
ar
X

iv
:1

80
5.

08
94

5v
1 

 [
m

at
h.

C
O

] 
 2

3 
M

ay
 2

01
8

GAMMA EXPANSIONS OF q-NARAYANA POLYNOMIALS, PATTERN
AVOIDANCE AND THE (−1)-PHENOMENON

SHISHUO FU, DAZHAO TANG, BIN HAN, AND JIANG ZENG

Abstract. The aim of this paper is two-folded. We first prove several new interpretations
of a kind of q-Narayana polynomials along with their corresponding γ-expansions using
pattern avoiding permutations. Secondly, we give a complete characterization of certain
(−1)-phenomenon for all Catalan subsets avoiding a single pattern of length three, and dis-
cuss their q-analogues utilizing the newly obtained q-γ-expansions, as well as the continued
fraction of a quint-variate generating function due to Shin and the fourth author. More-
over, we enumerate the alternating permutations avoiding simultaneously two patterns,
namely (2413, 3142) and (1342, 2431), of length four, and consider such (−1)-phenomenon
for these two subsets as well.
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1. Introduction

A polynomial f(x) =
∑

i aix
i ∈ R[x] is called γ-positive if f(x) =

∑⌊n/2⌋
i=0 γix

i(1 + x)n−2i

for n ∈ N and nonnegative reals γ0, γ1, . . . , γ⌊n/2⌋. The notion of γ-positivity appeared
first in the work of Foata and Schützenberger [16], A recent survey on γ-positivity in
combinatorics and geometry was given by Athanasiadis [2].

A permutation is said to be alternating (or up-down) if it starts with an ascent and then
descents and ascents come in turn. This has been called reverse alternating in Stanley’s
survey [39] and some of the other literatures but we stick with this convention through-
out the paper. We denote by Sn (resp. An) the set of permutations (resp. alternating
permutations) of length n. Given two permutations π ∈ Sn and p ∈ Sk, we say that π
contains the pattern p if there exists a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such
that the subsequence π(i1)π(i2) · · ·π(ik) of π is order-isomorphic to p. Otherwise, π is
said to avoid p. For example, 15324 contains 321 and avoids 231. The set of permuta-
tions (resp. alternating permutations) of length n that avoid patterns p1, p2, · · · , pm is
denoted as Sn(p1, p2, · · · , pm) (resp. An(p1, p2, · · · , pm)). Recall the excedance, descent
and double-descent statistics defined for any permutation π = π(1)π(2) · · ·π(n):

exc π = |{1 ≤ i ≤ n : π(i) > i}|,
des π = |{1 ≤ i ≤ n : π(i) > π(i+ 1)}|,
dd∗ π = |{1 ≤ i ≤ n : π(i− 1) > π(i) > π(i+ 1)}|,

where we let π(0) = π(n+ 1) = n+ 1.
The following two γ-expansions set the stage for our investigation. Note that (1.1) is a

classical result due to Foata and Schützenberger [16]. Foata and Strehl’s celebrated valley-
hopping [17] was a neat combinatorial argument that lead to both (1.1) and (1.2) (see
also [32, Chapter 4] for a nice exposition and the references therein).

An(t) :=
∑

π∈Sn

tdes π =

⌊n−1

2
⌋∑

k=0

γA
n,kt

k(1 + t)n−1−2k, (1.1)

Nn(t) :=
∑

π∈Sn(231)

tdes π =

⌊n−1

2
⌋∑

k=0

γN
n,kt

k(1 + t)n−1−2k. (1.2)

where

γA
n,k = #{π ∈ Sn : dd∗ π = 0, des π = k}, (1.3)

γN
n,k = #{π ∈ Sn(231) : dd

∗ π = 0, des π = k}. (1.4)

There are explicit formulae (cf. [2, Eqs. (62) and (64)]) for both the Narayana polynomials
Nn(t) in (1.2) and the γ-coefficients γN

n,k given by

Nn(t) =
n−1∑

i=0

1

n

(
n

i+ 1

)(
n

i

)
ti =

⌊n−1

2
⌋∑

k=0

(n− 1)!

k!(k + 1)!(n− 1− 2k)!
tk(1 + t)n−1−2k. (1.5)
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There are several well-known q-Narayana polynomials in the litterature; see [21] and the
references therein. In this paper we define the q-Narayana polynomials Nn(t, q) as the
Taylor coefficients in the following continued fraction expansion

∞∑

n=0

Nn(t, q)z
n =

1

1− c1z

1− c2z

1− c3z

1− c4z

. . .

, (1.6)

where c2k−1 = qk−1 and c2k = tqk−1 for k = 1, 2, . . ..
From Cheng, Elizalde, Kasraoui and Sagan [9, Theorem 7.3] (see Lemma 2.7) and the con-

traction formula (see Lemma 2.8) we derive immediately the following interpretation (see
also [27, 28])

Nn(t, q) =
∑

π∈Sn(321)

texc πqinv π−exc π. (1.7)

On the other hand, Blanco and Petersen [4] defined a (q, t)-analog of Catalan numbers, i.e.,

Dyck(n; t, q) =
∑

p∈Dyck(n)

trank pqarea p,

where Dyck(n) denotes the set of Dyck paths of semilength n, area(p) is the area under the
Dyck path p and rank(p) is the rank (in the noncrossing partition lattice) of the noncrossing
partition corresponding to p via a bijection. By comparing the continued fraction (1.6) with
that in Proposition 2.6 of [4], we have

Nn(tq, q
2) = Dyck(n; t, q). (1.8)

The first goal of this paper is to establish the following new combinatorial interpretations
for Nn(t, q), as well as their corresponding γ-expansions, using pattern avoiding permuta-
tions. Undefined statistics, sets and patterns will be given in the next section.

Theorem 1.1. The q-Narayana polynomials Nn(t, q) have the following ten interpretations:

Nn(t, q) =
∑

π∈Sn(231)

tdes πq(31-2) π =
∑

π∈Sn(231)

tdes πq(13-2) π =
∑

π∈Sn(231)

tdes πqadi
∗ π

=
∑

π∈Sn(312)

tdes πq(2-31) π =
∑

π∈Sn(312)

tdes πq(2-13) π =
∑

π∈Sn(312)

tdes πqadi π

=
∑

π∈Sn(213)

tdes πq(31-2) π =
∑

π∈Sn(213)

tdes πq(13-2) π

=
∑

π∈Sn(132)

tdes πq(2-31) π =
∑

π∈Sn(132)

tdes πq(2-13) π.
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Theorem 1.2. For n ≥ 1, the following γ-expansions formula holds true

Nn(t, q) =

⌊n−1

2
⌋∑

k=0

γn,k(q)t
k(1 + t)n−1−2k, (1.9)

where

γn,k(q) =
∑

π∈Ŝn,k(321)

qinv π−exc π (1.10)

=
∑

π∈S̃n,k(213)

q(31-2) π =
∑

π∈S̃n,k(312)

q(2-13) π (1.11)

=
∑

π∈S̃n,k(132)

q(2-31) π =
∑

π∈S̃n,k(231)

q(13-2) π. (1.12)

Remark 1.3. Eq. (1.10) is due to Lin and Fu [28]. Moreover, Blanco and Petersen [4] also
obtained a γ-expansion formula for Nn(tq, q

2), which sould yield another interpretation for
the γ coefficients.

Theorem 1.4. We have
∑

π∈Sn(213)

tdes πqadi π =
∑

π∈Sn(132)

tdes πqadi
∗ π (1.13)

=

⌊n−1

2
⌋∑

k=0

( ∑

π∈S̃n,k(213)

qadi π
)
tk(1 + t)n−1−2k, (1.14)

=

⌊n−1

2
⌋∑

k=0

( ∑

π∈S̃n,k(132)

qadi
∗ π

)
tk(1 + t)n−1−2k. (1.15)

Thanks to the combinatorial interpretations in (1.3)–(1.4), taking k = ⌊n−1
2
⌋, we obtain

precisely the number of alternating permutations in each class of permutations:

En := |An| = γA
n,⌊n−1

2
⌋
, |An(231)| = γN

n,⌊n−1

2
⌋
. (1.16)

Moreover, we can take t = −1 in (1.1) and recover the following combinatorial interpretation
of a classical identity involving the odd Euler number E2n+1 [14]:

∑

π∈Sn

(−1)des π =
∑

π∈Sn

(−1)exc π =

{
0 if n is even,

(−1)
n−1

2 En if n is odd,
(1.17)

where the first equality needs the well-known fact that des and exc are equidistributed over
Sn. A parallel result for the even Euler number E2n can be obtained by the (−1)-evaluation
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of the Roselle polynomial [35]:

∑

π∈D∗

n

(−1)des π =
∑

π∈Dn

(−1)exc π =

{
(−1)

n
2En if n is even,

0 if n is odd,
(1.18)

where Dn (resp. D∗
n) denotes the set of derangements (resp. coderangements, see Defini-

tion 2.3) of length n. The first equality in (1.18) follows from Lemma 2.4. In recent years,
the q-analogs of (1.17) and (1.18) have attracted attentions of several authors [13,15,22,37].

The second goal of this paper is to consider such (−1)-evaluation with respect to (1.2),
then derive results comparable to (1.17) and (1.18), as well as their various companions
and q-analogues. More precisely, for a given subset Sn(p1, p2, · · · , pm) ⊂ Sn arising from
pattern avoidance, we do the following things.

(1) Enumerate An(p1, p2, · · · , pm).
(2) Derive the generating function of des (resp. exc) over Sn(p1, p2, · · · , pm), say Xn(t),

then evaluate Xn(−1).
(3) Derive the generating function of des (resp. exc) over D∗

n(p1, p2, · · · , pm) (resp.
Dn(p1, p2, · · · , pm)), say Yn(t), then evaluate Yn(−1).

If the result of (1) (up to an index shift) matches with either that of (2) in the sense of
(1.17), or that of (3) in the sense of (1.18), we say Sn(p1, p2, · · · , pm) exhibits the (−1)-
phenomenon. If we get a double match, then we call it the strong (−1)-phenomenon.

This approach was already used by Foata-Schützenberger [16, Chap. V] who first derived
(1.17) and (1.18) via γ-expansions of the Eulerian polynomials.

After preparing ourselves with preliminary works in section 2, we prove Theorems 1.1,
1.2 and 1.4, among other things, in section 3. We consider a variation involving the weak
excedance in section 4. Next in section 5, we completely determine the existence of (−1)-
phenomenon for Sn(τ), where τ runs through all permutations in S3. For example, we
have the following q-version of the strong (−1)-phenomenon on Sn(321) concerning exc.
Recall [4] that Carlitz’s q-Catalan numbers Cn(q) are defined by

Cn(q) := Nn(q, q
2). (1.19)

It is easy to see that Cn(q) is a polynomial of degree
(
n
2

)
. For instance,

C0(q) = C1(q) = 1,

C2(q) = q + 1,

C3(q) = q3 + q2 + 2q + 1,

C4(q) = q6 + q5 + 2q4 + 3q3 + 3q2 + 3q + 1.

Theorem 1.5. For any n ≥ 1,

Nn(−1, q) =
∑

π∈Sn(321)

(−1)exc πqinv π−exc π =

{
0 if n is even,

(−q)
n−1

2 Cn−1

2

(q2) if n is odd,
(1.20)
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∑

π∈Dn(321)

(−1)exc πqinv π =

{
(−q)

n
2Cn

2
(q2) if n is even,

0 if n is odd.
(1.21)

We continue our exploration in section 6 with Sn(2413, 3142) and Sn(1342, 2431), and
close with some remarks to motivate further study along this line.

2. Definitions and preliminaries

2.1. Permutation statistics and a proof of Theorem 1.5. We follow [10], [37] and
[38] for notations and the nomenclature of various permutation statistics. First we recall
four classical involutions defined on Sn, namely, the inverse, reverse, complement and the
composition of the latter two. For π ∈ Sn,

π 7→ π−1 := π−1(1)π−1(2) · · ·π−1(n),

π 7→ πr := π(n) · · ·π(2)π(1),
π 7→ πc := (n+ 1− π(1))(n+ 1− π(2)) · · · (n+ 1− π(n)),

π 7→ πrc := (n+ 1− π(n)) · · · (n+ 1− π(2))(n+ 1− π(1)).

There are four statistics concerning three consecutive letters in π. Note that the dd below
and the dd∗ mentioned in the introduction have different initial conditions concerning π(0)
and π(n+1), hence are indeed different. We emphasize here to avoid any future confusion,
that whenever two versions of the same type of statistic exist, we use the ∗ version to
indicate the initial condition π(0) = π(n + 1) = n + 1, while the non-∗ version means
π(0) = π(n + 1) = 0, with the only exception being Lemma 4.2.

Definition 2.1. For π ∈ Sn, let π(0) = π(n + 1) = 0. Then any entry π(i) (i ∈ [n]) can
be classified according to one of the four cases:

• a peak if π(i− 1) < π(i) and π(i) > π(i+ 1);
• a valley if π(i− 1) > π(i) and π(i) < π(i+ 1);
• a double ascent if π(i− 1) < π(i) and π(i) < π(i+ 1);
• a double descent if π(i− 1) > π(i) and π(i) > π(i+ 1).

Let peak π (resp. valley π, da π, dd π) count the number of peaks (resp. valleys, double
ascents, double descents) in π, and define

S̃n,k(213) := {π ∈ Sn(213) : dd π = 0, des π = k},
S̃n,k(312) := {π ∈ Sn(312) : dd π = 0, des π = k},
S̃n,k(132) := {π ∈ Sn(132) : dd

∗ π = 0, des π = k},
S̃n,k(231) := {π ∈ Sn(231) : dd

∗ π = 0, des π = k}.
Besides the patterns mentioned in the introduction, we shall also consider the so-called

vincular patterns [3]. The number of occurrences of vincular patterns 31-2, 2-31, 2-13 and
13-2 in π ∈ Sn are defined by

(31-2) π = #{(i, j) : i+ 1 < j ≤ n and π(i+ 1) < π(j) < π(i)},
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(2-31) π = #{(i, j) : j < i < n and π(i+ 1) < π(j) < π(i)},
(2-13) π = #{(i, j) : j < i < n and π(i) < π(j) < π(i+ 1)},
(13-2) π = #{(i, j) : i+ 1 < j ≤ n and π(i) < π(j) < π(i+ 1)}.

Definition 2.2. The statistic MAD, the number of fixed points, weak excedances, the
inversion number, crossing number and inverse crossing number, nesting number and
inverse nesting number of π ∈ Sn are defined by

MAD π = des π + (31-2) π + 2(2-31) π,

fix π =
∑

1≤i≤n

χ
(
π(i) = i

)
,

wex π = exc π + fix π,

inv π =
∑

1≤i<j≤n

χ
(
π(i) > π(j)

)
,

cros π = #{(i, j) : i < j ≤ π(i) < π(j) or π(i) < π(j) < i < j},
nest π = #{(i, j) : i < j ≤ π(j) < π(i) or π(j) < π(i) < i < j},
icr π = cros π−1,

ine π = nest π−1,

where χ(A) = 1 if A is true and 0 otherwise.

For all 1 ≤ i ≤ n, the entry π(i) is called a nondescent top (resp. nonexcedance top) of
π, if π(i) < π(i+ 1) (resp. π(i) ≤ i), where π(n + 1) = n + 1. π(i) is called a left-to-right
maximum if π(i) = max {π(1), π(2), · · · , π(i)}. A nondescent top π(i) (i = 1, · · · , n) is
called a foremaximum of π if it is at the same time a left-to-right maximum. Denote the
number of foremaximum of π by fmax π.

Definition 2.3 (Shin-Zeng). A permutation π is called coderangement if fmax π = 0. Let
D∗

n be the subset of Sn of coderangements.

For the rest of this subsection, we collect all the lemmas that will be useful in later
sections, and prove Theorem 1.5.

The Clarke-Steingrímsson-Zeng bijection [10] linking des based statistics with exc based
ones is crucial for our ensuing derivation. It is the composition of the Françon-Viennot
bijection ΨFV : Sn → Ln in [19] and the inverse of the Foata-Zeilberger bijection ΨFZ :
Sn → Ln in [18]. See [10] for a direct description of this composition Φ := Ψ−1

FZ ◦ ΨFV

and further details. The following equidistribution result relies on Φ and is equivalent to
Theorem 8 in [37] modulo one application of the inverse map: π 7→ π−1.

Lemma 2.4 (Shin-Zeng). For n ≥ 1, there is a bijection Φ on Sn such that

(des, fmax, 31-2, 2-31,MAD) π = (exc, fix, icr, ine, inv) Φ(π) for all π ∈ Sn.
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Using Laguerre history of the Motzkin path, Shin and the fourth author [37] deduced the
continued fraction expansion for the quint-variate generating function of Sn with respect
to the above statistics.

Lemma 2.5 (Shin-Zeng). Let

An(x, y, q, p, s) :=
∑

π∈Sn

xdes πyfmax πq(31-2) πp(2-31) πsMAD π

=
∑

π∈Sn

xexc πyfix πqicr πpine πsinv π. (2.1)

Then we have

1 +

∞∑

n=1

An(x, y, q, p, s)z
n =

1

1− b0z −
a0c1z

2

1− b1z −
a1c2z

2

. . .

, (2.2)

where, for h ≥ 0,

ah = s2h+1[h+ 1]q,ps, bh = yphs2h + (x+ q)sh[h]q,ps,

and

ch = x[h]q,ps, [h]u,v := (uh − vh)/(u− v).

In order to make (2.1) suitable for the Catalan case, we have to make the following
observation.

Lemma 2.6. For any n ≥ 1,

Sn(2-13) = Sn(213), (2.3)

Sn(31-2) = Sn(312), (2.4)

Sn(13-2) = Sn(132), (2.5)

Sn(2-31) = Sn(231). (2.6)

Moreover, the mapping Φ has the property that Φ(Sn(231)) = Sn(321). Consequently,
π ∈ Sn(321) if and only if nest π = ine π = 0.

Proof. By definition we have Sn(213) ⊂ Sn(2-13), Conversely, if π /∈ Sn(213), then π
has the pattern 213, that is k < i < j, π(i) < π(k) < π(j), then there must be some i′,
i ≤ i′ < j, and π(i′) < π(k) < π(i′ + 1), then π /∈ Sn(2-13). This proves (2.3). The proofs
for (2.4)–(2.6) are similar.

For the second claim, since we already know Φ is a bijection and that |Sn(231)| =
|Sn(321)| = Cn, it will suffice to show that for any σ ∈ Sn(231), we have π := Φ(σ) ∈
Sn(321). Suppose on the contrary that π 6∈ Sn(321), and we have π(i) > π(j) > π(k) with
1 ≤ i < j < k ≤ n. We discuss by two cases:

• if π(j) ≤ j, then π(k) < π(j) ≤ j < k form an inverse nesting of π;
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• if π(j) > j, then i < j < π(j) < π(i) form an inverse nesting of π.

Therefore in either case, we have (2-31) σ = ine π > 0, which implies that σ 6∈ Sn(231), a
contradiction. For the final claim, note that π ∈ Sn(321) if and only if π−1 ∈ Sn(321), and
the above argument indicates that π ∈ Sn(321) if and only if ine π = 0. Combine these
two equivalences to finish the proof. �

By the above observation, the special p = 0, q = 1 case of Lemma 2.5 yields a result of
Cheng et al. [9, Theorem 7.3].

Lemma 2.7 (Cheng et al.). We have
∞∑

n=0

( ∑

π∈Sn(321)

qinv πtexc πyfix π
)
zn =

1

1− yz − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

. . .

. (2.7)

We also need a standard contraction formula for continued fractions, see [37, Eqs. (43)
and (44)].

Lemma 2.8 (Contraction formula). There holds

1

1− c1z

1− c2z

1− c3z

1− c4z

. . .

=
1

1− c1z −
c1c2z

2

1− (c2 + c3)z −
c3c4z

2

. . .

= 1 +
c1z

1− (c1 + c2)z −
c2c3z

2

1− (c3 + c4)z −
c4c5z

2

. . .

.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Letting (t, y) = (−1/q, 1) in (2.7), we have by applying the contrac-
tion formula

1 +
∞∑

n=1

( ∑

π∈Sn(321)

qinv π−exc π(−1)exc π
)
zn = 1 +

z

1 +
qz2

1 +
q3z2

1 +
q5z2

. . .

.
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We derive (1.20) by comparing this with (1.6).
In the same vein, by setting (t, y) = (−1, 0) in (2.7), we obtain

∞∑

n=0

( ∑

π∈Dn(321)

(−1)exc πqinv π
)
zn =

1

1− (−q)z2

1− (−q3)z2

1− (−q5)z2

. . .

.

Comparing with (1.6), we readily get (1.21). �

2.2. Other combinatorial interpretations of Cn(q). We can derive several pattern
avoiding interpretations for our q-Catalan numbers Cn(q) from γ-expansions due in [28]
and [27]. Let

Ŝn,k(321) := {π ∈ Sn(321) : exc π = k and if i < π(i), then i+ 1 is a nonexcedance top}.

According to this definition, for any π ∈ Ŝn,k(321), each occurrence of excedance is uniquely
linked to an occurrence of nonexcedance. So when n is odd, the maximum for exc π is
achieved at k = n−1

2
, and in this case, the “if” condition becomes “if and only if”. More

precisely, take any π ∈ Ŝn,n−1

2

(321), we have for 1 ≤ i ≤ n− 1,

• i < π(i), if and only if
• i+ 1 is a nonexcedance top, if and only if
• π(i)− 1 is a nonexecedance bottom.

This analysis shows that π ∈ Ŝ2n+1,n(321) is enumerated by Cn (see excercise 145 in
[40]). The first alternative interpretation is (1.10) that we have seen in the introduction.
Interestingly, we find yet another two q-γ-expansions in Lin’s work [27, Theorems 1.2 and
1.4], that are amenable for such (−1)-evaluation as well.

Lemma 2.9 (Lin). For any n ≥ 1,

∑

π∈Sn(321)

twex πqinv π =

⌊n+1

2
⌋∑

k=1


 ∑

π∈NDWn,k(321)

qinv π


 tk(1 + t/q)n+1−2k, (2.8)

∑

π∈Dn(321)

texc πqinv π =

⌊n
2
⌋∑

k=1


 ∑

π∈NDEn,k(321)

qinv π


 tk(1 + t)n−2k, (2.9)

where

NDWn,k(321) := {π ∈ Sn(321) : wex π = k, no i such that π(i+ 1) ≥ i+ 1, i ≥ π−1(i)},
NDEn,k(321) := {π ∈ Dn(321) : exc π = k, cda π = 0}.
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See Definition 4.1 for the definition of cda. Now if we plug in t = −1 in (1.10) (resp.
t = −q in (2.8), t = −1 in (2.9)), and compare the result with (1.20) (resp. with (1.21)),
we discover the following relations.

Proposition 2.10. For any n ≥ 1,

Cn(q
2) = q−2n

∑

π∈Ŝ2n+1,n(321)

qinv π = q−2n
∑

π∈NDW2n+1,n+1(321)

qinv π = q−n
∑

π∈NDE2n,n(321)

qinv π.

Remark 2.11. Two remarks on Proposition 2.10 are in order. First, as a by-product

we note that inv π is even for any π ∈ Ŝ2n+1,n(321) (resp. π ∈ NDW2n+1,n+1(321)), and
inv π has the parity of n for any π ∈ NDE2n,n(321). A direct combinatorial explanation
of this might be interesting. On the other hand, from a bijective point of view, we note
that the second equality above is a natural result of the inverse map π 7→ π−1, while a
bijection deducing the third equality is possible via the two colored Motzkin path [27, 28].
We leave the details as exercises for motivated readers. Moreover, we note by passing that
|NDE2n,n(321)| = Cn is equivalent to Exercise 151 in [40].

3. Proofs of Theorems 1.1, 1.2 and 1.4

The statistic admissible inversion was first introduced by Shareshian and Wachs [36].

Definition 3.1. Let π = π(1)π(2) · · ·π(n) be a permutation of Sn and π(0) = π(n+1) = 0.
An admissible inversion of π is an inversion pair (π(i), π(j)), i.e., 1 ≤ i < j ≤ n and
π(i) > π(j), satisfying either of the following conditions:

• π(j) < π(j + 1) or
• there is some l such that i < l < j and π(j) > π(l).

We need also a variant of the above definition introduced in [29, Definition 1].

Definition 3.2. Let π = π(1)π(2) · · ·π(n) be a permutation of Sn and π(0) = π(n+ 1) =
n + 1. A star admissible inversion of π is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and
π(i) > π(j) and satisfies either of the following conditions:

• π(i− 1) < π(i) or
• there is some l such that i < l < j and π(i) < π(l).

Let adiπ and adi∗π be the numbers of admissible inversions and star admissible inversions
of π ∈ Sn, respectively. For example, if π = 231, then adi π = 0 while adi∗ π = 2.

Lemma 3.3. We have

adi π = (2-13) π, if π ∈ Sn(312), (3.1)

adi∗ π = (13-2) π, if π ∈ Sn(231). (3.2)

Proof. By Definition 3.1 an inversion pair (π(i), π(j)) of a permutation π ∈ Sn is admissible
if and only if either of the following conditions holds

• the triple (π(i), π(j), π(j + 1)) forms a pattern 2-13 or 3-12;
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• the triple (π(i), π(l), π(j)) with i < l < j forms a pattern 312.

Thus, if π ∈ Sn(312), by (2.4) the permutation π avoids both 312 and 3-12. This proves
(3.1). The proof of (3.2) is similar. �

Let π ∈ Sn, for any x ∈ [n], the x-factorization of π reads π = w1w2xw3w4, where w2

(resp. w3) is the maximal contiguous subword immediately to the left (resp. right) of x
whose letters are all larger than x. Following Foata and Strehl [17] we define the action ϕx

by

ϕx(π) = w1w3xw2w4.

For instance, if x = 3 and π = 28531746 ∈ S7, then w1 = 2, w2 = 85, w3 = ∅ and
w4 = 1746. Thus ϕx(π) = 23851746. Clearly, ϕx is an involution acting on Sn and it is
not hard to see that ϕx and ϕy commute for all x, y ∈ [n]. Brändén [6] modified ϕx to be

ϕ′
x(π) :=

{
ϕx(π), if x is a double ascent or double descent of π;

π, if x is a valley or a peak of π.

Again it is clear that ϕ′
x’s are involutions and commute. For any subset S ⊆ [n] we can

then define the function ϕ′
S : Sn → Sn by

ϕ′
S(π) =

∏

x∈S

ϕ′
x(π).

Hence the group Z
n
2 acts on Sn via the functions ϕ′

S, S ⊆ [n]. This action will be called
the Modified Foata–Strehl action (MFS-action for short) as depicted in Fig. 1 (recall the
initial condition π(0) = π(n+ 1) = 0).

0

9

5

6

1
3

2

7

4

8

0

Figure 1. MFS-actions on 596137428

Remark 3.4. The initial condition π(0) = π(n + 1) = 0, the definition of adi, and the
construction of the MSF-action, are all dual to those used by Lin-Zeng in [29]. When
patterns {231, 132, 2-31, 13-2} are concerned, we use Lin-Zeng’s version, while for patterns
{213, 312, 2-13, 31-2} we use our current version. We include all the constructions here to
make this paper self-contained.

Lemma 3.5. Let π ∈ Sn. For each x ∈ [n], we have adi π = adi ϕ′
x(π).
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Proof. If x is a peak or a valley of π, then ϕ′
x(π) = π and the result is true. If x is a double

descent of π, then π = w1w2xw4 with w3 = ∅, and there are no admissible inversions of π
formed by x and one letter in w2. As ϕ′

x(π) = w1xw2w4, there are no inversions of ϕ′
x(π)

between w2 and x. Let (π(i), π(j)) /∈ {(y, x) : y is a letter in w2} be a pair in π such that
i < j. We claim that (π(i), π(j)) is an admissible inversion of π if and only if it is an
admissible inversion of ϕ′

x(π), from which the result follows.
For a word w, we write a ∈ w if a is a letter in w. To check the claim, there are six

cases to be considered: (1) π(i) ∈ w1 and π(j) ∈ w1; (2) π(i) ∈ w1 and π(j) ∈ w2x; (3)
π(i) ∈ w1 and π(j) ∈ w4; (4) π(i) ∈ w2 and π(j) ∈ w2; (5) π(i) ∈ w2x and π(j) ∈ w4; (6)
π(i) ∈ w4 and π(j) ∈ w4. We will only show case (5), other cases are similar. If (π(i), π(j))
is an admissible inversion of π, then π(i) > π(j) < π(j+1) or π(i) > π(j) > π(k) for some
i < k < j. Clearly, (π(i), π(j)) is an admissible of ϕ′

x(π) if π(k) 6= x. Otherwise π(k) = x,
then we denote x′ the first letter of w4 and consider the triple (π(i), x′, π(j)) in ϕ′

x(π). This
indicates that (π(i), π(j)) is an admissible inversion of ϕ′

x(π), since x′ < x < π(j) < π(i).
To show that, if (π(i), π(j)) is an admissible inversion of ϕ′(π) then (π(i), π(j)) is an
admissible inversion of π, is similar and we omit. This finishes the proof of our claim in
case (5). �

Lemma 3.6. The statistics (2-31), (13-2), (2-13) and (31-2) are constant on any orbit under
the MFS-action.

Proof. For π ∈ Sn, when π(0) = π(n+1) = n+1, the cases (2-31) and (13-2) were proved
by Bränden [6, Theorem 5.1]. For the case (2-13), let π(0) = π(n + 1) = 0, and note
that (2-13) π is the number of triples (π(i), π(j), π(k)) such that 1 ≤ i < j < k ≤ n and
π(j) < π(i) < π(k), where (π(j), π(k)) is a pair of consecutive valley and peak, that is,
there are no other peaks and valleys in between π(j) and π(k). The number of such triples
is invariant under the action since π(j) and π(k) cannot move and neither can π(i) hop
over the valley π(j). A similar argument leads to the case (31-2). �

Lemma 3.7. The MFS-action preserves the pattern 213, 312, 132 and 231, i.e., the map
ϕ′
S is closed on the subsets Sn(τ), for τ = 213, 312, 132, 231.

Proof. Suppose π /∈ Sn(213), so that there is a triple of indices i < j < k with π(j) <
π(i) < π(k). Then without loss of generality, we may assume π(j) is a valley. (Otherwise,
there is a valley π(j′) with i < j′ < j or j < j′ < k, and π(j′) < π(j).) Under the MFS-
action, the relative positions of the letters π(i), π(j), π(k) are preserved, since neither π(i)
nor π(k) can hop past π(j). See Fig. 2 for an illustration. �

Proof of Theorem 1.2. Thanks to Lemma 3.6, the statistics tracked by the power of q re-
main constant inside each orbit under the MFS-action. We prove the 213-avoiding case
in (1.11) here and omit the details for the remaining ones. For any permutation π ∈ Sn,
let Orb(π) = {g(π) : g ∈ Z

n
2} be the orbit of π under the MFS-action. The MFS-action

divides the set Sn into disjoint orbits. Moreover, for π ∈ Sn, x is a double descent of
π if and only if x is a double ascent of ϕ′

x(π). Hence, there is a unique permutation in
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0

π(i)

π(j)

π(k)

0

Figure 2. MFS-actions on pattern avoidance 213

each orbit which has no double descent. Now, let π̄ be this unique element in Orb(π), then
da π̄ = n− peak π̄ − valley π̄ and des π̄ = peak π̄ − 1 = valley π̄. Thus

∑

σ∈Orb π

q(31-2) σtdes σ = q(31-2) π̄tdes π̄(1 + t)da π̄ = q(31-2) π̄tdes π̄(1 + t)n−2des π̄−1.

According to Lemma 3.7, by summing over all the orbits that compose together to form
Sn(213), we obtain the 213-avoiding case (1.11) immediately. �

Proof of Theorem 1.4. Clearly the reverse-complement transformation π 7→ πrc satisfies
(des, 213, adi) π = (des, 132, adi∗) πrc, which yields (1.13) directly. With Lemma 3.5 and
Lemma 3.7, we obtain (1.14) and (1.15) via the MFS-action in a similar fashion as in the
proof of Theorem 1.2. �

Remark 3.8. When q = 1, Theorem 1.2 reduces to

Nn(t) =
∑

π∈Sn(τ)

tdes π =

⌊n−1

2
⌋∑

k=0

∣∣∣S̃n,k(τ)
∣∣∣ tk(1 + t)n−1−2k, (3.3)

where τ ∈ {213, 312, 132, 231}. We note that the 231-case is exactly (1.2), and the 312-
case then follows via the reverse-complement map. We have not found the 213-case or
132-case in the literature.

The following result follows from [38, Eq. (39)].

Lemma 3.9 (Shin-Zeng). The following four polynomials are equal
∑

π∈Sn

tdes πp(2-13) πq(31-2) π =
∑

π∈Sn

tdes πp(31-2) πq(2-13) π

=
∑

π∈Sn

tdes πp(2-31) πq(31-2) π =
∑

π∈Sn

tdes πp(31-2) πq(2-31) π.

Proof. Indeed, the equation (39) in [38] reads:

∞∑

n=0

(∑

π∈Sn

tdes πp(2-13) πq(31-2) π
)
zn =

∞∑

n=0

(∑

π∈Sn

tdes πp(2-31) πq(31-2) π
)
zn
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=
1

1− c1z

1− c2z

1− c3z

. . .

with c2i = t[i]p,q and c2i−1 = [i]p,q for i ≥ 1, where two misprints in [38] are corrected. The
continued fraction shows clearly that the generating function is symmetric in p and q. �

Proof of Theorem 1.1. With (2.1) and Lemma 2.6, we obtain
∑

π∈Sn(321)

texc πqinv π−exc π =
∑

π∈Sn(231)

tdes πq(31-2) π.

With Lemma 2.6 and Lemma 3.9, we have
∑

π∈Sn(213)

tdes πq(31-2) π =
∑

π∈Sn(312)

tdes πq(2-13) π =
∑

π∈Sn(231)

tdes πq(31-2) π =
∑

π∈Sn(312)

tdes πq(2-31) π.

By Lemma 3.3, we have
∑

π∈Sn(312)

tdes πq(2-13) π =
∑

π∈Sn(312)

tdes πqadi π,

∑

π∈Sn(231)

tdes πq(13-2) π =
∑

π∈Sn(231)

tdes πqadi
∗ π.

Clearly the reverse-complement transformation π 7→ πrc provides us with
∑

π∈Sn(213)

tdes πq(31-2) π =
∑

π∈Sn(132)

tdes πq(2-31) π.

Finally the reverse map π 7→ πr together with (1.9) give us
∑

π∈Sn(312)

tdes πq(2-31) π =
∑

π∈Sn(312)

tn−1−des πq(2-31) π =
∑

π∈Sn(213)

tdes πq(13-2) π,

∑

π∈Sn(231)

tdes πq(31-2) π =
∑

π∈Sn(231)

tn−1−des πq(31-2) π =
∑

π∈Sn(132)

tdes πq(2-13) π,

∑

π∈Sn(132)

tdes πq(2-31) π =
∑

π∈Sn(132)

tn−1−des πq(2-31) π =
∑

π∈Sn(231)

tdes πq(13-2) π.

By gathering all the equalities above, we complete the proof. �

Lemma 3.10. For π ∈ S̃2n+1,n(213), we have adi π = 2(3-12) π, and adi πr = (31-2) π.

Proof. For π ∈ S̃2n+1,n(213), that is π is a down-up permutation with the first letter being
2n+1. For π(i) > π(j) with 1 ≤ i < j ≤ 2n+1, if π(j) is a valley, we have (i, j, j+1) such
that π(i) > π(j + 1) > π(j), thus a (3-12) pattern. In the meantime, by Definition 3.1,
this triple produces two admissible inversion pairs, namely (π(i), π(j)) and (π(i), π(j+1)).
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if π(j) is a peak, we have instead (i, j − 1, j) such that π(i) > π(j) > π(j − 1), and
the two admissible inversion paris are (π(i), π(j − 1)) and (π(i), π(j)). For the second
equality, simply note that if π ∈ Sn(213), then πr ∈ Sn(312), and by Lemma 3.3 we get
adi πr = (2-13) πr = (31-2) π and the proof is completed. �

Lemma 3.11. If π ∈ S̃2n+1,n(213), then adi π + adi πr = 2n2 + n.

Proof. Take any π = π(1)π(2) · · ·π(2n + 1) ∈ S̃2n+1,n(213), the right-hand side is the
number of ways to choose a pair (π(i), π(j)) with 1 ≤ i < j ≤ 2n + 1. It will suffice now
to show that any such pair contributes to either adi π or adi πr. If π(i) > π(j), we have
seen in the proof of the last lemma, that no matter π(j) is a valley or a peak, (π(i), π(j))
always forms an admissible inversion pair. Otherwise we have π(i) < π(j), now if π(i) is
a peak, then (π(i), π(i + 1), π(j)) will produce a (213) pattern, so π(i) must be a valley,
then π(i) < π(i− 1) and consequently (π(j), π(i)) forms an admissible inversion pair in πr.
This completes the proof. �

With the above two lemmas we obtain another combinatorial interpretation of Cn(q).

Proposition 3.12. For any n ≥ 1,

Cn(q) =
∑

π∈S̃2n+1,n(213)

qn
2−(3-12) π (3.4)

Proof. By Lemma 3.6 and Lemma 3.7 concerning the MFS-action, we have

∑

π∈S2n+1(213)

tdes πq(31-2) π =

n∑

k=0

( ∑

π∈S̃2n+1,k(213)

q(31-2) π
)
tk(1 + t)2n−2k. (3.5)

With Theorem 1.1 in mind, we take t = −1 in equations (3.5) and (1.10) to get
∑

π∈S̃2n+1,n(213)

q(31-2) π =
∑

π∈S̃2n+1,n(321)

qinv π−exc π = qnCn(q
2).

Then we apply Lemmas 3.10 and 3.11 to get (3.4) after simplification.
�

4. A variant of q-Narayana polynomials

Definition 4.1. For π ∈ Sn, a value x = π(i) (i ∈ [n]) is called

• a cyclic valley if i = π−1(x) > x and x < π(x);
• a double excedance if i = π−1(x) < x and x < π(x);
• a drop if x = π(i) < i.

Let cvalley (resp. cda, drop) denote the number of cyclic valleys (resp. double excedances,
drops) in π. The following result is due to Shin-Zeng [38, Theorem 5].
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Lemma 4.2 (Shin-Zeng). There is a bijection Υ on Sn such that for all π ∈ Sn,

(nest, cros, drop, cda, cdd, cvalley, fix) π = (2-31, 31-2, des, da− fmax, dd, valley, fmax) Υ(π),

where the linear statistics on the right-hand side are defined with the convention π(0) = 0
and π(n+ 1) = n+ 1 for π ∈ Sn.

Theorem 4.3. we have

Wn(t, q) :=
∑

π∈Sn(321)

twex πqinv π

= tn
∑

π∈Sn(231)

(q/t)des πq(31-2) π = tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π = tn
∑

π∈Sn(231)

(q/t)des πqadi
∗ π

= tn
∑

π∈Sn(312)

(q/t)des πq(2-31) π = tn
∑

π∈Sn(312)

(q/t)des πq(2-13) π = tn
∑

π∈Sn(312)

(q/t)des πqadi π

= tn
∑

π∈Sn(213)

(q/t)des πq(31-2) π = tn
∑

π∈Sn(213)

(q/t)des πq(13-2) π

= tn
∑

π∈Sn(132)

(q/t)des πq(2-31) π = tn
∑

π∈Sn(132)

(q/t)des πq(2-13) π.

Moreover we have
∞∑

n=0

Wn(t, q)z
n =

1

1− tz − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

. . .

. (4.1)

Proof. Since drop π = n− wex π and inv π = n− wex π + cros π + 2nest π ( [37, Eq. (40)]),
we have

∑

π∈Sn(321)

twex πqinv π =
∑

π∈Sn(321)

tn−drop πqinv π = tn
∑

π∈Sn(321)

(q/t)drop πqcros π.

By Theorem 1.1 and Lemma 4.2, we have

tn
∑

π∈Sn(321)

(q/t)drop πqcros π = tn
∑

π∈Sn(231)

(q/t)des πq(31-2) π = tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π,

and the remaining equalities follow similarly.
Finally, Eq. (4.1) is the special y = t case of (2.7). �

We can now derive another q-γ-expansion for the joint distribution of wex and inv over
Sn(321).
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Theorem 4.4. For any n ≥ 1,

∑

π∈Sn(321)

twex πqinv π =

⌊n+1

2
⌋∑

k=1

(
qn−k

∑

π∈S̃n,k−1(231)

q(13-2) π
)
tk(1 + t/q)n+1−2k. (4.2)

Proof. By Theorems 4.3 and 1.2,

tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π = tn
⌊n−1

2
⌋∑

k=0


 ∑

π∈S̃n,k(231)

q(13-2) π


 (q/t)k(1 + q/t)n−1−2k.

For the right-hand side of above equation, by shifting k to k − 1, we get (4.2). �

Comparing (4.2) with (2.8), by utilizing Theorem 4.3 and Theorem 1.2, we obtain the
following equivalent q-analogues of γ-coefficients with the same arguments in the proof of
Theorem 4.4.

Corollary 4.5. There holds

γn,k(q) :=
∑

π∈NDWn,k(321)

qinv π

= qn−k
∑

π∈S̃n,k−1(231)

q(13-2) π = qn−k
∑

π∈S̃n,k−1(132)

q(2-31) π

= qn−k
∑

π∈S̃n,k−1(312)

q(2-13) π = qn−k
∑

π∈S̃n,k−1(213)

q(31-2) π.

5. The Catalan case: a complete characterization

5.1. The 231-avoding des-case and its q-analogues. The 231-avoiding alternating per-
mutations were first enumerated by Mansour [30] (see also exercises 149 and 150 in [40]):

|A2n+1(231)| = |A2n(231)| = Cn, for n ≥ 0. (5.1)

A bijective proof of this fact with further implications was given by Lewis [23]. Indeed,
basing on (5.1) and utilizing the reverse map as well as the reverse complement map, one
get the complete enumerations for all alternating permutations avoiding a single pattern of
length three (see Table 1).

Recall the standardization of a word w with n distinct ordered letters, denoted as st(w),
is the unique permutation in Sn that is order isomorphic to w. We say a word w1 is
superior to another word w2 and denote as w1 > w2, if for any two letters l1 ∈ w1, l2 ∈ w2,
we always have l1 > l2. The following decomposition is crucial for deriving q-analogues of
the (−1)-phenomenon on pattern-avoiding subsets of the coderangements.

Lemma 5.1. Let P0(t, q) = Q0(t, q) = R1(t, q) = 1, P1(t, q) = Q1(t, q) = 0, and for n ≥ 2,

Pn(t, q) :=
∑

π∈D∗

n(231)

tdes πq(13-2) π,
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Qn(t, q) :=
∑

π∈D∗

n(132)

tdes πq(2-31) π,

Rn(t, q) :=
∑

π∈D∗

n(213)

tdes πq(31-2) π.

Then for n ≥ 2,

Pn(t, q) =

n−2∑

m=0

tqn−m−1Pm(t, q)Nn−m−1(t, q), (5.2)

Qn(t, q) =

n−2∑

m=0

tqmQm(t, q)Nn−m−1(t, q), (5.3)

Rn(t, q) =

n−1∑

m=1

tqn−m−1Rm(t, q)Nn−m−1(t, q). (5.4)

Proof. The key observation is that by definition, π ∈ D∗
n(231) if and only if π = π(1)nπ(2),

for some subwords π(1) and π(2) 6= ∅, such that π(1) ∈ D∗
m(231) and st(π(2)) ∈ Sn−m−1(231),

for some m, 0 ≤ m ≤ n− 2, with π(2) > π(1). Then we use the appropriate interpretation
for Nn−m−1(t, q) taken from Theorem 1.1 and examine the change of des and (13-2) during
this decomposition. This should give us (5.2), the proofs of (5.3) and (5.4) are similar and
thus omitted. �

Now we can derive the following q-analogues for the strong (−1)-phenomenon on Sn(231)
concerning des, which parallels Theorem 1.5 nicely.

Theorem 5.2. For any n ≥ 1,

∑

π∈Sn(231)

(−1)des πq(31-2) π =
∑

π∈Sn(231)

(−1)des πq(13-2) π =

{
0 if n is even,

(−q)
n−1

2 Cn−1

2

(q2) if n is odd,

(5.5)

∑

π∈D∗

n(231)

(−q)des πq(31-2) π =

{
(−q)

n
2Cn

2
(q2) if n is even,

0 if n is odd,
(5.6)

∑

π∈D∗

n(231)

(−1)des πq(13-2) π =

{
(−1)

n
2C∗

n
2

(q) if n is even,

0 if n is odd,
(5.7)

where C∗
n(q) :=

∑
π∈A2n(132)

q(2-31) π. For example,

C∗
0(q) = C∗

1 (q) = 1,

C∗
2(q) = 2q,

C∗
3(q) = 3q2 + 2q4,
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Table 1. The enumeration of An(τ), for n ≥ 3 odd and even.

τ 123 132 213 231 312 321
A2n+1(τ) Cn+1 Cn Cn+1 Cn Cn+1 Cn+1

A2n(τ) Cn Cn Cn Cn Cn Cn+1

Table 2. The (−1)-evaluation over Sn(τ) and D
∗
n(τ) with respect to des.

The signs (−1)n have all been removed.

des \ τ 123 132 213 231 312 321
S2n+1 ⋆ Cn Cn Cn Cn ⋆
D∗

2n ⋆ Cn Cn−1 Cn ⋆ ⋆

C∗
4(q) = 4q3 + 6q5 + 2q7 + 2q9,

C∗
5(q) = 5q4 + 12q6 + 9q8 + 8q10 + 4q12 + 2q14 + 2q16.

Proof. All we need to do for proving (5.5) (resp. (5.6)) is take t = −1 (resp. (x, y, q, p, s) =
(−1, 0, 1, 0, q)) in Theorem 1.1 (resp. (2.1)), then apply Theorem 1.5. Next for (5.7), with
the decomposition (5.2) in mind, we note that P2n+1(−1, q) = 0 follows from induction on
Pm(−1, q) and using (1.20) for Nn−m−1(−1, q). In the same vein, the even 2n case reduces
to proving the following identity:

C∗
n(q) =

n−1∑

m=0

q3n−3m−2C∗
m(q)Cn−m−1(q

2). (5.8)

Combining Proposition 2.10 and Corollary 4.5, we get the desired interpretation that meshes
well with that of C∗

m(q):

qn−m−1Cn−m−1(q
2) =

∑

π∈A2n−2m−1(132)

q(2-31) π.

Next we plug this back to (5.8) and decompose permutations in A2n(132) similarly as in
the proof of (5.2) to complete the proof. �

5.2. Other des-cases avoiding one pattern of length three and their q-analogues.
In a search for results analogous to Theorems 5.2 and 1.5, we consider all the remaining
Catalan subsets that avoid one pattern of length three, and summarize the results in Ta-
bles 2 and 3, where a “⋆” means there is no such phenomenon in this case. Take the top-left
⋆ for example, we put it there to indicate that neither do

∑
π∈S2n(123)

(−1)des π always van-

ish, nor do we recognize
∑

π∈S2n+1(123)
(−1)des π as a familiar sequence. We have suppressed

all the (−1)n for the non-star entries, so the second entry in the first row should read as∑
π∈S2n+1(132)

(−1)des π = (−1)nCn. For all the des-cases, we actually obtain the stronger
q-versions. We begin by proving three useful lemmas.
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Lemma 5.3. For any n ≥ 1,
∑

π∈D∗

n(213)

tdes πq(13-2) π = t
∑

π∈Sn−1(213)

tdes πq(13-2) π.

Proof. It is easy to see from the definition of D∗
n that π ∈ D

∗
n(213) if and only if π = nπ′

with π′ ∈ Sn−1(213). Moreover, we note that des π = 1 + des π′ and (13-2) π = (13-2) π′.
Summing over all the π ∈ D∗

n(213) completes the proof. �

Lemma 5.4. For n ≥ 1 and any π ∈ Sn,

des π + (31-2) π + 1 = fl π + (13-2) π, (5.9)

where fl π = π(1) is the first letter of π.

Proof. We use induction on n. The n = 1 case holds trivially. Assume (5.9) is true for
any permutaion with length less than n. Now take any π ∈ Sn, we discuss the position
of n by the following two case. Suppose π(i) = n for some 1 ≤ i ≤ n. The two extreme
cases i = 1 and i = n can be quickly checked so we assume 2 ≤ i ≤ n − 1 and let
π′ = π(1) · · ·π(i− 1)π(i+ 1) · · ·π(n).

• If π(i− 1) < π(i+ 1), then des π = des π′ + 1, fl π = fl π′, and

(13-2) π − (13-2) π′ = (31-2) π − (31-2) π′ + 1,

where we only need to check the contributions for 13-2 and 31-2 coming from the
triple with n playing the role of 3.

• π(i− 1) > π(i+ 1), then des π = des π′, fl π = fl π′, and

(13-2) π − (13-2) π′ = (31-2) π − (31-2) π′.

In both cases, we see that (5.9) holds for n as well. �

Lemma 5.5. For any n ≥ 2,

∑

π∈D∗

n(132)

tdes πqfl π =

⌊n
2
⌋∑

k=1

( ∑

π∈D
∗

n,k(132)

qfl π

)
tk(1 + t)n−2k, (5.10)

where D
∗

n,k(132) := {π ∈ D∗
n(132) : dd

∗ π = 1, des π = k}.
Proof. Since pattern 132 is concerned here, per Remark 3.4, we shall use Lin-Zeng’s dual
version of the MFS-action ϕx. In addition, we modify it differently in the following way.
This new variant of MFS-action is denoted as ϕx.

ϕx(π) :=

{
π, if x is a valley, a peak, or a left-to-right maximum of π;

ϕx(π), otherwise.

We state without proving the following facts about ϕx, all of which can be verified
similarly as for ϕ′

x.

• ϕx’s are involutions and commute;
• the map ϕS is closed on D

∗
n(132);
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• for any π ∈ D∗
n(132) and each x ∈ [n], fl π = fl ϕx(π).

Let π ∈ D∗
n(132). The above facts, together with a similar argument about the orbits

under this new MFS-action, tell us that there is a unique permutation in Orb(π) which has
exactly one double descent at the first letter (this is due to the definition of coderangements
D∗ and the convention that π(0) = π(n) = n + 1). Now, let π̄ be this unique element in
Orb(π), then da∗ π̄ = n− 1− peak∗ π̄ − valley∗ π̄ and des π̄ = peak∗ π̄ + 1 = valley∗ π̄. Thus

∑

σ∈Orb π

tdes σqfl σ = qfl π̄tdes π̄(1 + t)da
∗ π̄ = qfl π̄tdes π̄(1 + t)n−2des π̄.

Summing over all the orbits establishes (5.10). �

Now we are ready to present the q-analogues for all the remaining entries shown in
Table 2.

Theorem 5.6. For any n ≥ 1,

∑

π∈Sn(132)

(−1)des πq(2-31) π =
∑

π∈Sn(132)

(−1)des πq(2-13) π =

{
0 if n is even,

(−q)
n−1

2 Cn−1

2

(q2) if n is odd,

(5.11)

∑

π∈Sn(213)

(−1)des πq(31-2) π =
∑

π∈Sn(213)

(−1)des πq(13-2) π =

{
0 if n is even,

(−q)
n−1

2 Cn−1

2

(q2) if n is odd,

(5.12)

∑

π∈Sn(312)

(−1)des πq(2-31) π =
∑

π∈Sn(312)

(−1)des πq(2-13) π =

{
0 if n is even,

(−q)
n−1

2 Cn−1

2

(q2) if n is odd,

(5.13)

∑

π∈D∗

n(132)

(−1)des πq(2-31) π =

{
(−1)

n
2 Ĉn

2
(q) if n is even,

0 if n is odd,
(5.14)

∑

π∈D∗

n(132)

(−q)des πq(31-2) π =

{
(−q)

n
2C n

2
(q) if n is even,

0 if n is odd,
(5.15)

∑

π∈D∗

n(213)

(−1)des πq(13-2) π =

{
(−1)

n
2 q

n−2

2 Cn−2

2

(q2) if n is even,

0 if n is odd,
(5.16)

∑

π∈D∗

n(213)

(−q)des πq(31-2) π =

{
(−1)

n
2 q

3n−4

2 Cn−2

2

(q2) if n is even,

0 if n is odd,
(5.17)

where

Ĉn(q) :=
∑

π∈A2n(231)

q(13-2) π and Cn(q) :=
∑

π∈A2n(231)

q(2-13) π.
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Proof. (5.11)–(5.13) follow directly by taking t = −1 in Theorem 1.1 and applying (1.20).
The proof of (5.14) parallels that of (5.7), only that we use the decomposition in (5.3) this
time. To prove (5.15), we first note that

∑

π∈D∗

n(132)

(−q)des πq(31-2) π =
∑

π∈D∗

n(132)

(−1)des πqdes π+(31-2) π (5.9)
=

∑

π∈D∗

n(132)

(−1)des πqfl π−1,

which gives directly the odd 2n + 1 case in view of the expansion (5.10). For the even 2n
case, we compute using (5.10) again that

∑

π∈D∗

2n(132)

(−1)des πqfl π−1 = (−1)n
∑

π∈D
∗

2n,n(132)

qfl π−1 (5.9)
= (−q)n

∑

π∈D
∗

2n,n(132)

q(31-2) π.

Moreover, we note that π ∈ D
∗

2n,n(132) if and only if πr ∈ A2n(231), which implies (5.15).
Finally, (5.16) follows from Theorem 1.5 and Lemma 5.3. In view of the similarity

between (5.16) and (5.17), it is a straightforward calculation basing on identity (5.9) and
the first letter consideration in Lemma 5.3. �

The first few values for Ĉn(q) and Cn(q) are:

Ĉ0(q) = Ĉ1(q) = 1,

Ĉ2(q) = q + q2,

Ĉ3(q) = q2 + q3 + q4 + q5 + q6,

Ĉ4(q) = q3 + q4 + 2q5 + 2q6 + 2q7 + q8 + 2q9 + q10 + q11 + q12,

Ĉ5(q) = q4 + q5 + 3q6 + 3q7 + 4q8 + 3q9 + 5q10 + 3q11 + 4q12 + 3q13 + 3q14

+ 2q15 + 2q16 + 2q17 + q18 + q19 + q20,

C0(q) = C1(q) = 1,

C2(q) = 1 + q,

C3(q) = 1 + 2q + 2q2,

C4(q) = 1 + 3q + 5q2 + 5q3,

C5(q) = 1 + 4q + 9q2 + 14q3 + 14q4,

C6(q) = 1 + 5q + 14q2 + 28q3 + 42q4 + 42q5.

The q-Catalan numbers Cn(q) merit some further investigation for their own sake. First
we utilize (5.9) again to get another interpretation for Cn(q):

∑

π∈A2n(231)

q(2-13) π =
∑

π∈A2n(231)

q(31-2) π
r (5.9)

= q−n−1
∑

π∈A2n(231)

qfl πr

.
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Definition 5.7. Let Cn(q) = q−n−1
∑

π∈A2n(231)

qfl πr

:=
n−1∑
k=0

an,kq
k, where

an,k = {π ∈ A2n(231) : fl π
r = n + k + 1} and an,k = |an,k|.

The first few examples are :

a1,0 = {12};
a2,0 = {1423} and a2,1 = {1324};
a3,0 = {162534}, a3,1 = {162435, 132645} and a3,2 = {132546, 152436}.

Recall that the ballot numbers f(n, k) satisfy (see [1, 7]) the recurrence relation

f(n, k) = f(n, k − 1) + f(n− 1, k), (n, k ≥ 0), (5.18)

where f(n, k) = 0 if n < k and f(0, 0) = 1, and have the explicit formula

f(n, k) =
n− k + 1

n+ 1

(
n + k

k

)
, (n ≥ k ≥ 0).

With the initial values a1,0 = a2,0 = a2,1 = 1, and compairing (5.18) and (5.19), we establish
the following connection.

Proposition 5.8. For 0 ≤ k ≤ n− 1,

an,k = f(n− 1, k) =
n− k

n

(
n− 1 + k

k

)
.

Proof. For n, k ≥ 0 let a0,0 = 1 and an,k = 0 if k ≥ n or k < 0. It suffices to prove the
following recurrence relation for an,k:

an+1,k = an+1,k−1 + an,k. (5.19)

First note two useful facts for any π ∈ A2n(231).

a) fl π = 1, since otherwise (π(1), π(2), 1) will form a 231 pattern.
b) π(1) < π(3) < · · · < π(2n− 1), i.e., the valleys of π form an increasing subsequence.

Due to fact a), we can assume fl πr = π(2n) > 1. Now we decompose an,k as the union of
two disjoint subsets:

a
p
n,k := {π ∈ an,k : π(2n)− 1 is a peak},

a
v
n,k := {π ∈ an,k : π(2n)− 1 is a valley}.

We proceed to show that |apn+1,k| = |an+1,k−1| and |avn+1,k| = |an,k| via two bijections between
the concerned sets, and thus proving (5.19).

The first map α is relatively easier. For any π ∈ a
p
n+1,k, we get its image α(π) by switching

the position of two peaks π(2n) and π(2n)− 1. A moment of reflection should reveal that
α : apn+1,k → an+1,k−1 is indeed well-defined and bijective.
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We have to lay some ground work for the second map β : avn+1,k → an,k. The key
observation is on the last three letters. We claim that for any π ∈ avn+1,k,

π(2n) = π(2n+ 2) + 1, π(2n+ 1) = π(2n+ 2)− 1. (5.20)

First we see 2n+2 6= π(2n+2), since otherwise 2n+1 = π(2n+2)− 1 cannot be a valley.
So 2n+ 2 must be a non-terminal peak. Now consider 2n+ 1, it cannot appear to the left
of 2n+ 2, otherwise it will cause a 231 pattern. It must also be a peak, since there are no
other letters larger than it except for 2n + 2. If 2n + 1 = π(2n + 2) is the last peak, then
2n being a valley forces (π(2n), π(2n + 1), π(2n+ 2)) = (2n + 2, 2n, 2n+ 1), which means
(5.20) holds true. Otherwise 2n+ 1 is a non-terminal peak and we consider 2n next. This
deduction must end in finitely many steps since the total number of peaks is n (and finite).
At this ending moment we find some m as the last peak, and 2n+ 2, 2n+ 1, . . . , m+ 1 are
all peaks decreasingly ordered to its left, then m − 1 being a valley, together with fact b)
force us to have (5.20) again. So the claim is proved.

The definitions and validity of β and its inverse become transparent, in view of (5.20).

β: For π ∈ avn+1,k, delete π(2n+ 1) and π(2n+ 2), then decrease the remaining letters
larger than π(2n+ 2) by 2.

β−1: For σ ∈ an,k, increase the letters no less than σ(2n) by 2, and append two letters
σ(2n) and σ(2n) + 1 to the right of σ, in that order.

The proof ends here and we give the following example for illustration. �

Example 5.9. The two bijections α : apn+1,k → an+1,k−1 and β : avn+1,k → an,k for the case
of n = 3 are shown below.

a
p
4,3





13254768
13274658
15243768
17243658
17263548

α−−→

13254867
13284657
15243867
18243657
18263547





a4,2

a
p
4,2





13284657
18243657
18263547

α−−→
13284756
18243756
18273546



 a4,1

a
p
4,1

{
18273546

α−−→ 18273645
}
a4,0

a
v
4,2

{
13254867
15243867

β−−→ 132546
152436

}
a3,2

a
v
4,1

{
13284756
18243756

β−−→ 132645
162435

}
a3,1

a
v
4,0

{
18273645

β−−→ 162534
}
a3,0

5.3. Other exc-cases avoiding one pattern of length three. In this subsection we
present the parallel (−1)-phenomena with respect to exc, note the differences when one
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Table 3. The (−1)-evaluation over Sn(τ) and Dn(τ) with respect to exc.
The signs (−1)n have all been removed.

exc \ τ 123 132 213 231 312 321
S2n+1 ⋆ Cn Cn ⋆ ⋆ Cn

D2n Fn Cn Cn ⋆ ⋆ Cn

compares Table 3 with Table 2. Unfortunately we have not found any q-analogues at this
moment.

Theorem 5.10. For any n ≥ 1,

∑

π∈Sn(213)

(−1)exc π =
∑

π∈Sn(132)

(−1)exc π =

{
0 if n is even,

(−1)
n−1

2 Cn−1

2

if n is odd,
(5.21)

∑

π∈Dn(213)

(−1)exc π =
∑

π∈Dn(132)

(−1)exc π =

{
(−1)

n
2Cn

2
if n is even,

0 if n is odd.
(5.22)

Proof. We first apply the q = 1 case of Theorem 1.5, and the following lemma due to
Elizalde [12] to derive the second equalities in both (5.21) and (5.22). Next we observe the
following facts, which can be easily checked.

π ∈ Sn(132) ⇔ πrc ∈ Sn(213),

exc(π) = n− exc(πrc)− fix(π), fix(π) = fix(πrc).

Consequently we have
∑

π∈Sn(132)

texc πyfix π = tn
∑

π∈Sn(213)

t−exc π−fix πyfix π. (5.23)

Plugging in t = −1, y = 0 gives us directly the first equality in (5.22). Finally, taking
t = y = −1 in (5.23), (5.24) and t = −1, q = 1 in (4.2) leads to:

(−1)n
∑

π∈Sn(213)

(−1)exc π =
∑

π∈Sn(321)

(−1)wex π =

{
0 if n is even,

(−1)
n+1

2 Cn−1

2

if n is odd,

which is exactly the first equality in (5.21). �

Lemma 5.11 (Elizalde). For any n ≥ 1,
∑

π∈Sn(321)

texc πyfix π =
∑

π∈Sn(132)

texc πyfix π. (5.24)

The only entry in Table 3 that is not covered by Theorems 1.5 and 5.10 is still a conjec-
ture. Define the polynomials Gn(t) :=

∑
π∈Dn(123)

texc π for n ≥ 1.
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Conjecture 5.12. There is a sequence {Fn}n≥1 of positive inetergs such that

∑

π∈Dn(123)

(−1)exc π =

{
(−1)

n
2Fn

2
if n is even,

0 if n is odd,
(5.25)

and the polynomials Gn(t) are γ-positive.

We note that neither of the sequences Gn(1) and Fn (n ≥ 1) is registered in OEIS. The
first values are given by Gn(1) = 0, 1, 2, 7, 20, 66, 218, 725, . . . and Fn = 1, 7, 58, 545, 5570, . . ..
For the first few n ≥ 1, we have

G1(t) = 0, G2(t) = t,

G3(t) = t+ t2 = t(1 + t), G4(t) = 7t2,

G5(t) = 10t2 + 10t3 = 10t2(1 + t),

G6(t) = 2t2 + 62t3 + 2t4 = 2t2(1 + t)2 + 58t3,

G7(t) = 109t3 + 109t4 = 109t3(1 + t),

G8(t) = 45t3 + 635t4 + 45t5 = 45t3(1 + t)2 + 545t4,

G9(t) = 5t3 + 1264t4 + 1264t5 + 5t6 = 5t3(1 + t)3 + 1249t4(1 + t),

G10(t) = 769t4 + 7108t5 + 769t6 = 769t4(1 + t)2 + 5570t5.

The symmetry of Gn(t) follows from the map π 7→ πrc, which is stable on Sn(123) and
Dn(123), and satisfies exc(π) = n− exc(πrc)− fix(π). Thus, if π ∈ Dn(123), we obtain the
symmetry.

6. Two cases avoiding two patterns of length four

Motivated by Lewis’ work [23–26], many authors [5,8,31,41,42] have studied the pattern
avoidance on alternating permutations, especially the Wilf-equivalence problem for patterns
of length four. As for alternating permutations that avoid two patterns of length four simul-
taneously, our results in this section appear to be new. We first enumerate An(2413, 3142)
and An(1342, 2431), then put these results in the context of (−1)-evaluations of the descent
polynomials over Sn(2413, 3142) and Sn(1342, 2431). The following two γ-expansions (6.1)
and (6.2), which were obtained recently by Fu-Lin-Zeng [20] and Lin [27], respectively, will
be crucial in our (−1)-evaluations.

Sn(t) :=
∑

π∈Sn(2413,3142)

tdes π =

⌊n−1

2
⌋∑

k=0

γS
n,kt

k(1 + t)n−1−2k, (6.1)

Yn(t) :=
∑

π∈Sn(1342,2431)

tdes π =

⌊n−1

2
⌋∑

k=0

γY
n,kt

k(1 + t)n−1−2k, (6.2)
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where

γS
n,k = #{π ∈ Sn(2413, 3142) : dd

∗ π = 0, des π = k}, (6.3)

γY
n,k = #{π ∈ Sn(1342, 2431) : dd

∗ π = 0, des π = k}. (6.4)

Il follows that

|An(2413, 3142)| = γS
n,⌊n−1

2
⌋
, |An(1342, 2431)| = γY

n,⌊n−1

2
⌋
. (6.5)

Recall the γ-coefficients in the expansion (1.2), (6.1)–(6.2). For ∗ = N, S, Y , let

Γ∗(x, z) :=

∞∑

n=1

⌊n−1

2
⌋∑

k=0

γ∗
n,kx

kzn

be the generating functions for γN
n,k, γ

S
n,k and γY

n,k, respectively. We need the following two
algebraic equations for ΓS(x, z) and ΓY (x, z), which were first derived by Lin [27].

ΓS = z + zΓS + xzΓ2
S + xΓ3

S, (6.6)

ΓY = z + zΓY + 2xzΓNΓY + xΓ2
N (ΓY − z). (6.7)

6.1. The case of (2413,3142)–avoiding alternating permutations.

Theorem 6.1. Let rn := |A2n+1(2413, 3142)|, R(x) :=
∞∑
n=1

rnx
n, then

R(x) = x(R(x) + 1)2 + x(R(x) + 1)3. (6.8)

Consequently, r0 = 1 and for n ≥ 1,

rn =
2

n

n−1∑

i=0

2i
(
2n

i

)(
n

i+ 1

)
. (6.9)

Proof. First, (1.16) gives us rn = γS
2n+1,n. Therefore, in order to get a recurrence relation

for rn, we should extract the coefficient of z2n+1 in (6.6) and then compare the coefficients
of xn from both sides. This gives us, for n ≥ 1,

rn = [xn−1]
(
[z2n]Γ2

S(x, z)
)
+ [xn−1]

(
[z2n+1]Γ3

S(x, z)
)
.

Now we take a closer look at [z2n]Γ2
S(x, z).

[z2n]Γ2
S(x, z) =

2n−1∑

m=1




⌊m−1

2
⌋∑

j=0

γS
m,jx

j


 ·




⌊ 2n−m−1

2
⌋∑

k=0

γS
2n−m,kx

k


 ,

So for each term in this summation, the power of x is

j + k ≤
⌊
m− 1

2

⌋
+

⌊
2n−m− 1

2

⌋
≤ n− 1.
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Hence we get contributions for xn−1 only from odd m’s. Similar analysis applies to the
term involving Γ3

S and the details are omitted. All these amount to

rn =
n−1∑

m=0

rmrn−m−1 +
n−1∑

m,l=0

rmrlrn−m−l−1.

In terms of the generating function R(x), we obtain (6.8). Next we rewrite (6.8) as

x =
R

(R + 1)2(R + 2)
, (6.10)

which is ripe for applying the Lagrange inversion. A straightforward computation leads to
(6.9) and completes the proof. �

Theorem 6.2. For n ≥ 1, let tn := |A2n(2413, 3142)|, n ≥ 1, T (x) :=
∞∑
n=1

tnx
n, then

1

2
R(x) =

1

2
R(x) · T (x) + T (x). (6.11)

Consequently, t1 = 1 and for n ≥ 2,

tn =
4

n− 1

n−2∑

i=0

2i
(
2n− 1

i

)(
n− 1

i+ 1

)
. (6.12)

Proof. It may still be possible to establish (6.11) using the algebraic equation (6.6), but
this time we present a combinatorial argument, showing both sides generate the same set
of permutations.

The first thing to notice is that for an alternating permutation π ∈ A2n+1(2413, 3142),
n ≥ 1, its reverse πr 6= π is also in A2n+1(2413, 3142). This implies that rn is even for
n ≥ 1. Moreover, we call a permutation π ∈ Sn, n ≥ 2 normal if 1 appears to the left
of n. For example, there are three normal permutations in S3: 213, 123, 132. Now we see
that exactly one permutation in the pair {π, πr} is normal, and consequently the number
of normal permutations in A2n+1(2413, 3142) is rn/2. Therefore the left-hand side of (6.11)
generates all normal, alternating, and (2413, 3142)-avoiding permutations of odd length
larger than 1. Next we show that the right-hand side does precisely the same. We state
the following fact about any normal permutation π ∈ A2n+1(2413, 3142), n ≥ 1, omitting
the proof. See [20] for the definition of the operation ⊕.

Claim 6.3. There exists a unique pair of permutations (π(1), π(2)), such that

(1) π = π(1) ⊕ π(2),
(2) either π(1) = 1 or π(1) is of odd length and not normal, alternating and (2413, 3142)-

avoiding,
(3) π(2) is of even length (≥ 2) and (2413, 3142)-avoiding, its reverse is alternating.

In view of the claim above, 1
2
R(x) · T (x) accounts for the cases when π(1) is of length

3 or longer, while T (x) corresponds to the case when π(1) = 1. Now since the above
decomposition using ⊕ is unique, we get (6.11).



30 S. FU, D. TANG, B. HAN, AND J. ZENG

Applying (6.10), we can rewrite (6.11) as

T =
R

R + 2
= x(R + 1)2.

This form is suitable for the more general Lagrange-Bürmann formula, and we get for n ≥ 2,

tn = [xn−1](R + 1)2 =
1

n− 1
[Rn−2]

(
2(R + 1)(R + 1)2n−2(R + 2)n−1

)

=
2

n− 1

n−2∑

i=0

2n−1−i

(
n− 1

i

)(
2n− 1

n− 2− i

)

=
4

n− 1

n−2∑

i=0

2i
(
n− 1

i+ 1

)(
2n− 1

i

)
.

The proof is now completed. �

Remark 6.4. In view of the similarity in the expressions for rn and tn, we can unify them
as the following formula:

|An(2413, 3142)| =
2n−2m

m

m−1∑

i=0

2i
(

m

i+ 1

)(
n− 1

i

)
, where m =

⌊
n− 1

2

⌋
, and n ≥ 3.

Moreover, the two sequences {rn}n≥0 and {tn}n≥1 have been cataloged in the OEIS (see
oeis:A027307 and oeis:A032349), and were considered, for instance, by Deutsch et al. [11]
as enumerating certain type of lattice paths. Then a natural question would be to find a
bijection between these two combinatorial models.

Now we turn to the (−1)-evaluation for the Schröder case, which is a direct result of
(6.1) and (6.5).

Theorem 6.5. For any n ≥ 1, there holds

Sn(−1) =
∑

π∈Sn(2413,3142)

(−1)des π =

{
0 if n is even,

(−1)
n−1

2 rn−1

2

if n is odd.
(6.13)

6.2. The case of (1342,2431)–avoiding alternating permutations.

Theorem 6.6. Let un := |A2n+1(1342, 2431)|, U(x) :=
∞∑
n=0

unx
n, then

U(x) =

√
1− 4x√

1− 4x− 2x
=

1

1− 2x

1− 2x

1− x

1− x

. . .

. (6.14)

https://oeis.org/A027307
https://oeis.org/A032349
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Proof. We use (6.7) in a similar way as we use (6.6) in the proof of (6.8), i.e., we extract
the coefficients of z2n+1 from both sides and then compare the coefficients of xn. This leads
to the following recurrence relation that involves the Catalan number Cn, since we have
already shown that γN

2n+1,n = |A2n+1(231)| = Cn. For n ≥ 1, we have:

un = 2

n−1∑

m=0

umCn−1−m +

n−1∑

m=1

um

n−m−1∑

l=0

ClCn−m−l−1

= 2
n−1∑

m=0

umCn−1−m +
n−1∑

m=1

umCn−m.

In terms of generating function, this means

2(U(x)− 1) = 2xU(x)C(x) + (U(x)− 1)C(x),

where

C(x) =
1−

√
1− 4x

2x

is the generating function for the Catalan numbers. We plug in C(x) and solve for U(x) to
finish the proof. �

Remark 6.7. Two remarks on Theorem 6.6 are in order. First, our result above seems to
be the first combinatorial interpretation for un, and the sequence {un}n≥0 is also on OEIS
(see oeis:A084868), but there is no simple sum formula for un. A multiple sum formula
can be derived as follows:

∞∑

n=0

unx
n =

1

1− 2x√
1− 4x

=
∞∑

m=0

(
2x√
1− 4x

)m

=

∞∑

m=0

(
∞∑

k=0

2

(
2k

k

)
xk+1

)m

.

Thus we obtain

un =

n∑

m=0

2m
∑

k1+···+km=n−m

m∏

i=1

(
2ki
ki

)
. (6.15)

On the other hand, by (6.15)

un = 4

(
2n− 3

n− 2

)
+

n∑

m=2

2m
∑

k1+···+km=n−m

m∏

i=1

(
2ki
ki

)
,

from which we obtain un ≡ 0 (mod 4) if n ≥ 2.

With the aid of (6.2) and (6.5), we obtain

https://oeis.org/A084868
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Theorem 6.8. For any n ≥ 1, there holds

Yn(−1) =
∑

π∈Sn(1342,2413)

(−1)des π =

{
0 if n is even,

(−1)
n−1

2 un−1

2

if n is odd.
(6.16)

We end this section by noting that both Sn(2413, 3142) and Sn(1342, 2431) exhibit only
(−1)-phenomenon (not strong). This should not come as a surprise in view of the reversal
relations between the two patterns that we avoid, namely (2413)r = 3142, (1342)r = 2431,
and the fact that the definition of coderangements is incompatible with the reverse map.
Other subsets of Sn instead of D∗

n should be examined to hunt for the other half of the
(−1)-phenomenon.

7. Final remarks

It would be interesting to give direct combinatorial proofs of the (−1)-phenomena of this
paper. In view of Theorem 1.1 (resp. Theorem 4.3), each interpretation listed should have
a q-γ-expansion in theory. Namely, once we have an expansion for one of them, the others
all share this expansion. But expansions derived this way are not “natural” (for instance,
(4.2) is unnatural). The expansions we have in Theorems 1.2 and 1.4, Lemma 5.5 are all
natural, in the sense that the statistics (powers of q) appear in the γ-coefficients on the
expansion side, are the same as those appear on the left-hand side, the avoiding patterns
are also the same. And we prove them uniformly using the MFS-action and its variation.
So now the question is, do the other ones that we are missing in Theorem 1.2 have such
“natural” expansions? It seems the MFS-action cannot help anymore.

Considering the ubiquity of Catalan numbers (cf. [40]), the interpretations we have in
Theorem 1.1 are by no means exhaustive. We mention here one more connection that was
suggested by the online database of combinatorial statistics FindStat [34].

Theorem 7.1. For n ≥ 1, let Mn be the set of n × n alternating sign matrices that are
determined by their X-rays (cf. [33]). Then

Nn(t, q) =
∑

M∈Mn

tpa M−1qneg M ,

where paM (resp. neg M) is the number of antidiagonals with 1s (resp. the total number
of −1s) in M .

Another direction to extend the results presented here is to place Sn in the broader
context of Coxeter groups, and consider the so-called types B and D Narayana polynomials
(see [2, Theorems 2.32 and 2.33]). This approach was shown fruitful for permutations in a
recent work of Eu, Fu, Hsu and Liao [13].

It would be appealing to establish a multivariate generating function (in the spirit
of Shin-Zeng’s Lemma 2.5) that specializes to the (2413, 3142)-avoiding permutations or
(1342, 2413)-avoiding permutations, and consequently giving us q-analogues of (6.13) or
(6.16).
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