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Abstract

We study zero-sum games, a variant of the classical combinato-
rial Subtraction games (studied for example in the monumental work
“Winning Ways”, by Berlekamp, Conway and Guy), called Cumulative
Subtraction (CS). Two players alternate in moving, and get points for
taking pebbles out of a joint pile. We prove that the outcome in opti-
mal play (game value) of a CS with a finite number of possible actions
is eventually periodic, with period 2s, where s is the size of the largest
available action. This settles a conjecture by Stewart in his Ph.D. the-
sis (2011). Specifically, we find a quadratic bound, in the size of s,
on when the outcome function must have become periodic. In case of
two possible actions, we give an explicit description of optimal play.
We generalize the periodicity result to games with a so-called reward
function, where at each stage of game, the change of ‘score’ does not
necessarily equal the number of pebbles you collect.
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1 Introduction

In Subtraction Games [2, 1], two players alternately take pebbles from a
common pile until one of the players cannot take any action and loses. At
each turn, a player chooses from a finite set of possible actions the number
of pebbles to remove from the pile. Therefore a subtraction game is defined
by the amount of pebbles x in the pile (known as the position) and the set
of possible actions (or subtractions) S.

We are interested in a zero-sum variation of this class of games, defined
by Stewart in his PhD thesis [5], here dubbed Cumulative Subtraction (CS);
for extensions to general sum variations, see [3]. In this game, the two play-
ers, called Positive and Negative, accumulate the pebbles they remove, and
they compete in getting the largest number, when the game ends. Each peb-
ble collected by Positive increases the result by a point while each pebble
collected by Negative decreases the result by one point.

Therefore an instance of CS, (S; x, p), is composed of an action set S and
a position (x, p), where the number of pebbles is x ∈ Z≥0, and the current
score is p ∈ Z.1 A Positive’s move is of the form (x, p) 7→ (x − s, p + s),
for some s ∈ S, provided that x − s ≥ 0. A Negative’s move is of the form
(x, p) 7→ (x − s, p − s), for some s ∈ S, provided that x − s ≥ 0. A game
state (t, pt) is terminal if t < minS. Positive wants to maximize the terminal
score, pt, whereas Negative seeks to minimize it.

We are interested in the optimal play of CS, which is a zero-sum game.
Note that, in standard terminology, optimal play in zero-sum extensive form
games defines a pure subgame perfect equilibrium.

Definition 1 (Optimal actions). Given a game, optimal play, opt, is a
mapping from positions to actions, such that the current player does not
have a beneficial deviation from opt.

Definition 2 (Outcome). The outcome of the game S at position x is

o(x) =

{

maxs∈S{−o(x− s) + s}, if x ≥ minS

0, otherwise.

Optimal play is independent of the accumulated (current) score, and o(x)
corresponds to Positive’s terminal score, when both players play optimally,

1Sometimes, such as in Definition 2, we denote by ‘a position’ with just the heap size

x. See also a discussion in the beginning of Section 4.
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and Positive starts from position (x, 0). This requires a proof, and we prove
this in a slightly more general situation in Section 4.

Definition 3 (Sequence convergence). A sequence (xi) of integers converges
at j if, for all i ≥ j, xj = xi is constant, but xj−1 6= xj.

(If there is no such j, then a sequence of integers does not converge.) We
use the following optimal play convention: if in a given position, there are
multiple optimal actions, then the current player plays the maximum optimal
action. By the sequence of optimal actions, we mean a function, which maps
heap sizes to unique (maximum) optimal actions.

Definition 4 (Game convergence). We say that a game S converges at
ξ(S) = j, if its sequence of optimal actions converges at j.

The game S has slower convergence than the game T if S converges at x
and T converges at y, with x > y.

A sequence (xi) is periodic if there is a p such that, for all i, xi = xi+p. If
p is the smallest such number, then the sequence is periodic with period p.

We will be interested in outcome sequences that become periodic for
sufficiently large heaps.

Definition 5 (Eventual periodicity). A function g : Z≥0 → Z is eventually
periodic, if there is a γ ∈ Z>0, such that g(x) = g(x+ γ), for all sufficiently
large x ∈ Z. It is eventually periodic with period γ′, if γ′ is the smallest γ
such that g(x) = g(x+ γ′), for all sufficiently large x ∈ Z.

Lemma 1. If the sequence of optimal actions converges, then the sequence
of outcomes is eventually periodic.

Proof. If both players optimally play the same action s from all sufficiently
large heap sizes x, then o(x) = s−o(x−s) = s−s+o(x−2s) = o(x−2s).

2 Results

Those readers familiar with CGT know that there is a standard argument for
periodicity of the outcomes of classical subtraction games. This argument
can be transfered to our setting with slight modifications, and we explain
how to do this in Section 4, in a somewhat more general situation, where
players gain various ‘rewards’ for their actions. We begin with more detailed
structural results on the CS games with identity rewards.
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1. In [5], Stewart conjectures that CS on finite subtraction sets S, are
eventually periodic with period 2s1 where s1 = maxS (although he
uses a somewhat different definition of outcomes). That is to say, o(x+
2s1) = o(x), for any large enough position x. In this paper, we prove
this conjecture (Section 3.4, Corollary 11), and generalize it in Section 4
to games with reward functions.

2. We characterize the optimal play as well as the precise outcomes in
CS for two special cases: CS with support size of two and CS with
full support, i.e. |S| = maxS. We provide a conjecture in the case of
‘truncated support’ (Section 3.3).

3. We give an upper bound on the heap size for which CS games converge.
The bound is quadratic in maxS (Section 3.4).

3 Cumulative Subtraction

Throughout the paper, we usually consider optimal play by both players in a
game (S; x, p), and Positive starts. Our first observation regards the relative
number of actions players will have throughout the game.

Observation 1. Either Positive and Negative play the same number of ac-
tions, or Positive has an extra turn.

This is true because Positive starts and turns alternate between the play-
ers. The only reason for a player to play non-maximal action is to get to play
an extra turn (getting the last action).

Lemma 2. Consider optimal play. If a player does not play the maximal
action, then she obtains the last move (a parity advantage).

Proof. Suppose that Positive plays a non-maximal action without getting the
last move, when Negative plays optimally. Since Negative gets the last move,
and Positive cannot have less actions than Negative, if Positive exchange
a non-maximal action for a maximal action she accumulates a higher total
score. Hence, the first strategy was not optimal. The same proof can be used
for Negative, looking at a game that starts after the first move of Positive.

Corollary 3. In optimal play, at least one of the players plays only maximum
actions.
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Proof. This follows directly from Lemma 2, because both players cannot get
the last move.

3.1 CS with full support

Consider a CS where the set of possible actions contains all the integers from
1 up to s1, i.e., S = {1, 2, . . . , s1}. We call this game CS with full support.
In this game, optimal-play is to play the maximal action available at each
position.

Theorem 4. In CS with full support, the optimal play is x for any position
x < s1 and s1 for any position x ≥ s1. That is, each CS with full support
converges at s1, and moreover its outcome is periodic with the pattern

(0, 1, . . . , s1, s1 − 1, . . . , 1). (1)

Proof. The proof is by induction. For the base case, consider 0 ≤ x ≤ s1:
when playing from position x, Positive takes all the pebbles, and thus o(x) =
x. When playing from positions x + s1, Positive’s optimal play is to take
s1 and negative takes the rest, thus o(x + s1) = s1 − o(x) = s1 − x. It is
Positive’s optimal play since if she takes less than s1 then Negative can take
more than x.

Assume k > 0 repetitions of the pattern (1). We study the next s1
positions and show that the outcome in those positions will be exactly as in
(1).

o(x+ 2(k + 1)s1) = s1 − o(x+ 2(k + 1)s1 − s1)

= s1 − o(x+ 2ks1 + s1)

= s1 − o(x+ s1)

= s1 − (s1 − x)

= x

For the following s1 positions the outcome is o(x + s1 + 2(k + 1)s1) = s1 −
o(x+ s1 + 2(k + 1)s1 − s1) = s1 − o(x+ 2(k + 1)s1) = s1 − x.

3.2 CS with two possible actions

In this section, we consider a CS where the set of possible actions contains
just two actions, denoted by S = {s2, s1}, where s1 > s2. We characterize

5



the optimal play in each position and prove the convergence of the game.

In the simplest case, when 2s2 ≤ s1, S is periodic and converge at s1.
This is because it is never beneficial to play s2 if s1 is possible, because even
if by playing s2 a player will get an extra turn where she can play s2, it is still
lower than a single s1. For example, in the game S = {2, 5}, the outcome for
the first 20 positions are:

0, 0, 2, 2, 0, 5, 5, 3, 3, 5,

0, 0, 2, 2, 0, 5, 5, 3, 3, 5 . . . ,

and this pattern of the first 10 outcomes repeats.

Theorem 5. Suppose S = {s2, s1}, with 2s2 ≤ s1. Then the game S has
a periodic outcome function, with period 2s1, and the sequence of optimal
actions converges at position x = s1.

Proof. The proof is analogous to the case of full support, Theorem 4.

Observation 2. In the setting of Theorem 5, the first s1 outcomes are of
the form: o(0) = · · · = o(s2 − 1) = 0, o(s2) = · · · = o(2s2 − 1) = s2,
o(2s2) = · · · = o(3s2 − 1) = 0, . . . until o(s1 − 1), which is then 0 or s2
(depending on the numbers a and b in the division algorithm, with s1 =
as2 + b where 0 ≤ b < a). The following s1 outcomes then takes the values
o(s1) = · · · = o(s1+s2−1) = s1, o(s1+s2) = · · · = o(s1+2s2−1) = (s1−s2),
o(s1 + 2s2) = · · · = o(s1 + 3s2 − 1) = s1, . . . until o(2s1 − 1), which is then
analogously s1 or s1 − s2. These outcomes repeat indefinitely.

For example, the outcomes of the game {2, 9} are periodic, with the first
18 outcomes: 0, 0, 2, 2, 0, 0, 2, 2, 0, 9, 9, 7, 7, 9, 9, 7, 7, 9.

For the rest of the section, we assume that 2s2 > s1.
Next we wish to give the reader a better feeling of the game by presenting

an example, consider the game S = {5, 7}, table 1 stats the optimal first
action and the outcome, given the position.

Note that for CS with S = {5, 7} the only positions where s2 = 5 is bet-
ter than s1 = 7 are X∗ = {5, 6, 17, 18, 29, 30}. This means that the game
converges at ξ({5, 7}) = 31.
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13
opt - - - - - 5 5 7 7 7 7 7 7 7
o(x) 0 0 0 0 0 5 5 7 7 7 7 7 2 2

x 14 15 16 17 18 19 20 21 22 23 24 25 26 27
opt 7 7 7 5 5 7 7 7 7 7 7 7 7 7
o(x) 0 0 0 3 3 5 5 7 7 7 4 4 2 2

x 28 29 30 31 32 33 34 35 36 37 38 39 40 41
opt 7 5 5 7 7 7 7 7 7 7 7 7 7 7
o(x) 0 1 1 3 3 5 5 7 6 6 4 4 2 2

x 42 43 44 45 46 47 48 49 50 51 52 53 54 55
opt 7 7 7 7 7 7 7 7 7 7 7 7 7 7
o(x) 0 1 1 3 3 5 5 7 6 6 4 4 2 2

Table 1: Positive’s optimal play (not necessary unique), and the outcome for
CS with action set S = {5, 7}, starting from position x.

Let α = s1 − s2 > 0 be such that s2 > α, and let ∆ = {0, 1, . . . , α− 1}.
Define

X∗(i) = {is2 + (i− 1)s1 + δ | δ ∈ ∆},
for each i ∈ Z>0, such that

is2 > (i− 1)s1, (2)

and otherwise X∗(i) = ∅. We will show that, the set of positions where the
unique optimal move is to play s2 is

X∗ =
⋃

i∈Z>0

X∗(i)

The special case whenever 2s2 ≤ s1 is treated in Theorem 5. Then equa-
tion (2) only holds for i = 1, in which case X∗ = X∗(1) = {s2, . . . , s1 − 1}.
Another example is if 2s2 > s1, but 3s2 ≤ 2s1. Then equation (2) holds
for i = 1, 2, in which case X∗ = X∗(1) ∪ X∗(2) = {s2, . . . , s1 − 1, 2s2 +
s1, . . . , 2s2 + s1 + α− 1}.

A more compact representation of (2) is αi < s1. Therefore, in particular,
(2) implies i < s1.

Let imax denote the largest i such that (2) holds. That is, αimax < s1,
but α(imax + 1) ≥ s1. We show that if the difference between a couple of
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positions is exactly α, and the larger position is not in X∗, then the outcome
difference is bounded from above by α. Later, in the proof of Theorem 7, we
will see that the converse holds, if the larger position is in all but the largest
subset of X∗. That is, if the larger heap size is in

⋃

1≤i<imax

X∗(i),

then the outcome difference is greater or equal than α.
The following lemma holds for any s2, s1, but we will only use it for the

cases s2 > α (since we already treated the other cases in Theorem 5). Note
in particular if s2 ≤ α then imax = 1, so all positions will satisfy inequality
(3) in Lemma 6.

Lemma 6. Consider S = {s2, s1} and 0 < α = s1 − s2. If x 6∈ X∗, and
x ≥ α then

o(x)− o(x− α) ≤ α. (3)

Proof. We study the function

η(x) := α + o(x− α)− o(x),

and show that η(x) ≥ 0, if x 6∈ X∗ and x ≥ α. We think about o(x) as
the outcome in optimal play when Positive starts, and −o(x) as the outcome
in optimal play when Negative starts. It suffices to show that, for all plays
by Negative from x, there is a response by Positive such that the inequality
holds.

If there is no move from x (because s2 > x) then η(x) = α ≥ 0.
If there is (an optimal) move from x, but no move from x−α, then x < s1;

thus x ∈ X∗(1), which is not part of the positions in the statement.

1. If Negative plays optimally s1 from x, and Positive plays s2 from x−α,
we get

η(x) ≥ α + o(x− s1)− s1 − o(x− α− s2) + s2

= o(x− s1)− o(x− s1)

= 0
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2. If Negative plays optimally s2 from x, and Positive plays s2 from x−α,
we get

η(x) ≥ α + o(x− s2)− o(x− α− s2),

and we note that, if Negative has no move from x − α − s2 = x − s1,
then this implies η(x) ≥ 0. Assume Negative has a move then there
are two cases:

2.1 On the second move, if Negative plays optimally s2, and Positive
plays s1, we get

η(x) ≥ α− s2 + o(x− s1 − s2) + s1 − o(x− s2 − s1) = 2α > 0

2.2 On the second move, if Negative’s optimal move is s1, and Positive
responds with s1, we get

η(x) ≥ α + o(x− s1 − s1)− o(x− s2 − s1) = η(x− s2 − s1)

and since, by definition of X∗, if x 6∈ X∗ then x − s1 − s2 6∈ X∗.
Therefore η(x− s2 − s1) ≥ 0 by induction.

This concludes the proof of inequality (3).

Next we prove that the positions where s1 is not optimal are exactly the
X∗ positions, which are of the form s2+ δ, 2s2+ s1+ δ, 3s2+2s1+ δ, . . ., that
is the positions congruent with s2 + δ (mod s1 + s2), until equation (2) fails
to hold. The optimal actions before convergence are shown in Figure 1 (pile
sizes modulo s2+ s1 have the same optimal actions before convergence), and
in Figure 2, we illustrate the outcomes (pile sizes modulo 2s1 have the same
outcomes at convergence).

Observation 3. If x ∈ X∗, then neither x − s1 and x − s2 is in X∗.
This follows because x ∈ X∗ is equivalent with x ≡ δ − s1 (mod s1 +
s2) ∈ {s2, . . . , s1 − 1}. Then x − s1 ∈(mod s1+s2) {2s2, . . . s2 + s1 − 1} and
x − s2 ∈(mod s1+s2) {0, . . . s1 − s2 − 1}. Namely, if 2s2 > s1, then these sets
are disjoint. Similarly, if x 6∈ X∗, then x − s1 − s2 6∈ X∗, because these two
numbers are congruent modulo s1 + s2.

Theorem 7. Let the action set be S = {s2, s1}, with s1 > s2. The action s2
is the unique optimal action, that is opt(x) = {s2} if and only if x ∈ X∗.
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Proof. If s2 ≤ α, then X∗ = X∗(1) and Theorem 5 covers this case. There-
fore, we assume s2 > α.

Recall x ∈ X∗(i) if x = is2 + (i − 1)s1 + δ, δ ∈ ∆ = {0, 1, . . . , α − 1},
for i ≥ 1, with αi < s1. For these positions, we define Positive’s ‘⋆-strategy’.
Positive plays only s2, unless Negative responds with s2 in which case Positive
plays s1. Claim: this is the correct optimal strategy and Negative responds
optimally with (i− 1) s1 actions. If Positive would have played s1 (at first),
then Positive can obtain at most 0 points, since Positive loses the desired
parity advantage. This follows because if Negative plays (i−1) s1 actions, and
Positive plays at least one s1 action, by inequality (2), we get the following
contradiction for a terminal heap size t, t ≤ is2 + (i− 1)s1 + δ− ((i− 1)s1 +
s1 + (i− 1)s2) = δ − s1 + s2 < 0.

This proves that s2 is the unique optimal action for positions in X∗, so
we are done with the case x ∈ X∗. Moreover, the argument implies that
o(x) = is2 − (i− 1)s1 > 0 for all x ∈ X∗(i), that is we get, for x ∈ X∗,

o(x) = s1 − iα. (4)

A consequence of this is the following claim.

Claim 1: Suppose that y is such that x− o(x) ≤ y < x, with x ∈ X∗. Then

o(y) = 0, (5)

and the optimal action is s1.

Proof of Claim 1. Consider x ∈ X∗(i). By (4), we have x− s1 + iα ≤ y < x.
That is,

(2i− 2)s1 + δ ≤ y < x. (6)

The upper bound implies that Positive cannot obtain an extra move by play-
ing s2. Therefore the action s1 dominates s2. If Negative removes s1 pebbles,
then we remain in a position of the same form (until the game ends and the
score is 0). So, assume that Negative plays s2 from y − s1. But the position
y−s1−s2 is again of the same form as in (6). Negative will not play s2, with
a relative loss of α, without gaining a parity advantage. This proves the claim.

For the other direction, we must prove that for each position x 6∈ X∗,
then s1 is an optimal move if x ≥ s1. We begin by stating the full base case.

10



Consider x ∈ {0, . . . , 2s1 − 1}. If x < s2, no action is available. (For
positions x ∈ X∗(1), only action s2 is available, so it is optimal.) For positions
x ∈ {s1, . . . , 2s1 − 1} ⊂ Z \ X∗, s1 is the unique optimal action, since it
can be countered with at most one s2 action before the end of play, and
2s2 + s1 ≥ 2s1, by assumption.

Assume next that x ≥ 2s1. It suffices to prove:

if x 6∈ X∗, then −o(x− s1) + s1 ≥ −o(x− s2) + s2,

or equivalently

if x 6∈ X∗, then α ≥ o(x− s1)− o(x− s2).

There are three cases, depending on whether x−s1 or x−s2 belongs to X∗

respectively. Note that both cannot belong to X∗, because x−s2−(x−s1) =
α, and, for all i, X∗(i) contains at most α−1 consecutive numbers (and more
than s1 numbers separate two disjoint sets X∗(i) and X∗(j)).

1. x− s1 ∈ X∗, x− s2 6∈ X∗

2. x− s1 6∈ X∗, x− s2 6∈ X∗

3. x− s1 6∈ X∗, x− s2 ∈ X∗

For 1., use induction to conclude s2 ∈ opt(x− s1) and s1 ∈ opt(x − s2).
We get

o(x− s1)− o(x− s2) = −o(x− s1 − s2) + s2 + o(x− s2 − s1)− s1

= −α

< α.

For 2., use induction to conclude s1 ∈ opt(x− s1) and s1 ∈ opt(x− s2). We
get

o(x− s1)− o(x− s2) = −o(x− s1 − s1) + s1 + o(x− s2 − s1)− s1

= −o(x− s1 − s2 − α) + o(x− s2 − s1)

≤ α,

by Lemma 6, using that x 6∈ X∗ implies x − s2 − s1 6∈ X∗, unless perhaps
x− s2 − s1 ∈ X∗(imax). This latter case has to be treated separately. By (4)
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and (5), we know that, in this case, o(x − s2 − s1) − o(x − s2 − s1 − α) =
s1 − αimax − 0 < α, where the inequality is by definition of imax.

For 3., in case i < imax, we use again the ‘duality’ (5) between outcomes
and number of consecutive positions with outcome 0 below X∗(i), which gives
o(x− s2)− o(x− s1) = s1 − iα− 0 > α, since i < imax, so

o(x− s1)− o(x− s2) < −α ≤ α.

The remaining case is when x− s2 ∈ X∗(imax).
This means that x− s2 ∈ (mod 2s1) {−imaxα− s1 + δ}, with

−s1 < −imaxα ≤ −s2. (7)

Hence, x−s2 ∈ (mod 2s1) {1, . . . , 2α−1} and so x−s1 ∈ (mod 2s1) {1−α, . . . , α−
1}.

Since x− s2 ∈ X∗, we know that o(x− s2) = s1 − imaxα (where 0 < s1 −
imaxα ≤ α). So, in this case, we must prove that α ≥ o(x−s1)− (s1− imaxα),
or equivalently that o(x− s1) ≤ α − imaxα + s1. Hence, by (7) it suffices to
prove that o(x− s1) ≤ α + 1. We have two cases:

(i) x− s1 ∈(mod 2s1) {0, . . . , α− 1}

(ii) x− s1 ∈(mod 2s1) {1− α, . . . ,−1}

We use the previous parts of the proof. For case (i), it is optimal to play all
remaining actions s1. Namely, x − ks1 6∈ X∗, for any k ≥ 0. Since, there is
an even number of actions, the outcome is 0. For case (ii), the only action in
X∗ is the last action, so the outcome is imaxs1 − (imax − 1)s1 − s2 = α.

Corollary 8. The game converges to action s1 at maxX∗ + 1.

Proof. This follows from Theorem 7.

Observation 4. From the proof of Theorem 7, we get that the outcomes are:

• o(x) = s1 − iα, if x ∈ X∗(i);

• o(x) = 0, if y − s1 + iα ≤ x < y, where y ∈ X∗(i);

• o(x) = o(y), if there is a y ≡ x (mod 2s1), such that y ∈ X∗(j), with
j < i;
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• o(s1 + x) = s1 − o(x), for all x ∈ (mod 2s1) {0, . . . , s1 − 1}.

In particular, the periodic outcome pattern, at convergence, is obtained by
applying imax = ⌊s1−1

α
⌋ in the items.

Note that the first three items concern the outcomes of the positions in
the congruence classes 0, . . . , s1−1 (mod 2s1) and the last item concerns the
‘symmetric’ part among the heap sizes s1, . . . , 2s1 − 1 (mod 2s1). The third
item shows that once the outcomes for positions in X∗(i) have been computed,
then they stabilize, for equivalent larger heap sizes modulo 2s1.

Another consequence of the arguments is that if x ≡(mod 2s1) {s1, . . . , 2s1−
1}, then s1 ∈ opt(x).

In Figures 1 and 2 we sketch the optimal actions modulo s2 + s1 and the
outcomes modulo 2s1, of the two-action games with 2s2 ≥ s1.

Pile size

0

s2s1

s1 ∈ opt(x) s1 ∈ opt(x)

opt(s2 + δ) = {s2}

Figure 1: Optimal actions before convergence, for pile sizes of x modulo
s2+ s1, where x ≥ s1. The positions in X∗, where the unique optimal action
is s2, are of the form x + (s1 + s2)i, for i ≥ 0 and s1 − 1 ≥ x ≥ s2, until
convergence
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Pile size

The first 2s1 outcomes

x = 0

x = s2

o(s2 + δ) = s2

o(x) = 0

o(x) = s1

o(2s1 − δ) = s1 − s2

Pile size

modulo 2s1

s1 − imaxα + δ

s2 − α+ δ
s2 + δ

o(x) = s1 − o(x− s1)

s1 − imaxα

s2 − α

0

s2

The outcomes at convergence

Figure 2: Initial outcomes (top) and outcomes at convergence (bottom) for
pile sizes modulo 2s1, for 2-action games (the relation between the actions s2
and s1 is different in the two pictures). Note that s2−(imax−1)α = s1−imaxα.
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3.3 Games with truncated support

Consider a game S, with m = maxS ≥ 2, of the form S = {i, i+ 1, . . . , m},
where i ∈ {1, m − 1}, so that |S| = m − i + 1. We call this the class of
truncated support games. It includes as special cases the games with full
support (i = 1) and the games with the slowest convergence (i = m−1). We
estimate in which 2m interval, trmi , optimal play converges to the maximal
action m. Let trm denote the sequence of the form trm = (trmi )

m−1
i=1 .

For example, when m = 5, then the sequence is tr5 = (1, 2, 2, 4). Here,
the first entry tr51 = 1 shows that when S = {1, 2, 3, 4, 5} is the game of
full support, then the convergence to maximal action in optimal play occurs
already in the first interval of length 10. The last entry, tr54 = 4, concerns
the game S = {4, 5}, and, as evidenced, convergence occurs by the 4th 10-
interval.

The ith column shows the convergence for (i−1)-truncated support games,
for m ∈ {2, . . . , 10}. (We will explain the #x column below.)

i 1 2 3 4 5 6 7 8 9 #x
tr2 1 1
tr3 1 2 2
tr4 1 2 3 3
tr5 1 2 2 4 3
tr6 1 2 2 3 5 4
tr7 1 2 2 2 3 6 4
tr8 1 2 2 2 3 4 7 5
tr9 1 2 2 2 2 3 4 8 5
tr10 1 2 2 2 2 3 3 5 9 5

From this table alone, for i ≥ 2, it might appear that the sequence of number
of occurrences is non-increasing. To obtain some more insight, we plot the
entries below for m = 25, 50, 100.

The pictures seem to converge to some function of the form A√
B−x

. The
appearing ‘symmetry’ has a precise formulation, explained in the below con-
jecture.

For each m = maxS, shrink the trm sequence to the set xm = x = {trmi }
and enumerate the elements in increasing order; we interpret x as a sequence
xm = (xi) with x1 = 1 (by the theorem for full support) and maxxm = m−1
(by the support size 2 result). We have, for all i ≥ 1, xi < xi+1. But, what
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is the number of elements in x, for each m? The initial sizes of these sets are
displayed in the last column of the table, as #x. Study the first differences
∆m

i = xm
i+1 − xm

i , i ≥ 1. Define, for all m ≥ 3, and for all 1 ≤ j ≤ #x,
Mj := #{i | xm

j = trmi }.
One can prove the following result by combining methods and results in

Theorem 4 and Theorem 7.

Theorem 9. For i ∈ {2, . . . , ⌈m/2⌉}, trmi = 2, and moreover, ∆m
m−1 =

trmm − trmm−1 = ⌊m/2⌋ = #{i | trmi = 2} = M2.

This result reflects an emerging ‘duality’ between individual games and
sequences of games, which appears to continue in the inner regions of the
pictures. We make the following conjecture.

Conjecture 1 (Duality). Consider any truncated CS.

• For all m ≥ 2, #xm =
⌊√

4m− 7
⌋

(corresponding to sequence OEIS:
A000267).

• The first differences, ∆m, equal in reverse order the number of multi-
plicities of the numbers in trm. That is, for all i, Mm+1−i = ∆m

i .

Consider for example tr10. Then ∆ = (1, 1, 2, 4), and M = (4, 2, 1, 1).
Careful inspection reveals that the pictures for m = 25, 50, 100 satisfy this
precise correspondence (and we checked many cases up to m = 200), but we
have up to date no means of explaining this proposed ‘duality’.

3.4 Games with arbitrary support - a tight convergence

bound

We prove that, for each game, convergence is no slower than for the game
consisting exactly of the two largest actions in that game. Moreover, for each
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s ≥ 2, the game S = {s−1, s} has the slowest convergence of all games with
s = maxS.

Recall Definition 4 (of game convergence). By Theorem 7, we get, for
example:

(i) For all s ≥ 2: ξ({s− 1, s}) = 2(s− 1)2.

(ii) For all s ≥ 3: ξ({s−2, s}) = (s−2)2+ s−1 if s is odd; ξ({s−2, s}) =
(s− 2)2 if s is even.

We will prove the following two general convergence results.

Theorem 10. Let S = {s2, s1}, with s1 > s2. Then ξ(S) ≥ ξ(T ), for all
S ⊂ T with s1 = maxT and s2 = max(T \ {s1}).
Corollary 11. Let S = {s − 1, s}. Then 2(s − 1)2 ≥ ξ(S) ≥ ξ(T ), for all
T ⊂ Z>0 with s = maxT .

That is, we want to prove that item (i) above gives an upper bound
of the convergence, for any given game S with s = maxS. We generalize
X∗ (from Section 3) and inequality (2) as follows. Consider a fixed game
S = {s1, . . . , sn}, with n ≥ 2, and s1 > · · · > sn. Let φ be a multiset, with
elements from {2, . . . , n}, such that

∑

i∈φ ai = m maximizes:

ν(φ) =
∑

i∈φ

aisi − (m− 1)s1. (8)

If ν(φ) > 0, the actions induced by φ (played in any order) give player
Positive a parity advantage, playing from any position in the set

Xφ = {ν(φ) + δ | 0 ≤ δ < min{s1 − s2, sn}} .
Proof of Theorem 10. By Lemma 2, ν(x) > 0, with x ∈ Xφ is the only pos-
sibility for a non-maxS action to be optimal, and Negative’s (non-winning)
optimal strategy is to play s1 until the game ends. Therefore, by (8), no situ-
ation with |S| ≥ 2 can decrease maxXφ = ξ(S)− 1, which is hence bounded
above by

maxXφ ≤ ms2 + (m− 1)s1 + δ

≤ (m− 1)(s1 − 1) +ms1

= 2ms1 − s1 −m+ 1

≤ 2s21 − 4s1 + 2

= 2(s1 − 1)2,
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since ν(φ) > 0 and (8) imply m ≤ s1 − 1.

Proof of Corollary 11. The statement holds trivially for T = {s}. Moreover,
the inequality (2) implies ξ(S) ≥ ξ(T ), for any T = {s2, s1} with s2 < s1 = s.
Therefore the result follows from Theorem 10.

4 Generalization to games with a reward func-

tion

We generalize the CS game in the following way: each action s ∈ S subtracts
s pebbles but is worth r(s) points. A function r : S → R determines the
reward for each action. Thus, each generalized game is of the form (S, r; x, p).

Postive’s move options are of the form (S, r; x, p) 7→ (S, r; x−s, p+ r(x)),
for some s ∈ S such that x− s ≥ 0, whereas Negative’s move options are of
the form (S, r; x, p) 7→ (S, r; x− s, p− r(x)).

Definition 1 will be used in this slightly more general setting. We gener-
alize the outcome function, and then justify that it computes a game’s value,
shifted by a constant (corresponding to the initial score p).

Definition 6 (Generalized outcome). The outcome of the game, (S, r; x, p),
from position x is

o(x) =

{

maxs∈S{−o(x− s) + r(s)} for x ≥ minS

0 for x < minS.

By von Neumann’s classical minimax (maximin) theorem [4], for each
0-sum game G, there exists a unique optimal play game value ν(G), and
moreover, because CS are perfect information games, this value is achieved
via pure strategies, i.e. standard backward induction. In CS with a reward
function, for the game G = (S, r; x, p), we let

ν(G) = p +

τ
∑

i=0

(−1)i r(ai), (9)

where (ai)
τ
i=0 is any fixed sequence of actions (a path) in optimal play, a0 is

Positive’s first action, and aτ is the terminating action.
We show that for CS with a reward function, equilibrium play does not

depend on the current score.
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Lemma 12. The set of paths in optimal play (induced by the PSPE strategy
profile) does not depend on the current score.

Proof. Assume that player Positive starts. The reward function takes as in-
put an action s ∈ S. Suppose we have two games, where only the current
score differs, say P = (S, r; x, p) and Q = (S, r; x, q), and that x is the small-
est heap size such that ν(P )−p > ν(Q)−q. This requires that x is such that
at least two move options are available. By assumption, optimal play after
Positive’s first move does not depend on the current score. Hence, Positive
can deviate in the game Q and use instead an optimal path as induced by
ν(P ), which gives the final score q + ν(P ) − p > ν(Q), a contradiction to
Definition 1.

Theorem 13. For all games G = (S, r; x, p), ν(G)− p = o(x).

Proof. The proof is by induction. If there is at most one available action,
then the result trivially holds.

Suppose G′ = (S, r; x−s, p+r(s)). Then, by definition (9), ν(G) = ν(G′),
because ν(G′) = p+r(s)+

∑τ

i=1(−1)i r(ai), with s = a0 in optimal play, which
here means maximizing. Since the indexing of the sum starts with an odd
number (namely 1), assume by induction that o(x− s) = −ν(G′) + r(s) + p.
This gives, for a maximizing action s,

o(x) = r(s)− o(x− s)

= r(s)− (−ν(G′) + r(s) + p)

= ν(G)− p.

Therefore we have an efficient and compact representation of the game
value in form of the outcome function. Namely, a generic set of terminal game
positions is exponential in the size of the game tree, whereas the initial state
of the outcome function is simply 0. From another perspective, this means
that a game is independent of its ‘history’, which is recorded as a ‘current
score’. The players may ignore the ‘current score’ in finding an optimal move
from a given position.
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4.1 Rewards and eventually periodic outcomes

Given a game (S, r),2 we call an action m ∈ S, such that r(m) = max{r(s) |
s ∈ S}, a maximal action m.

Interesting situations occur for reward functions, when there is more than
one maximal action, or in case the maximal action is not the maximum
action, i.e. whenever the maximal action m 6= maxS. Note that in case r is
increasing, then ‘maximal’ and ‘maximum’ coincide.

Minimal and minimum actions are defined similarly. An action n ∈ S,
such that r(n) = min{r(s) | s ∈ S}, is a minimal action. Note that both
minimal and maximal actions may map to any real reward, and if r(n) =
r(m), then the game’s outcome depends only on the parity of number of
moves, and if there are negative rewards a player may not want the last move
(in particular if all actions map to negative rewards, which then becomes
‘misére play’ in standard jargon).

Example 1. Let x = 6, with S = {2, 3, 4}, r(2) = −100, r(3) = 50 and
r(4) = −10. Positive starts and prefers to take the punishment −10, rather
than immediately cashing in 50 points, since Negative will be forced to in-
crease the collective cumulation by 100 points, and the final score becomes
90, a great victory for Positive (otherwise the score would be 0 if Negative
plays optimally). So here Positive avoids the parity ‘advantage’ which is no
longer an advantage. On the other hand, if Positive starts from x = 2, then
the outcome is −100, so the range of possible outcomes is no longer bounded
from below by 0; see Lemma 14.

We define game convergence similar to previous sections. We say that
the game (S, r) converges at x′ ≥ 0 if the same maximal action is optimal
for all positions x ≥ x′.

In experiments we have encountered games that do not converge, but are
still periodic, and this observation is proved at last in Theorem 19.

Lemma 14. Consider a game (S, r; x, p). Let ρ = min{r(n), 0} and ν =
max{−r(n), r(m)}, where n (m) is a minimal (maximal) action. Then

ρ ≤ o(x) ≤ ν, (10)

2We sometimes omit the heap size x and the current score p from the description of a

game, if the context requires it.
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Moreover, if there is no negative reward, then the lower bound holds with
ρ = 0, and the upper bound holds with ν = r(m). That is (10) simplifies to

0 ≤ o(x) ≤ r(m).

Even simpler, if the reward function is the identity reward, then, for all x,
0 ≤ o(x) ≤ maxS.

Proof. Since players alternate turns and Positive plays first, either both play-
ers have the same number of turns (when Negative plays last) or Positive has
one extra turn over Negative (when Positive plays last).

Consider the case where there is no negative reward. If Positive plays a
maximal action at each stage of game, then the lowest possible outcome is 0,
which happens if Negative also plays exclusively maximal actions, and gets
the last move.

The highest possible outcome is obtained when both players play maximal
actions and Positive plays both first and last; in this case the outcome is
r(m). Positive cannot do any better, unless Negative plays non-maximal
move(s), without getting the last move. But then Negative can deviate and
play instead only maximal actions, to reduce the result.

In case there are negative rewards, note that no player will play them
unless they are forced to because there is no other move, or because they
can force the other player to play an even worse negative reward. Moreover,
Positive cannot use a negative reward to gain from a parity advantage. In-
stead Positive should simply play the maximal move directly, even without
gaining a parity advantage (or possibly use a smaller positive reward to gain
parity advantage).

Note that the lower bound in Lemma 14, with a negative reward and a
minimal action, can be achieved (trivially) as we saw in Example 1.

Theorem 15. Every game (S, r) has an eventually periodic outcome func-
tion. Specifically, let ℓ = maxS, and let ρ and ν be defined as in Lemma 14.
The outcome sequence o(x′), o(x′ + 1), . . . is periodic for x′ = (1 + ν − ρ)ℓ,
with period no more than (1 + ν − ρ)ℓ.

Proof. By Lemma 14, the maximal number of outcomes is ν − ρ + 1. The
number of combinations of ν+ρ+1 outcomes among ℓ positions is (1+ν+ρ)ℓ.

Therefore a repetition of a sequence of ℓ consecutive outcomes is forced
after (1+ν+ρ)ℓ positions. But optimal play after two such identical outcome
sequences is necessarily identical. This implies both results.
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Lemma 16. Consider a game (S, r). For all sufficiently large pile sizes x, a
maximal action is optimal.

Proof. Claim: there can be at most finitely many positions, for each equi-
librium strategy profile, for which a non-maximal action s 6= m satisfies
o(x−m) < o(x− s). For suppose that one of the players, say Positive, plays
r(m) + 1 non-optimal moves. Then Negative, can play only maximal moves,
which will assure that the outcome becomes < ρ, as defined in Lemma 14,
for sufficiently large heap sizes, a contradiction.

Without loss of generality, we may assume that the finitely many non-
maximal actions will be played at last for any such strategy profile. In con-
clusion, there are at most finitely many pile sizes that require non-maximal
actions in optimal play.

As a consequence of Lemma 16, we have the following result on eventual
periodicity.

Theorem 17. Consider any CS with a unique maximal action m. Then the
outcome sequences is eventually periodic, with period 2m.

Proof. If there is a unique maximal action, then by two consecutive such
moves, the outcome is the same. The result follows, since, by Lemma 16,
both players play maximal actions for all sufficiently large heap sizes.

As a corollary, we reconfirm Stewart’s conjecture (which we proved with
more technical details in Section 3), for the case where r = id, that is a game
with r(s) = s, for all s ∈ S.

Corollary 18. Consider any game (S, id; x, p). It has an eventually periodic
outcome function with period 2maxS, and maximal action maxS.

Proof. Since there is a unique maximal action, the results follows by Theo-
rem 17 and Lemma 16.

In cases where there is not a unique maximal action, the game does not
necessarily converge, but the outcome is still eventually periodic, and where
the period is some finite linear combination of maximal actions.

Theorem 19. For any CS, the outcome is eventually periodic, with a period
that is a linear combination of the maximal actions.
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Proof. By Theorem 15, the outcome sequence is eventually periodic. Suppose
that one of the non-maximal actions contributes to the periodicity. Then, this
action is repeated for arbitrary many starting positions. But, this contradicts,
the goal of using a non-maximal action, to obtain a parity advantage.

5 Generalization and open problems

Using similar techniques as in this paper, for 2 player games, one can prove
that the eventually periodicity results in the first sections generalize for both
general sum and partizan CSs, if the set of maximal actions is the same
for both players. Eventually, only maximal action will be optimal for both
players. In fact, even if the maximal actions are different for the two players,
one can see that it is still optimal for both players to play their respective
maximal actions for all but finitely many positions.

Open problem: describe outcomes and convergence properties of partizan
CSs.
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