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Abstract. We describe an injection from border-strip decomposi-
tions of certain shapes to permutations. This allows us to provide
enumeration results, as well as q-analogues of enumeration formulas.

Finally, we use this injection to prove a connection between the
number of border-strip decompositions of the n× 2n rectangle and
the Weil–Petersson volume of the moduli space of an n-punctured
Riemann sphere.
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1. Introduction

Border-strip tableaux have a rich history, originating with the cel-
ebrated Murnaghan–Nakayama rule, [Mur37, Nak40], which provides
a combinatorial formula for computing character values of Sn. It is a
signed sum over border-strip tableaux, but the sign only depends on the
border-strip decomposition, i.e., the “unlabeled version” of the tableaux.
This gives a motivation to enumerate border-strip decompositions.

We note that there is a hook-formula for enumerating border-strip
tableaux, see [FL97], but less study has been devoted to enumerating

Key words and phrases. Border-strip tableaux, border-strip decompositions, per-
mutations, q-analogue, Weil–Petersson volume.
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border-strip decompositions. Even determining if a region can be tiled
by n-ribbons is non-trivial, see [Pak00].

We introduce a family of shapes (called simple diagrams) which have
nice properties with respect to enumeration. These are parametrized
by a binary word, and the size of the ribbons which are used to tile the
region. In particular, we show that certain normalized enumerations
grow as a polynomial in n (the size of the ribbons) thus reducing specific
enumerations to a finite computation.

1.1. Overview of results. We show that border-strip tableaux and
border-strip decompositions of simple diagrams are in bijection with
certain classes of permutations, see Proposition 16 and Corollary 22.
This allows us to study a certain q-analogue of border-strip decomposi-
tions, which generalize the classical inversion-statistic on permutations.
For example, in Corollary 30, we give the formula∑

w∈{r,c}k

∑
T∈BSD(w,n)

qinvT = [n+ 1]kq [n]q!

where the first sum is over all binary words of length k (defining a simple
diagram), and BSD(w, n) is the set of border-strip decompositions with
strips of size n, and shape determined by (w, n). In Proposition 24, we
give an efficient way to compute the number of border-strip decomposi-
tions of simple diagrams, as a function of n— the strip size. This allows
us to prove an inequality, showing that “straighter” simple shapes admit
a larger number of border-strip decompositions, see Theorem 31 The
maximum is attained for rectangles. In contrast, by Corollary 17 we
know that these shapes admit the same number of border-strip tableaux
whenever n ≥ k.

Finally, we give a new interpretation of [Slo16, A115047] in the OEIS.
We show that these numbers count the number of ways to tile a 2n× n-
rectangle with strips of size n, which gives a new simple combinatorial
interpretation of certain Weil–Petersson volumes. We cannot give an
intuitive explanation for this curious connection, and it invites for
further research.

2. Preliminaries

We first need to recall some general definitions — for a thorough
background, see [Sta01].

A tableau of shape λ and type µ is a filling of the Young diagram
λ, such that there are exactly µi boxes filled with i, for i = 1, . . . , `(µ).
A border-strip (or simply strip) of a diagram is a subset of boxes that
form a connected skew shape, and contains no 2 × 2 subdiagram. A
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border-strip tableau1 is a tableau such that rows and columns are weakly
increasing, and for all i, the boxes filled with the number i, form a
border-strip. We let BST(λ, µ) denote the set of border-strip tableaux
of shape λ and type µ.

A border-strip decomposition of shape λ and type µ is a partition of λ
into border-strips where the border-strip sizes are determined by the µi,
and the set of such decompositions is denoted BSD(λ, µ). Hence, each
border-strip tableau defines a border-strip decomposition. Finally, the
definition of BSD(λ, µ) extends in the natural manner the case when λ
is a skew shape.
Example 1. The following tableau T is an element in BST(λ, µ) with
λ = (5, 5, 4, 3, 3, 3) and µ = (5, 4, 3, 4, 3, 2, 2). To the right, we show the
corresponding border-strip decomposition with the strips indicated by
the colors.

1 1 1 1 4
1 2 4 4 4
2 2 5 5
2 3 5
3 3 7
6 6 7

(1)

It is clear that the number of elements in BST(λ, µ) depend on the
order of the entries in µ, but this is not the case for BSD(λ, µ). In
particular, BST(λ, µ) might be empty, while BSD(λ, µ) is not.

Recall that the content, c(�), of a box is defined as the difference
j − i of column-index minus row-index of the box. From the definition
of border-strips, it is straightforward to show that the boxes in a
border-strip B all have different content, and these numbers form the
content-interval a, a + 1, . . . , b with no gaps. We can thus define the
head, H(B) of a border-strip is the box with maximal content, and its
tail, T (B), which is the box with minimal content. In (2), the head and
tail boxes have been marked.

H

T

(2)

3. Enumeration of border-strip decompositions

In this section, we introduce a natural family of diagram shapes which
have particularly nice properties.

We first describe a bijection from border-strip decompositions of such
shapes to certain permutations. Using this bijection, we are able to give

1Also known as rim-hook tableau
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several q-refinements of enumerations of border-strip decompositions.
In particular, this includes the classical q-analogue of permutations in
Sn given by Mahonian statistics.
Definition 2. A simple diagram is parametrized by two parameters, a
word w with entries in {r, c}, and a natural number n.

The family of simple diagrams are constructed recursively as follows:

• If w = ∅, then (w, n) is the n× n-square.
• The diagram (cw, n) is obtained from (w, n) by adding an
additional column of size n on the left, such that the bottom-
most square of the new column is in the bottommost row of
(w, n).
• The diagram (rw, n) is obtained from (w, n) by adding an
additional row of size n on the bottom, such that the left-most
square of the new row is in the leftmost column of (w, n).

We let BSD(w, n) denote the set of border-strip decompositions of
(w, n), and BST(w, n) denotes the set of border-strip tableaux of (w, n),
in both cases with strips of size n.

For a word w, we define Cw the total number of c’s in w, Rw the total
number of r’s in w. Furthermore, let hor(w) := Cw −Rw. Intuitively,
hor(w) measures how “horizontal” the diagram is.
Example 3. The simple diagram determined by (rcrcc, 2) is the fol-
lowing shape:

(3)

Below we can see how (rcrcc, 2) is constructed from the 2× 2 square
by adding successively the blue, red, green, yellow and gray boxes to a
2× 2 square.

c c
c c c
c r r
r r

(4)

We have Crcrcc = 3, Rrcrcc = 1 and hor(rcrcc) = 3− 2 = 1.
Definition 4. In a fixed border-strip decomposition, a border-strip Ba

is above a border-strip Bb if there is a path from Ba to Bb going only
down or right. In this case Bb is below Ba.
Definition 5. A border-strip Ba is inner to a border-strip Bb if there
exists a sequence Ba = B1, B2, . . . , Bk = Bb such that for all i Bi is
above Bi+1. This means the relation inner is the transitive closure of
the relation above.
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If Ba is inner to Bb, Bb is outer to Ba.
Two border strips Ba and Bb are comparable, if Ba is inner or outer

to Bb.
Remark 6. If B1 is above B2, it implies B1 must contain a smaller
number than B2 in any border-strip tableau, thus the existence of a
BST for any BSD implies the transitive closure is well-defined.

Also, B1 is inner to B2 if and only if it contains a smaller number
in every BST with the border-strip decomposition. We do not use this
property, but it follows from the proof of Proposition 21 below.
Example 7. Here is an example in BSD(ccrcc, 3):

(5)

In this case the blue strip is above the red strip, and the red strip is
above the yellow strip, which means the blue strip is inner to the yellow
strip, and the blue and yellow strip are comparable. But the blue strip
is neither above nor below the yellow strip.
Definition 8. Two border strips B1 and B2 in a decomposition form
an inversion if the following three conditions are fulfilled:

• The content-sequences of B1 and B2 have a non-empty intersec-
tion,
• B1 is inner to B2, and
• H(B1) > H(B2).

We prove in Corollary 27 that this definition generalizes the notion
of inversions in Sn in a natural manner.
Definition 9. For a word w of length k, we number the diagonals of
the simple diagram (w, n) from n + k to 1, starting in the top right
corner, as shown in the example below for (crrc, 3):

4 5 6 7
3 4 5 6

1 2 3 4 5
1 2 3

1 2

(6)

Lemma 10. Let w be a word of length k. Then for any decomposition
in BSD(w, n), there is a unique head in each diagonal from 1 to n +
k, and the position of the heads uniquely determines the border-strip
decomposition.

Proof. We will show that the position of the heads uniquely determines
the decomposition, by processing the diagonals one by one and iteratively
prolonging the strips, starting from diagonal n+ k.
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The only way to cover the single box in diagonal n+ k is for it to be
a head.

For diagonal i with k < i < n+ k we have one box more in diagonal
i than in diagonal i + 1, and all strips we already started have less
than n squares, and must continue, therefore there is exactly one head
in diagonal i. Furthermore, the position of the head H in diagonal
i determines the continuation of the strips started, as shown in this
figure:

a
b
H c

d
−→

a
b
H c

d
(7)

For i ≤ k, there is exactly one strip ending in diagonal i + 1, and
diagonals i and i+ 1 have the same size, therefore there must be exactly
one head in diagonal i. Once we placed the head, there are n− 1 boxes
left in diagonal i, and n− 1 strips must have a box in diagonal i. As
strips cannot cross each other, this gives at most one solution.

Similarly, for the diagonals below diagonal 1, the size of the diagonals
decreases by 1 each step, and the number of strips too, so there cannot
be any heads below diagonal 1, and there is a unique way to extend the
border-strip decomposition. �

Definition 11. Given a border-strip decomposition of a simple diagram,
the unique strip with head in diagonal i is referred to as strip i.
Proposition 12. Let (w, n) be a simple diagram. Then for any decom-
position in BSD(w, n), if |i− j| ≤ n, then strip i and j are comparable.

Proof. Without loss of generality, i > j. Then the tail of i is at most
one diagonal higher than the head of j. As we can cover two consecutive
diagonals with a path going only right and down, two elements that are
at most one diagonal apart are comparable. �

We noticed that the positions of the heads of the strips uniquely
determine the border-strip decomposition. The next definition and
proposition encodes the placements of the heads as a permutation with
certain restrictions, giving an alternative description of border-strip
tableaux of simple shapes.

Further down, we add more restrictions, so that the resulting set of
permutations are in bijection with border-strip decompositions.
Definition 13. We define ψ : BST(w, n) → Sn+k by ψ(T ) = σ such
that if the unique head in diagonal i is numbered j then σ(j) = i.

We let BSP(w, n) ⊆ Sn+k denote the image of BST(w, n) under ψ.
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Proposition 14. The map ψ is injective.

Proof. A permutation defines the value of the heads in each diagonal,
and thus the value of all the boxes in each diagonal. As they have to
be in increasing order to form a border-strip tableau, there is a unique
way to do this.

Note that not every permutation give rise to a valid border-strip
tableau, see Proposition 16 below. �

Example 15. Here is an example T ∈ BST(ccc, n):

T =
1 1 1 3 3 4
2 2 2 3 4 4
5 5 5 6 6 6

with ψ(T ) = [3, 2, 5, 6, 1, 4]. (8)

The strip labeled 1 has its head in diagonal 3, thus ψ(T )(1) = 3, the
strip labeled 2 has its head in diagonal 2, thus ψ(T )(2) = 2 and so on.

Proposition 16. Let w = (w1, . . . , wk) be a word of length k. A
permutation σ ∈ Sn+k is in BSP(w, n) if and only if for all i with
1 ≤ i ≤ k we have:

• σ−1(i) < σ−1(n+ i) whenever wi = c, and
• σ−1(i) > σ−1(n+ i) whenever wi = r.

Proof. We construct the tableau from the last diagonal to the first one.
For any i, the unique head in diagonal i must be filled with number
σ−1(i). If k < i ≤ n+ k, diagonal i has one element more than diagonal
i+ 1, and it is always possible to extend a BSD. If 1 ≤ i ≤ k, we have
to look at wi. If wi = c, diagonals i and i+ 1 are as follows:

(9)

We observe the new strip must be added above the strip starting in
diagonal n+ i (ending in diagonal i+ 1), which means it has to be a
smaller number, i.e. σ−1(i) < σ−1(n + i). If wi = r, diagonals i and
i+ 1 must be as follows:

(10)

and the new strip must be below strip n+ i, and it has to be filled with
a larger number, i.e. σ−1(i) > σ−1(n+ i). �

Corollary 17. For a word w of length k, with k ≤ n, we have
|BST(w, n)| = (n+ k)!/2k
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This means the number of border-strip tableaux only depends on the
length of the word for n ≥ k. In contrast, this count is word dependent
for n < k.

Proof. From Proposition 14 we know ψ is injective, thus |BST(w, n)| =
|BSP(w, n)| From the conditions in Proposition 16 we know the relative
order on all pairs (i, n + i). As n ≥ k, no such entry belongs to two
such pairs, and thus |BSP(w, n)| = (n+ k)!/2k. �

Corollary 18. For every permutation σ ∈ Sn+k there is exactly one
word w of length k such that σ ∈ BSP(w, n). In particular, ψ is a
bijection between {BST(w, n) : w ∈ {r, c}k} and Sn+k and∑

w∈{r,c}k

|BST(w, n)| = (n+ k)!.

Proof. From Proposition 14 we know ψ restricted to one word is injective.
From Proposition 16 we deduce two different words cannot give the
same permutation so ψ is injective over the set of all words of length k.
On the other hand, for any permutation σ ∈ Sn+k there is always one
word w ∈ {r, c}k such that σ ∈ BSP(w, n), as we can recover the word
from the pairs (i, n+ i). Thus ψ is also surjective. �

Definition 19. If σ(i) − k > σ(i + 1), i is called a k-descent of σ.
Let DESk(σ) denote the set of k-descents of σ, and let desk(σ) be the
number of such k-descents.

Example 20. Let σ = [2, 4,10, 5, 6, 3,8, 1, 7, 9], then the 3-descents of
σ are 3 and 7, marked in bold.

Let s1, . . . , sn−1 denote the simple transpositions in Sn.

Proposition 21. Let w be a word of length k, σ ∈ BSP(w, n) and
i ∈ DESn(σ), then the border-strip tableaux ψ−1(siσ) and ψ−1(σ) give
rise to the same border-strip decomposition. Moreover,

|BSD(w, n)| = |{σ ∈ BSP(w, n) : desn(σ) = 0}|

that is, the number of elements in BSD(w, n) is the number of permu-
tations in BSP(w, n) without n-descent.

Proof. Let τ := siσ and Tσ, Tτ be the corresponding border-strip
tableaux. First we show that τ ∈ BSP(w, n). The only places where τ−1

differs from σ−1 are τ(i) and τ(i+1). As i is an n-descent, Proposition 16
does not give any condition on their order. Suppose j ∈ [k]. Then
at most one from σ−1(j) and σ−1(n + j) is different for τ−1 and the
quantities

τ−1(j)− τ−1(n+ j) and σ−1(j)− σ−1(n+ j)
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are either the same or differ by 1, so they can never have opposite signs.
Since σ ∈ BSP(w, n), the conditions in Proposition 16 are still fulfilled
for τ and we have that τ ∈ BSP(w, n).

It remains to show that Tτ and Tσ have the same border-strip de-
composition. The only strips which have a different number in Tσ and
Tτ are strip τ(i) and strip τ(i+ 1) and the new numbers differ by ±1.
Therefore, the only pair that has a different relative ordering under τ
than under σ is the pair (τ(i), τ(i+1)). However, since i is an n-descent,
it does not affect the construction in the proof of Proposition 16, and
as ψ is injective, this implies that Tσ and Tτ have the same BSD.

For the second statement, we will prove that there is exactly one
permutation without any n-descent in BSP(w, n) for a fixed border-strip
decomposition.

We claim that if there are two strips, x and y, such that the three
following conditions hold:

(1) the strips x and y are not comparable in the sense of Definition 4
(2) x > y
(3) σ−1(x) < σ−1(y)

then σ has an n-descent.
We consider the sequence σ−1(x) = a1, a1 + 1 = a2, . . . , am = σ−1(y)

and i such that σ(ai) − σ(ai+1) is maximal. If σ(ai) − σ(ai+1) ≤ n,
then we can find a subsequence σ−1(x) = ai1 , ai2 , . . . , ais = σ−1(y) such
that for all j we have |σ(aij )− σ(aij+1)| ≤ n. But then Proposition 12
implies σ(aij) and σ(aij+1) are comparable, and by transitivity, x and
y are comparable, which contradicts our assumption.

This implies to avoid an n-descent, we must fix the relative order of
all non-comparable pairs, but the relative order of comparable pairs is
always fixed, which means there is at most one permutation without
n-descent for a given decomposition.

On the other hand, we can always find such a permutation, by starting
from a permutation in BSP(w, n) and repeatedly remove n-descents
until a permutation without n-descents is obtained. �

Corollary 22. Let w ∈ {r, c}k. The set of border-strip decompositions
of the simple diagram (w, n) is in bijection with the set of permutations
in Sn+k such that for each i ∈ [k],

• wi = c =⇒ σ−1(i) < σ−1(n+ i),
• wi = r =⇒ σ−1(i) > σ−1(n+ i) and
• σ(j)− σ(j + 1) ≤ n for all j ∈ [n+ k − 1].
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Definition 23. For a word w ∈ {r, c}k let

f̂w(n) := |BSD(w, n)| (2k)!
(n− k)! . (11)

Proposition 24. Whenever n > 2k− 1, the function f̂w(n) is equal to

fw(n) =
∑

τ∈BSP(w,k)
(n+ k − desk(τ))2k. (12)

As a consequence, f̂w(n) is a polynomial in n of degree 2k with integer
coefficients when restricted to values n > 2k − 1. Moreover, fw(n) is
divisible by the falling factorial (n+ 1)k+1.

Proof. Interpreting permutations in Sn+k as sequences of n+k numbers,
we note that the first two conditions in Corollary 22 only apply to the
relative order of the first and last k elements.

Thus, in order to construct a permutation σ in Sn+k fulfilling the
three conditions in Corollary 22, we proceed in three initial steps:

(1) Choose an ordering of the entries 1, 2, . . . , k, n+1, n+2, . . . , n+k.
(2) Choose the positions of the entries 1, 2, . . . , k, n+1, n+2, . . . , n+

k.
(3) Choose an ordering of the entries k + 1, . . . , n.

Not all choices here will fulfill the conditions in Corollary 22, we shall
see below which ones are valid. For a choice in the first step, two things
might happen:

a) There is some pair (i, i+ k) in the wrong order — violating one
of the first two conditions. In this case we do not have a BST,
and thus no BSD corresponding to this choice.

b) All pairs (i, i + k) have the correct order. In this case, the
ordering of the entries

1, 2, . . . , k, n+ 1, n+ 2, . . . , n+ k

fulfill the conditions (after standardization) of being a permuta-
tion τ in BSP(w, k).

Now we need to ensure that there are no n-descents in the final permu-
tation. If there are no k-descents in τ (from step b above), this is always
the case. Otherwise, we need to insert another number after every
k-descent of τ . This means we only have

(
n+k−desk(τ)

2k

)
valid choices in

step (2). The last step always has (n− k)! valid choices as the order on
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k + 1, . . . , n does not matter. It follows that fw(n) is given by

fw(n) = (2k)!
(n− k)!

∑
τ∈BSP(w,k)

(
n+ k − desk(τ)

2k

)
(n− k)!

=
∑

τ∈BSP(w,k)
(n+ k − desk(τ))2k.

This function is obviously a polynomial of degree 2k. Furthermore,
since desk(τ) is between 0 and k − 1 it follows that (n+ k − desk(τ))2k
is divisible by (n+ 1)k+1. �

Corollary 25. We have the enumeration

|BSD(rc, n)| = (n+ 1)!(3n+ 2)/12 whenever n ≥ 2.

Proof. Using Proposition 24, we know that |BSD(rc, n)| can be ex-
pressed as (n− 2)!f̂rc(n)/4!. Since we know that f̂rc(n) is a polynomial
in n for n ≥ 4, it suffices to verify the formula for the first few values of
n. �

The sequence an+1 = (n+ 1)!(3n+ 2)/12 appear as [Slo16, A227404],
where an count the total number of inversions in all permutations in Sn
consisting of a single cycle. For example, the permutations (123) and
(132) have four inversions in total, giving a3 = 4.

Lemma 26. Let σ ∈ BSP(w, n), with Tσ being the corresponding
border-strip decomposition. Then the strips i and j in Tσ with i < j
form an inversion if and only if j − i < n and σ−1(i) > σ−1(j).

Proof. If j − i ≥ n they do not have an element on the same diagonal,
and by definition do not form an inversion. If j − i < n they share an
element on the same diagonal, and if σ−1(i) > σ−1(j) strip j is above
strip i, and we have an inversion. �

Given a border-strip decomposition T , let inv(T ) denote the total
number of inversions in T . Furthermore, for σ ∈ Sn+k let

invn(σ) := {(i, j) : 0 < j − i < n and σ−1(i) > σ−1(j)}.

The q-analogue of BSD(w, n) is defined as∑
T∈BSD(w,n)

qinv(T ) (13)

and by previous lemma we have that∑
T∈BSD(w,n)

qinv(T ) =
∑

σ∈BSP(w,n)
qinvn(σ). (14)
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Corollary 27. The q-analogue of the n×n-square, BSD(∅, n), satisfies
the identity ∑

T∈BSD(∅,n)
qinv(T ) = [n]q!.

Proof. From Proposition 16 we know all permutations in Sn are in
BSP(∅, n), from Proposition 21, we know all BST correspond to BSD,
and from the previous result we deduce the q-analogue is given by
[n]q! �

Corollary 28. We have the following q-analogue for BSD(c, n):
∑

T∈BSD(c,n)
qinvT = [n− 1]q!

n∑
i=1

iqi−1.

Proof. We get a permutation corresponding to a decomposition by
placing 1 and n + 1 (i.e. choose σ−1(1) and σ−1(n + 1)), and then
choose the order of 2, . . . , n. This choice gives [n−1]q!, and the possible
positions of 1 and n + 1 gives ∑n

i=1 iq
i−1, as 1 has to be before n + 1

for it to be a BST. Note that there cannot be any n-descents and
therefore the number of border-strip tableaux is equal to the number of
decompositions. �

Proposition 29. If w is a word of a simple diagram, then

|BSD(cw, n)|+ |BSD(rw, n)| = (n+ 1)|BSD(w)|.

Furthermore, this relation extends to the following q-analogue:∑
T∈BSD(cw,n)

qinvT +
∑

T∈BSD(rw,n)
qinvT = [n+ 1]q

∑
T∈BSD(w,n)

qinvT

Proof. If we fix the positions of the heads in (w, n), the new head in
(cw, n) must be above the strip it replaces, where as in (rw, n) it must
be below. Together, this gives n+ 1 possibilities to complete a BSD of
(w, n). If, in (cw, n) or in (rw, n), we place the new head in position i
of the diagonal, the new strip forms an inversion with all i− 1 strips
above it, thus the q-analogue. �

Corollary 30. We can count the total number of border-strip decompo-
sitions for all words of length k, more precisely:∑

w∈{r,c}k

|BSD(w, n)| = (n+ 1)kn!

and this relation extends to the q-analogue:∑
w∈{r,c}k

∑
T∈BSD(w,n)

qinvT = [n+ 1]kq [n]q!



ENUMERATION OF BORDER-STRIP DECOMPOSITIONS 13

Proof. It suffices to show the q-analogue, by taking q = 1 we obtain the
enumeration. We proceed by induction.

The base case, k = 0, is given by Corollary 27. The previous result
gives the induction step:∑

w∈{r,c}k

∑
T∈BSD(w,n)

qinvT =

∑
w∈{r,c}k−1

∑
T∈BSD(rw,n)

qinvT +
∑

w∈{r,c}k−1

∑
T∈BSD(cw,n)

qinvT =

[n+ 1]q
∑

w∈{r,c}k−1

∑
T∈BSD(w,n)

qinvT

�

If we let n = k − 1, we note that the sequence a(n) = (n+ 1)n−1n!
is A066319. This sequence also show up in [Wei12, Thm. 5.4]. Let
Kn,n+1 be the complete bipartite graph with n sources and n+ 1 sinks.
Then there are a(n) spanning trees such that every source has exactly
2 incident edges. This is related to computing the Euler characteristic
of certain moduli spaces, see [Wei12] for details. This connection is
quite interesting, as it is perhaps related to what we discuss in Section 4
below.

Recall the definition of hor(w) as the difference between the number
of occurrences of c and r in w. The following theorem shows that
“straighter” shapes admits a larger number of decompositions, in a
precise sense:

Theorem 31. If v and w are words of length k and | hor(v)| <
| hor(w)|, then

|BSD(v, n)| > |BSD(w, n)| for n sufficiently large.

In fact,
|BSD(v, n)| − |BSD(w, n)|

(n− k)! = O(n2k−1).

Proof. Recall from from Proposition 24 that

fv(n) =
∑

σ∈BSP(v,k)
(n+ k − desk(σ))2k.

From Corollary 17, we know that |BSP(v, k)| = (2k)!/22k. It then
follows that

fv(n) = (2k)!
2k n2k+αn2k−1 +l.o.t and fw(n) = (2k)!

2k n2k+βn2k−1 +l.o.t.

Our goal is to prove that α < β.
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For a fixed permutation σ ∈ BSP(v, k), its contribution to α is given
by

2k−1∑
i=0

(k − desk(σ)− i) = 2k2 − k(2k − 1)− 2k desk(σ).

Hence,
α = k|BSP(v, k)| − 2k

∑
σ∈BSP(v,k)

desk(σ).

As |BSP(v, k)| does not depend on v, the only part depending on v is

Jv :=
∑

σ∈BSP(v,k)
desk(σ),

and it suffices to prove Jv is strictly smaller for a straighter word.
To do this, we count the number of permutations where b + k is a

k−descent with a, for 1 ≤ a < b ≤ k fixed (i.e. we have . . . , b+k, a, . . .
in the permutation). To create such a permutation, we can choose the
order of all elements different from a, b, a+k, b+k in any way respecting
the orders of pairs σ(i), σ(i + k), which gives (2k − 4)!/2k−2 choices.
Then we must choose the order of the three blocks a+ k, (b+ k)a, b. If
a+ k and b are on the same side of (b+ k)a, this gives two possibilities,
otherwise there is only one way. We observe a + k and b are on the
same side if and only if va 6= vb. Finally, we can chose the position
of the three blocks a+ k, b, (b+ k)a, which gives

(
2k
3

)
choices. So the

number of permutations where b+ k is a k-descent with a is exactly2
(

2k
3

)
(2k − 4)!/2k−2 if va 6= vb(

2k
3

)
(2k − 4)!/2k−2 otherwise.

Recall Cv is the number of c’s in v, and Rv is the number of r’s in v.
The previous result implies

Jv =
(

2k
3

)
(2k − 4)!

2k−2

[(
Cv

2

)
+ 2CvRv +

(
Rv

2

)]

Since Rv = k − Cv, it follows that(
Cv

2

)
+ 2CvRv +

(
Rv

2

)
=
(
k

2

)
+ CvRv

which is increasing as | hor(v)| decreases. �

Conjecture 32. The function fw(n) uniquely define w up to isometry
of the shape w, i.e. up to exchanging r and c and reversing the word.

Note that for fixed k, the polynomials (in n)

(n+ k − i)2k with i = 0, . . . , k − 1
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are linearly independent: these span the same space as{
(n+ i)2k

(2k)!

}k
i=1

=
{(

n+ i

2k

)}k
i=1

,

and the latter collection of polynomials can be seen to be linearly
independent.

As a consequence, given fw(n), which is a sum over permutations
in BSP(w, k), for any i we can extract the number of permutations
σ ∈ BSP(w, k) with desk(σ) = i. Hence, the conjecture is reduced to
determining if the multi-set of desk-values of the elements in BSP(w, k)
uniquely determines w up to isometry.

In particular, if the number of terms without k-descents is different,
the polynomial is also different, so we can formulate the stronger con-
jecture that |BSD(w, k)| uniquely determines a word w of length k up
to isometry.

4. A connection with the Weil–Petersson volume

It follows from Corollary 22 that the set BSD(2n×n, n) is in bijection
with the set of permutations of {x1, . . . , xn, y1, . . . , yn} such that xi
appear before yi for all i, and we do not have . . . , xi, yj, . . . (consecutive),
such that i > j.

Lemma 33 (Adaptation of [Xia]). The cardinality of BSD(2n× n, n)
is given by the formula

|BSD(2n× n, n)| =
∑
p`n

(−1)|p−1| 1
m!

(
|p|
p

)(
|p+ 1|
p+ 1

)
, (15)

where m = (m1,m2, . . . ,mk) and mi is the multiplicity of i in p, and
we use the notation p± 1 := (p1± 1, . . . , pk ± 1) and |p| = p1 + · · ·+ pk.
Note that

(
|p|
p

)
and

(
|p+1|
p+1

)
denote a multinomial coefficients.

Proof. For a permutation σ ∈ S2n corresponding to a border-strip
tableau, let Γσ be the graph on the vertex set [n] with edge set

{(σ(i)− n, σ(i+ 1)) : σ(i)− n > σ(i+ 1)}.
Let G be the set of graphs obtained from such border-strip tableaux.
Let E be

(
[n]
2

)
, that is, the set of all possible edges on the vertex set

[n] and let G(e1, . . . , er) ⊆ G be the set of graphs that include the
edges {e1, . . . , er} ⊆ E. By definition, elements in BST(2n× n, n) are
in bijection with G(∅), and Proposition 21 tells us that

|BSD(2n× n, n)| = G \

 n⋃
r=1

⋃
e1,...,er∈E

G(e1, . . . , er)
 .
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Using the inclusion-exclusion principle, it follows that
|BSD(2n×n, n)| = |BST(2n×n, n)|−

∑
e1∈E
|G(e1)|+

∑
e1,e2∈E

|G(e1, e2)|−· · ·

We then observe that these graphs are characterized by the connected
components induced by the forced edges e1, . . . , er, determining a parti-
tion p of n. Furthermore, the sign in the above formula only depends
on the number of forced edges, which is equal to |p − 1|, so we can
transform this into a sum over all partitions of n. Given a partition
p ` n, the number of graphs with component sizes p1, p2, . . . , pk is given
by 1

m!

(
|p|
p

)
, with m given as above.

Claim: Let e1, e2, . . . , er be fixed edges such that the component sizes
are given by p. Then

G(e1, . . . , er) =
(
|p+ 1|
p+ 1

)
.

Proof: Suppose Γσ ∈ G(e1, . . . , er) has a component (i1, i2, . . . , ij), in
increasing order. From Proposition 16, we know σ−1(is) < σ−1(is + n)
for all 1 ≤ s ≤ j, and for (i1, i2, . . . , ij) to be connected, we need is + n
to form an n-descent with is−1 for all 1 < s ≤ j i.e. σ−1(is + n) =
σ−1(is−1)− 1.

Together these two statements imply that σ, has the following struc-
ture:

σ−1(ij) < σ−1(ij + n) l σ−1(ij−1) < σ−1(ij−1 + n) l · · ·
· · · < σ−1(i3 + n) l σ−1(i2) < σ−1(i2 + n) l σ−1(i1) < σ−1(i1 + n)

where al b means that a+ 1 = b. Thus, we have j + 1 blocks,
[σ−1(ij)], [σ−1(is+1 +n)lσ−1(is)] for s = 1, . . . , j − 1 and [σ−1(i1 +n)]
which need to appear in order, but there is no further restriction. The
number of Γσ with component sizes determined by p is therefore

(
|p+1|
p+1

)
,

which concludes the proof. �

Let us now dive into a completely different part of mathematics. The
Weil–Petersson volume, VolWP (·), is defined as

VolWP (M) := 1
(n− 3)!

∫
M
∧n−3(ωM).

where ωM is the Weil–Petersson symplectic form on M .

Let M0,n be the moduli space of an n-punctured Riemann sphere,
that is

M0,n := {(z1, . . . , zn) ∈ Ĉn : zi 6= zj}/Sn × PSL(2,C)
and Sn acts by permuting variables, and PSL(2,C) acts as a linear
fractional transformation.
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Theorem 34 ([Zog93]). The Weil–Petersson volume of the moduli
space of an n-punctured Riemann sphere M0,n is given by the formula

VolWP (M0,n) = π2(n−3)vn
n!(n− 3)! , for n ≥ 4,

where the sequence vn for n ≥ 3, v3 = 1 be defined via the recursion

vn = 1
2

n−3∑
i=1

i(n− i− 2)
n− 1

(
n− 4
i− 1

)(
n

i+ 1

)
vi+2vn−i, n ≥ 4. (16)

This sequence shows up as A115047 in the OEIS, [Slo16], see [KMZ96,
Mat01] for more background.

In [KMZ96, Equation (0.7)], the following relationship is shown

Proposition 35. Let the sequence vn be defined as in (16). Then

vn =
n−3∑
k=1

(−1)n−3−k

k!
∑

m1,...,mk>0
m1+···+mk=n−3

(
n− 3

m1, . . . ,mk

)(
n− 3 + k

m1 + 1, . . . ,mk + 1

)
.

We are now ready to prove the following connection between the
sequence v(n) and border-strip decompositions:

Theorem 36. Let

a(n) = 1
2

n∑
i=1

i(n− i+ 1)
(n+ 2)

(
n− 1
i− 1

)(
n+ 3
i+ 1

)
a(i− 1)a(n− i). (17)

and let vn be given as in (16). Then a(n) = vn+3 = |BSD(2n× n, n)|.

Proof. The first equality, vn+3 = a(n) follows from comparing (16) and
(17). It is a straightforward calculation to verify that these are equal.

To get the second identity, note that we can get the formula in Propo-
sition 35 from Equation (15) by replacing partitions with compositions,
and then refining the sum over the number of parts (denoted k in
Proposition 35). �

5. Further directions

Given the connection with Euler characteristics of moduli spaces
mentioned after Corollary 30, and the connection with moduli spaces
in Theorem 36, is there a generalization of this mysterious connection?
For example, there are formula for the volumes of surfaces of other
genus, see [Mat01].

Another interesting direction is to consider the q-analogue of border-
strip tableaux rather than decompositions.
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