 4 1
,

2 3 4 1
and

2 3 4 1
. Applying Lemma 5.4 and Lemma 5.5 yields a contradiction.

Then it follows that M contains N1 − 1 pairwise crossing (ν1, ν′
1)-arcs (and i = 1) if a is a

(ν1, ν2)-arc, or N1 − 1 pairwise crossing (ν′
1, ν1)-arcs (and i′ = 1) if a is a (ν2, ν1)-arc. But

it follows from Claim 5.11 that M does not contain any (ν′
1, ν1)-arc, and hence M contains

N1 − 1 pairwise crossing (ν1, ν′
1)-arcs and a is a (ν1, ν2)-arc (since is forbidden).

We now observe that |ν1| = |ν′
1| = N1. Hence, since M is perfect, there exists a position

in ν′
1 that is not involved in a (ν1, ν′

1)-arc in M. We rule out this configuration by considering
two cases:
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i′ j

j′
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ν2
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(a)

i

i′j

j′
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ν2

ν′
1

(b)

i

i′

j

j′

ν1

ν2

ν′
1

(c)

i

i′

j

j′

ν1

ν2

ν′
1

(d)

Figure 10: Illustration of Claim 5.12.

• There exists a (ν2, ν′
1)-arc (j, j′) in M (we cannot have a (ν′

1, ν2)-arc since the unlabeled

pattern is forbidden), see Figure 10(a) and Figure 10(b). Then it follows that

M contains the labeled pattern
2 1 3 4

(with arc (j, j′) and any (ν, ν′
1)-arc). Applying

Lemma 5.4 yields the sought-after contradiction.
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j

j′

i

i′

ν1

ν2

ν′
1

(a)

j

j′

i′

i

ν1

ν2

ν′
1

(b)

Figure 11: Illustration of Claim 5.15.

• There exists an arc (j, j′) j = 2N1 + N2 and j′ > 2N1 + N2, or j′ = 2N1 + N2 and
j > 2N1 + N2, see Figure 10(c) and Figure 10(d). Then it follows that M contains

one of the two following labeled patterns:
3 2 4 1

and
3 2 4 1

(with arc (i, i′) and arc

(j, j′)). Applying Lemma 5.5 yields the sought-after contradiction.

Claim 5.13. There is at least one (ν1, ν′
1)-arc in M.

Proof of Claim 5.13. Suppose, aiming at a contradiction, that there is no (ν1, ν′
1)-arc in M.

Then it follows that there exists an arc (i, i′) in M that is neither a (ν1, ν1)-arc (since N1

is odd) nor a (ν1, ν2)-arc (Claim 5.12) nor a (ν1, ν′
1) (by our contradiction hypothesis). (In

other words, i 6 N1 and i′ > 2N1 +N2, or i′ 6 N1 and i > 2N1 +N2.) Therefore, since M is
containment-free (i.e., it avoids the unlabeled patterns of Pcont), there is neither a (ν2, ν2)-arc
nor a (ν′

1, ν′
1)-arc in M. Then it follows that M contains either N1 arcs (j, j′) with N1+N2 <

j 6 2N1 + N2 and j′ > 2N1 + N2 (if i 6 N1 and i′ > 2N1 + N2), or N1 arcs (i, i′) with
N1+N2 < j′ 6 2N1+N2 and j > 2N1+N2 (if i′ 6 N1 and i > 2N1+N2), otherwise M would
not be containment-free. But |ν′

1| = N1 > |ν3|+|σ′|+|ν4|+|ν′
2|+|ν′

3|+|π′|+|ν′
4|+|π′′|+|σ′′|.

This is a contradiction.

The above claim will be complemented in upcoming Claim 5.24.

Claim 5.14. There is no (ν2, ν2)-arc in M.

Proof of Claim 5.14. Combine Claim 5.13 together with the fact that M is containment-free
(i.e., it avoids the unlabeled patterns of Pcont).

Claim 5.15. There is neither a (ν2, ν′
1)-arc nor a (ν′

1, ν2)-arc in M.
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Proof of Claim 5.15. First, according to Corollary 5.6–(ii), there exists either at most one
(ν2, ν′

1)-arc and no (ν′
1, ν2)-arc, or at most one (ν′

1, ν2)-arc and no (ν2, ν′
1)-arc (i, i′) in M

(see Figure 11). Now from Claim 5.13, there exists at least one (ν1, ν′
1)-arc, say (j, j′), in

M. Hence, since M is containment-free (i.e., it avoids the unlabeled patterns of Pcont),

M contains one of the following labeled patterns:
2 1 3 4

and
2 1 3 4

. Applying Lemma 5.4

yields the sought-after contradiction.

Claim 5.16. There is at least one (ν2, ν′
2)-arc in M.

Proof of Claim 5.16. First, according to Claim 5.13, there exists at least one (ν1, ν′
1)-arc

in M and hence, since M avoids the unlabeled pattern (Property P1) there is no
(ν′

2, ν2)-arc in M. Now, suppose, aiming at a contradiction, that there is no (ν2, ν′
2)-arc in

M. Notice that there is neither a (ν1, ν2)-arc (Claim 5.12) nor a (ν2, ν1)-arc (Claim 5.12)
nor a (ν2, ν2)-arc (Claim 5.14) nor a (ν2, ν′

1)-arc (Claim 5.15) nor a (ν′
1, ν2)-arc (Claim 5.15)

in M. But |ν2| = N2 > |ν3| + |σ′| + |ν4| + |ν′
3| + |π′| + |ν′

4| + |π′′| + |σ′′|. Hence M cannot
be a directed perfect matching, thereby contradicting our hypothesis about M.

Claim 5.17. There is neither a (ν′
1, ν′

1)-arc, nor a (ν′
1, ν3)-arc, nor a (ν3, ν′

1)-arc, nor a
(ν′

1, σ′)-arc, nor a (σ′, ν′
1)-arc, nor a (ν′

1, ν4)-arc nor a (ν4, ν′
1)-arc nor a (ν3, ν3)-arc, nor a

(ν3, σ′)-arc, nor a (σ′, ν3)-arc, nor a (ν3, ν4)-arc, nor a (ν4, ν3)-arc, nor a (σ′, σ′)-arc, nor
a (σ′, ν4)-arc, nor a (ν4, σ′)-arc, nor a (ν4, ν4)-arc in M.

Proof of Claim 5.17. Combine Claim 5.16 with the fact that M is containment-free (i.e., it
avoids the unlabeled patterns of Pcont).

Claim 5.18. There is neither a (ν′
2, ν′

3)-arc, nor a (ν′
3, ν′

2)-arc, nor a (ν′
2, π′)-arc, nor a

(π′, ν′
2)-arc, nor a (ν′

2, ν′
4)-arc, nor a (ν′

4, ν′
2)-arc, nor a (ν′

2, π′′)-arc, nor a (π′′, ν′
2)-arc nor

a (ν′
2, σ′′)-arc, nor a (σ′′, ν′

2)-arc in M.

Proof of Claim 5.18. Suppose aiming at a contradiction that M contains a (ν′
2, ν′

3)-arc, a
(ν′

3, ν′
2)-arc, a (ν′

2, π′)-arc, a (π′, ν′
2)-arc, a (ν′

2, ν′
4)-arc, a (ν′

4, ν′
2)-arc, a (ν′

2, π′′)-arc, a (π′′, ν′
2)-

arc a (ν′
2, σ′′)-arc or a (σ′′, ν′

2)-arc, say (i, i′). We now observe that ν′
3, π′, ν′

4, π′′ and σ′′

are all right above of both ν2 and ν′
2. Furthermore, according to Claim 5.16, there exists a

(ν2, ν′
2)-arc, say (j, j′). Then, it follow that M contains one of the following labeled patterns:

3 2 1 4
,

3 2 1 4
,

3 2 1 4
and

3 2 1 4
(see Figure 12). Applying Lemma 5.5 and Lemma 5.4 yields

the sought-after contradiction.

Claim 5.19. There is neither a (ν3, ν′
2)-arc nor a (ν′

2, ν3)-arc in M.

Proof of Claim 5.19. Suppose, aiming at a contradiction, that there exists (ν3, ν′
2)-arc or a

(ν′
2, ν3)-arc (j, j′) in M. According to Claim 5.16, there exists at least one (ν2, ν′

2)-arc (i, i′)

in M. Since M avoids the unlabeled pattern (Property P1), there is no (ν′
2, ν3)-arc

in M (see Figure 13), and hence (j, j′) is a (ν3, ν′
2)-arc. Then it follows that M contains

the labeled pattern
3 4 2 1

(see Figure 13). Applying Lemma 5.4 yields the sought-after

contradiction.

Claim 5.20. There is at most one (ν2, ν3)-arc or at most one (ν3, ν2)-arc in M.

Proof of Claim 5.20. Apply Corollary 5.6.
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4, π′′ or σ′′
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j′

ν2

ν′
2

(d)

Figure 12: Illustration of Claim 5.18.

We will see soon (upcoming Claim 5.25) that there exists actually no (ν2, ν3)-arc in M.

Claim 5.21. There is neither a (ν1, ν3)-arc, nor a (ν3, ν1)-arc in M.

Proof of Claim 5.21. Suppose, aiming at a contradiction, that there exists a (ν1, ν3)-arc or a
(ν3, ν1)-arc, say (j, j′), in M. According to Claim 5.13, there exists at least one (ν1, ν′

1)-arc,
say (i, i′), in M. Since M avoids the unlabeled pattern CrossingRL (Property P1), there
is no (ν3, ν1)-arc in M (see Figure 14), and hence (j, j′) is a (ν1, ν3)-arc. Then it follows

that M contains the labeled pattern
2 3 4 1

(see Figure 14). Applying Lemma 5.4 yields the

sought-after contradiction.

Claim 5.22. There exists a (ν3, ν′
3)-arc in M.

Proof of Claim 5.22. First, according to Claim 5.16, there exists at least one (ν2, ν′
2)-arc

in M. Since M avoids the unlabeled pattern (Property P1) there is no (ν′
3, ν3)-

arc in M. Now, suppose, aiming at a contradiction, that there is no (ν3, ν′
3)-arc in M.

Combining Claim 5.17, Claim 5.19, Claim 5.20 Claim 5.21 together with our hypothesis,
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j′

ν2

ν3
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Figure 13: Illustration of Claim 5.19.

i

i′

j

j′

ν1

ν′
1

ν3

Figure 14: Illustration of Claim 5.21

we conclude that N3 − 1 positions in ν3 are involved in arcs of M that are neither (ν1, ν3)-
arcs, nor (ν3, ν1)-arcs, nor (ν2, ν3)-arcs, nor (ν3, ν2)-arcs, nor (ν′

1, ν3)-arcs, nor (ν3, ν′
1)-arcs,

nor (ν3, ν3)-arcs, nor (ν3, σ′)-arcs, nor (σ′, ν3)-arcs, nor (ν3, ν4)-arcs, nor (ν4, ν3)-arcs, nor
(ν3, ν′

3)-arcs, nor (ν′
3, ν3)-arcs. But N3 − 1 > |π′| + |ν′

4| + |π′′| + |σ′′| = N4 + 2n + 2k + 4,
and hence M is not a perfect matching. This is the sought-after contradiction.

Claim 5.23. There is neither a (σ′, σ′)-arc, nor a (σ′, ν4)-arc, nor a (ν4, σ′)-arc, nor a
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Figure 15: Illustration of Claim 5.24.

(σ′, ν′
2)-arc, nor a (ν′

2, σ′)-arc, nor a (ν4, ν4)-arc nor a (ν4, ν′
2)-arc, nor a (ν′

2, ν4)-arc, nor
a (ν′

2, ν′
2)-arc in M.

Proof of Claim 5.23. Combine Claim 5.22 together with the fact that M is containment-free
(i.e., it avoids the unlabeled patterns of Pcont).

The next two claims state that M actually contains all (ν1, ν′
1)-arcs and all (ν2, ν′

2)-arcs.

Claim 5.24. M contains N1 pairwise crossing (ν1, ν′
1)-arcs.

Proof of Claim 5.24. First, according to Claim 5.16, M contains at least one (ν1, ν′
1)-arc.

Now, suppose, aiming at a contradiction, that M does not contain N1 (ν1, ν′
1)-arcs. Com-

bining Claim 5.12, Claim 5.15, Claim 5.15 and Claim 5.17, we conclude that M contains one

of the two following labeled patterns:
2 3 4 1

and
2 3 4 1

(see Figure 15). Applying Lemma 5.4

or Lemma 5.5 yields the sought-after contradiction.

Claim 5.25. M contains N2 pairwise crossing (ν2, ν′
2)-arcs.

Proof of Claim 5.25. The key idea is to focus on ν′
2 and combine Claim 5.16, Claim 5.19,

Claim 5.18 and Claim 5.23.

Claim 5.26. There is neither a (ν2, ν4)-arc nor a (ν4, ν2)-arc in M.

Proof of Claim 5.26. According to Claim 5.25, all positions in ν2 and ν′
2 are involved in

(ν2, ν′
2)-arcs in M.

Claim 5.27. There is neither a (ν4, ν′
3)-arc nor a (ν′

3, ν4)-arc in M.
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Figure 16: Illustration of Claim 5.27.

Proof of Claim 5.27. First, according to Corollary 5.6–(ii), there exists either at most one
(ν4, ν′

3)-arc and no (ν′
3, ν4)-arc, or at most one (ν′

3, ν4)-arc and no (ν4, ν′
3)-arc (i, i′) in M

(see Figure 16). Now from Claim 5.22, there exists at least one (ν3, ν′
3)-arc, say (j, j′), in

M. Hence, since M is containment-free (i.e., it avoids the unlabeled patterns of Pcont), M

contains one of the two following labeled patterns:
2 1 3 4

and
2 1 3 4

. Applying Lemma 5.4

yields the sought-after contradiction.

Claim 5.28. There is at least one (ν4, ν′
4)-arc in M.

Proof of Claim 5.28. First, according to Claim 5.22, there is at least one (ν3, ν′
3)-arc in M.

Therefore, since M avoids the unlabeled pattern (Property P1), there is no (ν′
4, ν4)-

arc in M. Now, suppose, aiming at a contradiction, that there is no (ν4, ν′
4)-arc in M. First,

according to Claim 5.24 and Claim 5.25, there is neither a (ν1, ν4)-arc nor a (ν4, ν1)-arc nor
a (ν′

1, ν4)-arc nor a (ν2, ν4)-arc nor a (ν4, ν2)-arc nor a (ν′
1, ν4)-arc nor a (ν4, ν′

1)-arc nor
a (ν3, ν4)-arc not a (ν4, ν3)-arc nor a (σ′, ν4)-arc nor a (ν4, σ′)-arc nor a (ν4, ν4)-arc nor a
(ν4, ν′

2)-abstract nor a (ν′
2, ν4)-arc in M. Furthermore, according to Claim 5.27, there is

neither a (ν4, ν′
3)-arc nor a ν′

3, ν4)-arc in M. But N4 > |π′| + |π′′| + |σ′′|, and hence M is
not a direct perfect matching, which contradicts our hypothesis about M.

Claim 5.29. There is neither a (π′, π′)-arc nor a (σ′, π′′)-arc nor a (π′′, σ′)-arc nor a (σ′, σ′′)-
arc nor a (σ′′, σ′)-arc in M.

Proof of Claim 5.29. Combine Claim 5.28 together with the fact that M has Property P1

and hence is containment-free (i.e., it avoids the unlabeled patterns of Pcont).

Claim 5.30. There is neither a (σ′, ν′
3)-arc nor a (ν′

3, σ′)-arc in M.
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Proof of Claim 5.30. First, according to Claim 5.22, there is at least one (ν3, ν′
3)-arc in M.

Therefore, since M avoids the unlabeled pattern (Property P1), there is no (ν′
3, σ′)-

arc in M. Now, suppose, aiming at a contradiction, that there is a (σ′, ν′
3)-arc in M. Hence,

since M is containment-free (i.e., it avoids the unlabeled patterns of Pcont), M contains the

labeled pattern
2 1 3 4

. Applying Lemma 5.4 yields the sought-after contradiction.

Claim 5.31. There is neither a (σ′, ν′
4)-arc nor a (ν′

4, σ′)-arc in M.

Proof of Claim 5.31. First, according to Claim 5.28, there is at least one (ν4, ν′
4)-arc in M.

Therefore, since M is containment-free (i.e., it avoids the unlabeled patterns of Pcont),

and avoids (Property P1), there is no (ν′
4, σ′)-arc in M. Now, suppose, aiming at

a contradiction, that there is a (σ′, ν′
4)-arc in M. Hence, M contains the labeled pattern

3 4 2 1
Applying Lemma 5.4 yields the sought-after contradiction.

Claim 5.32. There is no (π′, σ′)-arc in M.

Proof of Claim 5.32. Combine Claim 5.28 together with the fact that M avoids the unla-

beled pattern (Property P1).

Combining the above claims, we conclude that there are k + 2 (σ′, π′)-arcs in M. Recall
that

σ′ = ((k + 1) σ (k + 2)) [2N2 + N4 + 2n + k + 2] (5.13)

and that
π′ = ((n + 1) π (n + 2)) [2N2 + N4 + n + k + 2]. (5.14)

Then it follows we have at least k (possibly k + 1 or k + 2) independent (σ′, π′)-arcs (a, a′)
in M with

2N1 + N2 + N3 + 1 < a < 2N1 + N2 + N3 + k + 2 (5.15)

and

2N1 + N2 + N3 + (k + 2) + 1 < a′ < 2N1 + N2 + N3 + (k + 2) + n + 2. (5.16)

Therefore, by our hypothesis about M, σ occurs as a pattern in π.

6. Conclusion and perspectives

There are a number of further directions of investigation in this general subject. They

cover several areas: algorithmic, combinatorics, and algebra. Let us mention several —

not necessarily new— open problems that are, in our opinion, the most interesting. How

many permutations of S2n are squares? How many (213, 231)-avoiding permutations of S2n

are squares? (Equivalently, by Proposition 3.1, how many binary strings of length 2n are

squares; see also Problem 4 in [HRS12])? How hard is the problem of deciding whether a

(213, 231)-avoiding permutation is a square (Problem 4 in [HRS12], see also [BS14, RV13])?

Given two permutations π and σ, how hard is the problem of deciding whether σ is a

square root of π? As for algebra, one can ask for a complete algebraic study of Q[S] as a

graded associative algebra for the shuffle product •. Describing a generating family for Q[S],
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defining multiplicative bases of Q[S], and determining whether Q[S] is free as an associative

algebra are worthwhile questions.

References

[All00] C. Allauzen. Calcul efficace du shuffle de k mots. Technical report, Institut
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