A DUAL-RADIX APPROACH TO STEINER'S 1-CYCLE THEOREM

ANDREY RUKHIN

Abstract

This article presents a variety of algebraic proofs of Steiner's 1-Cycle Theorem [12]. It also demonstrates that, under an exponential upper-bound on the iterates, the only 1 -cycles in the (accelerated) $3 x-1$ dynamical system are (1) and $(5,7)$.

1. Introduction

Within the context of the $3 x+1$ Problem, Steiner's 1-cycle Theorem [12] is a result pertaining to the non-existence of 1 -cycles (or circuits): for all $a, b \in \mathbb{N}$, Steiner shows that a rational expression of the form

$$
\begin{equation*}
\frac{2^{a}-1}{2^{a+b}-3^{b}} \tag{1}
\end{equation*}
$$

does not assume a positive integer value except in the case where $a=b=1$. In the proof, the author appeals to the continued fraction expansion of $\log _{2} 3$, transcendental number theory, and extensive numerical computation (see [11]). This argument serves as the basis for demonstrating the non-existence of 2-cycles in [10], and the non-existence of m-cycles in [11] where $m \leq 68$.

However, the author in [7] declares that the "most remarkable thing about [the theorem] is the weakness of its conclusion compared to the strength of the methods used in its proof." This article offers alternative proofs of this theorem using a variety of algebraic approaches; assuming the upper bound on periodic iterates established in [1], these proofs exploit that fact that the denominator in the above expression is coprime to both 2 and 3 : this work simultaneously analyzes the residues of the circuit elements in a 2 -adic and 3 -adic setting. Based on the results in [9], the first proof employs elementary modular arithmetic, the second exploits identities on weighted binomial coefficients, and the third proof analyzes the 2 -adic and 3 -adic digits of such rational expressions.

2. Overview

2.1. Notation. This manuscript inherits all of the notation and definitions established in [9], which we summarize here. Let $\tau \in \mathbb{N}$, and let m and l be coprime integers exceeding 1. Let $\mathbf{e}, \mathbf{f} \in \mathbb{N}^{\tau}$ where $\mathbf{e}=\left(e_{0}, \ldots, e_{\tau-1}\right)$ and $\mathbf{f}=\left(f_{0}, \ldots, f_{\tau-1}\right)$. For each $u \in \mathbb{Z}$, define $E_{u}=\sum_{0 \leq w<u} e_{w \bmod \tau}$ and $\bar{E}_{u}=\sum_{0 \leq w<u} e_{(\tau-1-w) \bmod \tau}$; we will define F_{u} and \bar{F}_{u} in an analogous manner with the elements of \mathbf{f}.

[^0]For any integer a and positive base $b(b \geq 1)$, let $[a]_{b}$ denote the element ${ }^{1}$ of $[b)_{0}$ that satisfies the equivalence $[a]_{b} \equiv a \bmod b$. We may also express this element as $a \bmod b$. We will also write $[a]_{b}^{-1}$ to denote the element in $[b)_{0}$ that satisfies the equivalence $[a]_{b}[a]_{b}^{-1} \equiv 1$.

We will write $(-)^{n}=(-1)^{n}$ for each $n \in \mathbb{N}$.
2.2. Argument Overview. This dual-radix approach to the non-existence of circuits is based upon the following premises:
i. Let $\tau \in \mathbb{N}$, let m and l be coprime integers exceeding 1 , and let n be a periodic orbit element from a given (m, l)-system of order τ satisfying the equivalences $\mu_{\tau} \equiv$ $n \bmod m^{F_{\tau}}$ and $\lambda_{\tau} \equiv n \bmod l^{\bar{E}_{\tau}}$, where μ_{τ} and λ_{τ} are the canonical representatives of their corresponding equivalence classes.

In [9], the equalities

$$
n=\frac{\sum_{0 \leq w<\tau} m^{F_{w}} l^{\bar{E}_{\tau-1-w}} a_{w}}{l^{\bar{E}_{\tau}}-m^{F_{\tau}}}=\mu_{\tau}+m^{F_{\tau}}\left(\frac{\mu_{\tau}-\lambda_{\tau}}{l^{\bar{E}_{\tau}}-m^{F_{\tau}}}\right)=\lambda_{\tau}+l^{\bar{E}_{\tau}}\left(\frac{\mu_{\tau}-\lambda_{\tau}}{l^{\bar{E}_{\tau}}-m^{F_{\tau}}}\right)
$$

have been demonstrated for an admissible sequence of translation values $\mathbf{a}=\left(a_{0}, \ldots, a_{\tau-1}\right)$; consequently, the denominator $l^{\bar{E}_{\tau}}-m^{F_{\tau}}$ divides the sum $\sum_{0 \leq w<\tau} m^{F_{w}} l^{\bar{E}_{\tau-1-w}} a_{w}$ if and only if it divides the arithmetic difference of canonical representatives $\mu_{\tau}-\lambda_{\tau}$. Furthermore, as $\mu_{\tau} \in\left[m^{F_{\tau}}\right)_{0}$ and $\lambda_{\tau} \in\left[l^{E_{\tau}}\right)_{0}$, the iterate $n \in \mathbb{N}$ if and only if $\mu_{\tau}-\lambda_{\tau} \in D \mathbb{N}_{0}$.
ii. In the cases where $m=3, l=2, \mathbf{f}=\mathbf{1}^{\tau}=\mathbf{a}$, we apply the argument outlined in [9]: we will establish an upper bound of 3^{τ} for a potential, periodic iterate value over \mathbb{N} for the $3 x+1$ Problem. In this context, the authors in [1] have demonstrated that the maximal iterate $n_{\max }$ within a periodic orbit admits the upper bound

$$
\begin{equation*}
n_{\max }<\frac{\left(\frac{3}{2}\right)^{\tau-1}}{1-\frac{3^{\tau}}{2^{\overline{E_{\tau}}}}} \leq \tau^{C}\left(\frac{3}{2}\right)^{\tau-1}=o\left(3^{\tau-1}\right) \tag{2}
\end{equation*}
$$

for some effectively computable constant C (by applying the result in [13]). A recent upper bound on C is available in [8], in which the author establishes the inequality

$$
\begin{equation*}
\left|-\bar{E}_{\tau} \log 2+\tau \log 3\right| \geq \bar{E}_{\tau}^{-13.3} \tag{3}
\end{equation*}
$$

(in their notation, we set $u_{0}=0, u_{1}=-\bar{E}_{\tau}$, and $u_{2}=\tau$); consequently, assuming $2^{\bar{E}_{\tau}}>3^{\tau}$, we can bound ${ }^{2}$ the denominator in (2) from below

$$
1-\frac{3^{\tau}}{2^{\bar{E}_{\tau}}} \geq \frac{\bar{E}_{\tau}^{-13.3}}{2}
$$

[^1]According to [3], in a periodic orbit over \mathbb{N} of length \bar{E}_{τ}, the ratio $\frac{\bar{E}_{\tau}}{\tau}$ satisfies the inequality

$$
\frac{\bar{E}_{\tau}}{\tau} \leq \lg \left(3+\frac{1}{n_{\min }}\right) \leq 2
$$

numerical computation yields

$$
n_{\max }<\left(\frac{3}{2}\right)^{\tau-1} 2 \cdot(2 \tau)^{13.3}<3^{\tau}
$$

when $\tau \geq 103$.
Thus, if $n_{\max }>3^{\tau}$ and $n_{\max } \in \mathbb{N}$, then $\tau<103$. However, the author in [5] demonstrates that the length of a non-trivial periodic orbit (excluding 1) over \mathbb{N} must satisfy the inequality $2 \tau \geq \bar{E}_{\tau} \geq 35,400$.

Thus, if $n \in \mathbb{N}$, then $n<3^{\tau}$, and the equalities

$$
n=\mu_{\tau}=\lambda_{\tau}
$$

must hold.
iii. Within a circuit of order τ in the (accelerated) $3 x+1$ dynamical system, the maximal element equals

$$
\frac{\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}}{2^{e+\tau-1}-3^{\tau}}=2 \cdot 3^{\tau-1}\left(\frac{2^{e-1}-1}{2^{e+\tau-1}-3^{\tau}}\right)-1
$$

for some $e \in \mathbb{N}$ (see [2]).
When $\tau=1$, we note that $2^{e}-3=2^{e-1}-1+2^{e-1}-2 \geq 2^{e-1}-1$ for $e \geq 2$; thus the ratio in (1), evaluated at $a=e-1$ and $b=1$, is at most one. When $e=1$, the left-hand side of the equality above is negative, and the ratio in (1) vanishes.

When $\tau>1$, we will analyze the difference of canonical residues

$$
\mu_{\tau}=\left[\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[2^{e+\tau-1}\right]^{-1} \bmod 3^{\tau}
$$

and

$$
\lambda_{\tau}=\left[\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[-3^{\tau}\right]^{-1} \bmod 2^{\bar{E}_{\tau}}
$$

we will show that the difference $\mu_{\tau}-\lambda_{\tau}$ is non-zero (contradicting the assumption that $n=\mu_{\tau}=\lambda_{\tau}<3^{\tau}$ as per above).

We will also perform similar analyses on the maximal element of a circuit within the (accelerated) $3 x-1$ dynamical system; we will show that, assuming ${ }^{3}$ the inequality $n<2^{\bar{E}_{\tau}}$, a circuit over \mathbb{N} exists if and only if either $e=1$, or $\tau=e=2$.

[^2]
3. Circuits in $(3,2)$-Systems

Throughout the remainder of the manuscript, unless otherwise stated, we assume that
i. $\tau \in \mathbb{N}$ with $\tau \geq 2$;
ii. $(m, l)=(3,2)$;
iii. $\mathbf{f}=(1, \ldots, 1) \in \mathbb{N}^{\tau}$;
iv. $\mathbf{e}=(\underbrace{1, \ldots, 1}_{\tau-1}, e)$ for some $e \in \mathbb{N}$; and
v. $\mathbf{a}=\left(a_{0}, \ldots, a_{\tau-1}\right) \in\{-1,+1\}^{\tau}$.

We begin with the following assumptions.
Assumptions 3.1. Assume 3.1 and 3.3 from [9], and let $\mathbf{a}=\mathbf{1}^{\tau}$. Let $N=\sum_{0 \leq w<\tau} 3^{w} 2^{e+\tau-2-w}=$ $\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}$, and let $D=2^{e+\tau-1}-3^{\tau}$ where $D>0$.

Assume that

$$
n=\frac{N}{D}<\min \left(3^{\tau}, 2^{\bar{E}_{\tau}}\right)
$$

let $\mu_{\tau}=n \bmod 3^{\tau}$ denote the 3 -residue of n, and let $\lambda_{\tau}=n \bmod 2^{e+\tau-1}$ denote the $\mathbf{2}$ residue of n.

Under these assumptions, if $n \in \mathbb{N}$, then the chain of equalities

$$
n=\mu_{\tau}=\lambda_{\tau}
$$

holds.
Our goal for the remainder of this subsection is to prove the following theorem:
Theorem 3.1. Assume 3.1.
We have the equalities

$$
\mu_{\tau}= \begin{cases}3^{\tau-1}-1 & e \overline{\overline{\overline{2}}} 0 \\ 3^{\tau}-1 & e \overline{\overline{=}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\overline{2}} 0$, and

$$
\mu_{\tau}= \begin{cases}2 \cdot 3^{\tau-1}-1 & e \overline{\overline{2}} 0 \\ 3^{\tau}-1 & e \overline{\overline{\overline{2}}} 1\end{cases}
$$

when $\tau \overline{\overline{2}} 1$.
Furthermore, when $\tau \overline{\overline{2}} 1 \underset{\overline{2}}{\overline{2}} e-1$, then

$$
\lambda_{\tau}=2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3}=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3} .
$$

For completeness, we have

$$
\lambda_{\tau}= \begin{cases}\frac{\left(2^{\tau-1}-1\right) 2^{e}-1}{3} & e \overline{\overline{2}} 0 \\ 2^{e+\tau-1}-\frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\equiv} 0$, and

$$
\lambda_{\tau}= \begin{cases}\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3} & e \overline{\overline{2}} 0 \\ 2^{e+\tau-1}-\frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\equiv} 1$. However, in order to expedite the proofs, we exclude three out of four cases when the corresponding canonincal 3-residue μ_{τ} is even (assuring the inequality $\mu_{\tau} \neq \lambda_{\tau}$). We exclude the remaining case with the following lemma.

Lemma 3.2. Assume that $\tau \overline{\overline{2}} 1 \underset{\overline{2}}{ } e-1$; furthermore, assume that

$$
\mu_{\tau}=2 \cdot 3^{\tau-1}-1
$$

and

$$
\lambda_{\tau}=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3}
$$

The inequality $\mu_{\tau} \neq \lambda_{\tau}$ holds.
Proof. By way of contradiction, assume e satisfies the equality

$$
2 \cdot 3^{\tau-1}-1=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3}
$$

equivalently, we require that the equality

$$
2\left(3^{\tau}-1\right)=\left(2^{\tau}-1\right) 2^{e}
$$

holds. However, we have

$$
\frac{3^{\tau}-1}{2} \overline{\overline{2}} \sum_{0 \leq w<\tau} 3^{w} \overline{\overline{2}} 1
$$

for all odd, positive τ. When $e=2$, the value of τ must satisfy the equality

$$
2^{\tau+1}=3^{\tau}+1
$$

equivalently, we require that

$$
2-\frac{1}{2^{\tau}}=\left(\frac{3}{2}\right)^{\tau}
$$

however, this equality fails to hold for $\tau>1$.

Lemma 3.2, Assumptions 3.1, and Theorem 3.1, along with the bounds provided in [11], [3], and [5], demonstrate the non-existence of circuits in the $3 x+1$ dynamical system.

Before proceeding, we remind the reader of some elementary identities.
Identity 3.1. Let a and b be coprime, positive integers.
i. If $g, h \in \mathbb{N}$ with $h>g$, then $b^{g} a \underset{b^{h}}{\equiv} b^{g}[a]_{b^{h-g}}$;
ii. $[a]_{b}^{-1}=\frac{b[-b]_{a}^{-1}+1}{a}$;
iii. if $a>b$, then $[a-b]_{b}^{-1}=[a]_{b}^{-1}=\frac{b \gamma+1}{a-b}$ for some $\gamma \in[a-b)_{0}$;
iv. if $a>b$, then $[a-b]_{a}^{-1}=[-b]_{a}^{-1}=\frac{a \gamma+1}{a-b}=\gamma+[a-b]_{b}^{-1}$.

Proof. The elementary proofs of these identities are left to the reader. Note that
i : if $a=[a]_{b^{h}}+b^{h} u$ for some $u \in \mathbb{Z}$, then

$$
b^{g} a=b^{g}[a]_{b^{h}}+b^{g+h} u=b^{g}\left([a]_{b^{h-g}}+b^{h-g} a^{\prime}\right)+b^{g+h} u=b^{g}[a]_{b^{h-g}}+b^{h} u^{\prime}
$$

for some $a^{\prime} \in \mathbb{N}$;
$i v, v:$ as $a \underset{a-b}{\equiv} b$, we can write $\gamma \underset{a-b}{\equiv}[-a]^{-1} \underset{a-b}{\equiv}[-b]^{-1}$.
3.1. Elementary Modular Arithmetic. Our first proof of Theorem 3.1 appeals to elementary modular arithmetic.

Proof. We can write

$$
\begin{aligned}
\mu_{\tau} & \equiv \overline{\overline{3^{\tau}}} \\
& N D^{-1} \\
& \overline{\overline{3^{\tau}}}\left[\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[2^{e+\tau-1}\right]_{3^{\tau}}^{-1} \\
& \equiv \overline{\overline{3^{\tau}}}\left[\left[2^{\tau-1}\right]_{3^{1}}^{-1}+\left[2^{e+\tau-1}\right]_{3^{1}}^{-1}\right] 3^{\tau-1}-1 .
\end{aligned}
$$

It follows that

$$
\mu_{\tau} \overline{\overline{3^{\tau}}} 3^{\tau-1}(-1)^{\tau-1}\left[1+(-1)^{e}\right]-1
$$

Thus, when $e \overline{\overline{2}} 1$, we have $\mu_{\tau}=3^{\tau}-1 \overline{\overline{2}} 0$. Similarly, when $e \underset{2}{\overline{=}} 0$ and $\tau \equiv 0$, we have $\mu_{\tau}=3^{\tau-1}-1 \overline{\overline{2}} 0$ 。

When $\tau \overline{\overline{2}} 1 \overline{\overline{2}} e-1$, we arrive at the equality $\mu_{\tau}=2 \cdot 3^{\tau-1}-1$.
For the 2-residue, we begin by writing

$$
\begin{aligned}
& \lambda_{\tau} \underset{2^{e+\tau}-1}{\bar{\equiv}} N D^{-1} \\
& \underset{2^{e+\tau}-1}{\overline{\overline{1}}}\left[\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[-3^{\tau}\right]_{2^{e+\tau-1}}^{-1} \\
& \underset{2^{e+\tau}-1}{\equiv} 2^{e}[-3]_{2^{\tau-1}}^{-1}+[-3]_{2^{e+\tau-1}}^{-1} .
\end{aligned}
$$

When $\tau \underset{\overline{2}}{\overline{\overline{2}}} \overline{\overline{2}} e-1$, we have $\left[-3^{1}\right]_{2^{\tau-1}}^{-1}=\frac{2^{\tau-1}-1}{3}$ and $\left[-3^{1}\right]_{2^{e+\tau-1}}^{-1}=\frac{2^{e+\tau-1}-1}{3}$.
As

$$
2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3}=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3}<2^{e+\tau-1}
$$

we arrive at the equality

$$
\lambda_{\tau}=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3}
$$

3.2. Weighted Binomial Coefficients. The previous approach is apparently limited; it is unclear to the author how to extrapolate this approach to admissible sequences of order τ with an arbitrary $\mathbf{2}$-grading $\left(e_{0}, \ldots, e_{\tau-1}\right)$. In this subsection, we introduce a more robust approach to identifying the 3 -residues and 2 -residues of the iterates of an admissible cycle in a (3,2)-system. Moreover, we do so by connecting the residues of (3,2)-systems to the well-known Fibonacci sequence by way of elementary equivalence identities, which we establish first.

Lemma 3.3. For $a, b, z \in \mathbb{N}$, the equivalence

$$
\left(\sum_{0 \leq w<b} z^{w}\right)^{a} \equiv \sum_{z^{b}} \sum_{0 \leq w<b}\binom{a-1+w}{w} z^{w}
$$

holds.
Proof. Define $S_{b}(z)=\sum_{0 \leq w<b} z^{w}$, and define $T_{a, b}(z)=\sum_{0 \leq w<b}\binom{a-1+w}{w} z^{w}$. The proof is by induction on b.

When $b=1$, we arrive at the equivalence $1^{a} \equiv\binom{a-1}{0}$ for all $a, z \in \mathbb{N}$.
Assume the claim holds for $b \in \mathbb{N}$. The identity $S_{b+1}(z)=z S_{b}(z)+1$ allows the chain of equivalences

$$
\begin{aligned}
{\left[S_{b+1}(z)\right]^{a} } & \underset{z^{b+1}}{\equiv} \sum_{0 \leq y<b+1}\binom{a}{y} z^{y}\left[S_{b}(z)\right]^{y} \\
& \equiv \begin{array}{l}
\overline{z^{b+1}}
\end{array}\binom{a}{0} z^{0}+\sum_{1 \leq y<b+1}\binom{a}{y} z^{y} T_{y, b}(z)
\end{aligned}
$$

We will recast the coefficient of z^{0} as $\binom{a-1}{0}$, and we will write

$$
\sum_{1 \leq y<b+1}\binom{a}{y} z^{y} T_{y, b}(z)=\sum_{1 \leq y<b+1} \sum_{0 \leq u<b} z^{u+y}\binom{a}{y}\binom{y-1+u}{u}
$$

For each $w \in[b+1)$, the coefficient of z^{w} is $\sum_{1 \leq y \leq w}\binom{a}{y}\binom{w-1}{w-y}=\sum_{0 \leq y<w}\binom{a}{w-y}\binom{w-1}{y}$, which equals $\binom{a-1+w}{w}$ as per the Vandermonde-Chu identity.

Identity 3.2 (Fibonacci Identity). Let $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The equality

$$
F_{n}=\sum_{0 \leq k<n}\binom{n-1-k}{k}
$$

holds.
We will use this identity to establish the residue approximation functions for (3, 2)systems.

Lemma 3.4. Define the map $M_{\tau}: \mathbb{N}^{\tau} \times \mathbb{N}^{\tau} \rightarrow \mathbb{Z}$ to be

$$
M_{\tau}=M_{\tau}(\mathbf{e}, \mathbf{a})=\sum_{0 \leq w<u}(-)^{E_{w+1}} 3^{w} a_{w} \sum_{0 \leq y<\tau-w}\binom{E_{w+1}-1+y}{y} 3^{y}
$$

and define the map $\Lambda_{\tau}: \mathbb{N}^{\tau} \times \mathbb{N}^{\tau} \rightarrow \mathbb{Z}$ to be

$$
\Lambda_{\tau}=\Lambda_{\tau}(\mathbf{e}, \mathbf{a})=\sum_{0 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}} a_{\tau-1-w} \sum_{0 \leq y<\eta_{w}}\binom{w+y}{y} 4^{y}
$$

where $\eta_{w}=\left\lceil\frac{E_{\tau-w}}{2}\right\rceil$.
Then, the equivalences $M_{\tau} \underset{\overline{3}^{\tau}}{\equiv} \mu_{\tau}$ and $\Lambda_{\tau} \underset{2^{\overline{\bar{E}_{\tau}}}}{ } \lambda_{\tau}$ hold.
Proof. We will make use of the following elementary identities involving Euler's totient function ϕ : we have $3^{\phi(2)}-1=2$ and $2^{\phi(3)}-1=3$. In light of these identities, we will appeal to Lemma 3.3: for $a, b \in \mathbb{N}$, we will write

$$
\left[2^{a}\right]^{-1} \overline{\overline{3^{b}}}\left(\frac{1-3^{\phi(2)\left\lceil\frac{b}{\phi(2)}\right\rceil}}{2}\right)^{a} \equiv \overline{\overline{3^{b}}}(-)^{a}\left(\sum_{0 \leq y<b} 3^{y}\right)^{a} \underset{3^{b}}{\overline{\bar{b}}}(-)^{a} \sum_{0 \leq y<b}\binom{a-1+y}{y} 3^{y}
$$

and

$$
\left[3^{b}\right]^{-1} \underset{\overline{2^{a}}}{\bar{a}}\left(\frac{1-2^{\phi(3)\left\lceil\frac{a}{\phi(3)}\right\rceil}}{3}\right)^{b} \underset{\overline{2^{a}}}{\equiv}(-)^{b}\left(\sum_{0 \leq y<\left\lceil\frac{a}{2}\right\rceil} 4^{y}\right)^{b} \overline{\overline{2^{a}}}(-)^{b} \sum_{0 \leq y<\left\lceil\frac{a}{2}\right\rceil}\binom{b-1+y}{y} 4^{y} .
$$

We derive the 3-residue approximation function as follows:

$$
\begin{aligned}
\mu_{\tau} & \overline{\overline{3^{\tau}}}\left[N D^{-1}\right]_{3^{\tau}} \\
& \overline{\overline{3^{\tau}}} \sum_{0 \leq w<\tau} 3^{w} 2^{\bar{E}_{\tau-1-w}} a_{w}\left[2^{\bar{E}_{\tau}}\right]^{-1} \\
& \overline{\overline{3^{\tau}}} \sum_{0 \leq w<\tau} 3^{w} a_{w}\left[2^{E_{w+1}}\right]_{3^{\tau-w}}^{-1} \\
& \overline{\overline{3^{\tau}}} \sum_{0 \leq w<\tau}(-)^{E_{w+1}} 3^{w} a_{w} \sum_{0 \leq y<\tau-w}\binom{E_{w+1}-1+y}{y} 3^{y} .
\end{aligned}
$$

We derive the 2-residue approximation function as follows:

$$
\begin{aligned}
& \lambda_{\tau} \quad{ }_{2^{\bar{E}_{\tau}}}\left[N D^{-1}\right]_{2^{\bar{E}_{\tau}}} \\
& \quad{ }_{2^{\bar{E}_{\tau}}} \sum_{0 \leq w<\tau} 3^{w} 2^{\bar{E}_{\tau-1-w}} a_{w}\left[-3^{\tau}\right]^{-1} \\
& \quad{ }_{2^{\bar{E}_{\tau}}} \sum_{0 \leq w<\tau}-2^{\bar{E}_{\tau-1-w}} a_{w}\left[3^{\tau-w}\right]_{2^{E_{w+1}}}^{-1} \\
& \quad{ }_{2^{\bar{E}_{\tau}}} \sum_{0 \leq w<\tau}(-)^{\tau-1-w} 2^{\bar{E}_{\tau-1-w}} a_{w} \sum_{0 \leq y<\left\lceil\frac{E_{w+1}}{2}\right\rceil}\binom{\tau-1-w+y}{y} 4^{y} \\
& \quad{ }_{2^{\bar{E}_{\tau}}} \sum_{0 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}} a_{\tau-1-w} \sum_{0 \leq y<\eta_{w}}\binom{w+y}{y} 4^{y} .
\end{aligned}
$$

It will prove useful to re-index these double-sums: for example, in the 3 -residue approximation, for each fixed $w \in[\tau)_{0}$ the coefficient of 3^{w} is

$$
S_{w}=\sum_{0 \leq y \leq w}(-)^{E_{y+1}}\binom{E_{y+1}-1+w-y}{w-y} a_{y}
$$

thus, we can write $M_{\tau}=\sum_{0 \leq w<\tau} 3^{w} S_{w}$.
The following example will illustrate the connection between an orbit over \mathbb{N} within the $3 x+1$ dynamical system and the Fibonacci Sequence.
3.2.1. Example: The $(1,4,2)$-Orbit in the $3 x+1$ Dynamical System. For this example, define $e_{w}=2$ and $a_{w}=1$ for each $w \in[\tau)_{0}$. The sum $E_{w+1}=2(w+1) \overline{\overline{2}} 0$ for all $w \in[\tau]_{0}$; therefore, we can express the 3-residue approximation as $M_{\tau}=\sum_{0 \leq w<\tau} 3^{w} S_{w}$, where

$$
S_{w}:=\sum_{0 \leq y \leq w}\binom{2(y+1)-1+w-y}{w-y}=\sum_{0 \leq y \leq w}\binom{2 w+1-y}{y}
$$

The sequence $\left(S_{w}\right)_{w \geq 0}$ is the even-indexed bisection of the Fibonacci sequence $\left(F_{w}\right)_{w \geq 0}$ as per Identity 3.2; we have $S_{w}=F_{2(w+1)}$ for $w \geq 0$. It is known ${ }^{4}$ that this bisection ${ }^{5}$ satisfies the recurrence ${ }^{6} F_{2 w}=3 F_{2(w-1)}-F_{2(w-2)}$ for $w \geq 0$; thus, induction yields the identity $M_{\tau}=3^{\tau} F_{2(\tau-1)}+1$ for $\tau \in \mathbb{N}$.

For the 2-residue approximation, we have the equalities

$$
\Lambda_{\tau}=\sum_{0 \leq w<\tau} 4^{w} \sum_{0 \leq y \leq w}\binom{w}{y}(-1)^{y}=\sum_{0 \leq w<\tau} 4^{w}(1-1)^{w}=1
$$

[^3]for $\tau \in \mathbb{N}$.
The Fibonacci sequence appears within the 2 -residue approximation for the following proof of Theorem 3.1. In order to expedite the derivation of this 2 -residue, we will first prove the following lemma.

Lemma 3.5. For $a \in \mathbb{N}$, let F_{a} denote the a-th Fibonacci number; furthermore, for $k \in \mathbb{N}_{0}$, define $\sigma(a, k)=2\binom{a+1}{k}-\binom{a}{k}$, and define $\mathcal{S}(k)=\sum_{0 \leq i<k} \sigma(2 k-i, i+1)$.

We have the equality $\mathcal{S}(0)=0$, and, for $k>0$, the equality

$$
\mathcal{S}(k)=F_{2 k+2}+2 F_{2 k+1}-3
$$

holds.
Proof. Assume the conditions within the statement of the lemma. Clearly, $\mathcal{S}(0)=0$. As per Identity 3.2 , when $k>0$, we will write

$$
\begin{aligned}
\mathcal{S}(k) & =\sum_{0 \leq i<k}\left[2\binom{2 k-i+1}{i+1}-\binom{2 k-i}{i+1}\right] \\
& =\sum_{1 \leq i<k+1}\left[2\binom{2 k+2-i}{i}-\binom{2 k+1-i}{i}\right] \\
& =2\left[F_{2 k+3}-\binom{2 k+2}{0}-\binom{k+1}{k+1}\right]-\left[F_{2 k+2}-\binom{2 k+1}{0}\right] \\
& =F_{2 k+2}+2 F_{2 k+1}-3 .
\end{aligned}
$$

We proceed with the proof of the theorem.

Proof. First, we will demonstrate the equality

$$
M_{\tau}=-1+3^{\tau-1}(-1)^{\tau-1}\left[1+(-1)^{e}\right] ;
$$

afterwards, by assuming $\tau \underset{\overline{2}}{\overline{2}} \overline{\overline{2}} e-1$, we will show that

$$
\Lambda_{\tau}=2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3}+2^{e+\tau-1}\left(F_{\tau-2}-1\right)
$$

In circuits, we have

$$
E_{w}= \begin{cases}w & w<\tau \\ e+\tau-1 & w=\tau\end{cases}
$$

and $\bar{E}_{w}=e+w-1$ for $w \in[\tau)$. Thus, when $w<\tau-1$, we have

$$
\begin{aligned}
S_{w} & =\sum_{0 \leq y \leq w}(-)^{E_{y+1}}\binom{E_{y+1}-1+w-y}{w-y} \\
& =\sum_{0 \leq y \leq w}(-)^{y+1}\binom{w}{w-y} \\
& =-\sum_{0 \leq y \leq w}(-)^{w-y}\binom{w}{y} \\
& =-(1-1)^{w} \\
& =\left\{\begin{array}{cc}
0 & w>0 \\
-1 & w=0 .
\end{array}\right.
\end{aligned}
$$

when $w=\tau-1 \geq 1$, we have

$$
\begin{aligned}
S_{\tau-1} & =\sum_{0 \leq y \leq \tau-1}(-)^{E_{y+1}}\binom{E_{y+1}-1+\tau-1-y}{\tau-1-y} \\
& =\sum_{0 \leq y \leq \tau-2}(-)^{y+1}\binom{\tau-1}{\tau-1-y}+(-)^{e+\tau-1}\binom{e+\tau-2}{0} \\
& =-(1-1)^{\tau-1}+(-)^{\tau-1}\binom{\tau-1}{\tau-1}+(-)^{e+\tau-1}\binom{e+\tau-2}{0} \\
& =(-)^{\tau-1}\left[1+(-1)^{e}\right] .
\end{aligned}
$$

It follows that

$$
M_{\tau}=-1+3^{\tau-1}(-1)^{\tau-1}\left[1+(-1)^{e}\right] .
$$

Thus, when $e \overline{\overline{2}} 1$, we have $\mu_{\tau}=3^{\tau}-1$. Similarly, when $e \overline{\overline{2}} 0$ and $\tau \overline{\overline{2}} 0$, we have $\mu_{\tau}=3^{\tau-1}-1$.

When $\tau \overline{\overline{2}} 1 \overline{\overline{2}} e-1$, we arrive at the equality $\mu_{\tau}=2 \cdot 3^{\tau-1}-1$. Continuing with these parity conditions, we let T_{w} denote the sum $\sum_{0 \leq y<\left\lceil\frac{E_{\tau-w}}{2}\right\rceil}\binom{w+y}{y} 4^{y}$. We write

$$
\begin{aligned}
\Lambda_{\tau} & =\sum_{0 \leq w<\tau}(-)^{w} 2^{E_{w}} T_{w} \\
& =T_{0}+\sum_{1 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}} T_{w} \\
& =\sum_{0 \leq y<\frac{e+\tau-1}{2}}\binom{y}{y} 4^{y}+\sum_{1 \leq w<\tau}(-)^{w} 2^{E_{w}}\binom{w}{0}+\sum_{1 \leq w<\tau}(-)^{w} 2^{E_{w}}\left[T_{w}-\binom{w}{0}\right] .
\end{aligned}
$$

We proceed with the first two sums in this expression. When $e+\tau-1 \underset{\overline{2}}{\overline{2}} 0$, we can write

$$
T_{0}=\sum_{0 \leq y<\frac{e+\tau-1}{2}}\binom{y}{y} 4^{y}=\frac{2^{e+\tau-1}-1}{3}
$$

furthermore, as $\tau-1 \underset{\overline{2}}{\overline{1}} 0$, we can also write

$$
\begin{gathered}
\sum_{1 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}} \sum_{2^{e+\tau}-1}^{\equiv} 2^{e} \sum_{0 \leq w<\tau-1}(-)^{w+1} 2^{w} \\
2^{e+\tau}-1 \\
\equiv 2^{e} \sum_{0 \leq w<\frac{\tau-1}{2}}\left[2^{2 w+1}-2^{2 w}\right] \\
2^{e+\tau}-1 \\
\equiv 2^{e} \sum_{0 \leq w<\frac{\tau-1}{2}} 4^{w} \\
2^{e} \equiv 2^{e+\tau}-\left(\frac{2^{\tau-1}-1}{3}\right)
\end{gathered}
$$

What remains to be shown is that

$$
\sum_{1 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}}\left[T_{w}-\binom{w}{0}\right] \underset{2^{e+\tau}-1}{\overline{=}} 0
$$

To this end, for each $k \in \mathbb{N}$, we will define

$$
\widehat{\Lambda}_{2 k+1}=\sum_{1 \leq w<2 k-1}(-)^{w} 2^{w-1} \sum_{1 \leq y<\left\lceil\frac{2 k+1-w}{2}\right\rceil}\binom{w+y}{y} 4^{y} ;
$$

we will show that

$$
\sum_{1 \leq w<\tau}(-)^{w} 2^{\bar{E}_{w}}\left[T_{w}-\binom{w}{0}\right]=2^{e} \widehat{\Lambda}_{\tau}=2^{e+\tau-1}\left(F_{\tau-2}-1\right)
$$

Assume the notation from the statement of Lemma 3.5. We will demonstrate the chain of equalities

$$
\widehat{\Lambda}_{2 k+1}=\widehat{\Lambda}_{2 k-1}+4^{k-1} \mathcal{S}(k-1)=4^{k}\left(F_{2 k-1}-1\right)
$$

inductively for $k \in \mathbb{N}$. Firstly, we have

$$
\widehat{\Lambda}_{3}=0=4^{0} \mathcal{S}(0)=4^{0}\left(F_{1}-1\right)
$$

for $k=1$. Assuming the inductive claim, we proceed with the chain of equalities for $k \geq 2$:

$$
\begin{aligned}
\widehat{\Lambda}_{2 k+1} & =\sum_{1 \leq w<2 k-1}(-)^{w} 2^{w-1} \sum_{1 \leq y<\left\lceil\frac{2 k+1-w}{2}\right\rceil}\binom{w+y}{y} 4^{y} \\
& =\widehat{\Lambda}_{2 k-1}+A_{k}+B_{k}
\end{aligned}
$$

where

$$
A_{k}=\sum_{1 \leq w<2 k-1}(-)^{w} 2^{w-1}\binom{w+\left\lceil\frac{2 k-1-w}{2}\right\rceil}{\left\lceil\frac{2 k-1-w}{2}\right\rceil} 4^{\left\lceil\frac{2 k-1-w}{2}\right\rceil}
$$

and

$$
B_{k}=\sum_{2 k-1 \leq w<2 k+1}(-)^{w} 2^{w-1} \sum_{1 \leq y<\left\lceil\frac{2 k-1-w}{2}\right\rceil}\binom{w+y}{y} 4^{y} .
$$

Firstly, the sum $B_{k}=\sum_{2 k-1 \leq w<2 k+1}(-)^{w} 2^{w-1} \cdot \emptyset=0$, and the sum

$$
\begin{aligned}
A_{k} & =\sum_{1 \leq w<2 k-1}(-)^{w} 2^{w-1}\binom{k+w+\left\lceil\frac{-1-w}{2}\right\rceil}{ k+\left\lceil\frac{-1-w}{2}\right\rceil} 4^{k+\left\lceil\frac{-1-w}{2}\right\rceil} \\
& =\sum_{1 \leq w<\frac{2 k-1}{2}}\left[2^{2 w-1}\binom{k+w}{k-w}-2^{2 w-2}\binom{k-1+w}{k-w}\right] 4^{k-w} \\
& =4^{k-1} \sum_{1 \leq w \leq k-1}\left[2\binom{k+w}{k-w}-\binom{k-1+w}{k-w}\right] \\
& =4^{k-1} \sum_{1 \leq w \leq k-1}\left[2\binom{2 k-w}{w}-\binom{2 k-1-w}{w}\right] \\
& =4^{k-1} \sum_{0 \leq w<k-1}\left[2\binom{2 k-1-w}{w+1}-\binom{2 k-2-w}{w+1}\right] \\
& =4^{k-1} \mathcal{S}(k-1) .
\end{aligned}
$$

Thus, with Lemma 3.5 and the inductive hypothesis, we can write

$$
\begin{aligned}
\widehat{\Lambda}_{2 k+1} & =\widehat{\Lambda}_{2 k-1}+4^{k-1} \mathcal{S}(k-1) \\
& =4^{k-1}\left[F_{2 k-3}-1+F_{2 k}+2 F_{2 k-1}-3\right] \\
& =4^{k-1}\left[F_{2 k-3}+F_{2 k-2}+3 F_{2 k-1}-4\right] \\
& =4^{k}\left[F_{2 k-1}-1\right]
\end{aligned}
$$

as required.
Consequently, when $\tau \underset{\overline{2}}{\overline{=}} \underset{\overline{2}}{\bar{e}} e-1$, the 2 -approximation

$$
\Lambda_{\tau}=2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3}+2^{e+\tau-1}\left(F_{\tau-2}-1\right),
$$

and we conclude that

$$
\lambda_{\tau}=2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3}=\frac{\left(2^{\tau}-1\right) 2^{e}-1}{3} .
$$

Note that the approach within this subsection exploits the serendipitous pair of identities $3^{\phi(2)}-1=2$ and $2^{\phi(3)}-1=3$. In general, Euler's Theorem allows one to write

$$
m^{\phi(l)}-1=[-l]_{m^{\phi(l)}}^{-1} l
$$

and

$$
l^{\phi(m)}-1=[-m]_{l^{\phi(m)}}^{-1} m ;
$$

however, for arbitrary, coprime m and l exceeding 1 , the terms $[-l]_{m^{\phi(l)}}^{-1}$ and $[-m]_{l^{\phi}(m)}^{-1}$ may prevent one from executing the approach above in an analogous manner.
3.3. Dual-Radix Modular Division. The approach in this section, based on the work in [9], demonstrates a different method of proving Theorem 3.1 using dual-radix modular division.
Proof. Under the assumption that

$$
e_{w}= \begin{cases}1 & w \in[\tau-1)_{0} \\ e & w=\tau-1\end{cases}
$$

we have the following initial conditions for the recurrence in Theorem 4.4 in [9]. For $w \in[\tau)_{0}$, the 3 -adic digit $d_{w, 0} \overline{\overline{3}}\left[2^{e_{w}}\right]^{-1}$; thus, we have

$$
d_{w, 0}= \begin{cases}2 & w \in[\tau-1)_{0} \\ 1+e \bmod 2 & w=\tau-1\end{cases}
$$

furthermore, the $\mathbf{2}$-adic digit $b_{w, 0} \underset{2^{e}}{\overline{=}}[-3]^{-1}$; thus, we have

$$
b_{w, 0}= \begin{cases}\frac{2^{2\left\lceil\frac{e}{2}\right\rceil}-1}{3} & w=0 \\ 1 & w \in[\tau-1]\end{cases}
$$

For $u>0$, the equivalences

$$
d_{v, u} \equiv\left[2^{e_{v}}\right]^{-1}\left[d_{v+1, u-1}-b_{v+u, u-1}\right]
$$

and

$$
b_{v, u} \underset{2^{e} v-1-u}{\equiv}[-3]^{-1}\left[d_{v-u, u-1}-b_{v-1, u-1}\right]
$$

yields, by induction on u, the equalities $d_{v, u}=2[2-1]=2$ for $v<\tau-1-u$, and $b_{v, u}=1[2-1]=1$ for $v>u$.

We will first identify the 3 -adic digits of the 3-residue of $n\left(=n_{0}\right)$. When $e \equiv 1$, we have the initial condition $d_{\tau-1,0}=2$. Thus, for $u \in[\tau)$, we have

$$
\begin{aligned}
d_{\tau-1-u, u} & \overline{\overline{3}}\left[2^{e_{\tau-1-u}}\right]^{-1}\left[d_{\tau-u, u-1}-b_{\tau-1, u-1}\right] \\
& \overline{\overline{3}} 2[2-1] \\
& \overline{\overline{3}} 2
\end{aligned}
$$

Consequently, we have

$$
\mu_{\tau}=\sum_{0 \leq w<\tau} 3^{w} d_{0, w}=2\left(\frac{3^{\tau}-1}{2}\right)=3^{\tau}-1
$$

When $e \overline{\overline{2}} 0$, we have the initial condition $d_{\tau-1,0}=1$, and

$$
d_{\tau-2,1} \overline{\overline{3}}\left[2^{1}\right]^{-1}\left[d_{\tau-1,0}-b_{\tau-1,0}\right] \overline{\overline{3}}\left[2^{1}\right]^{-1}[1-1] \overline{\overline{3}} 0
$$

By induction, for $u \in[\tau)$ where $u \underset{\overline{2}}{\overline{2}} 0$, we have

$$
\begin{aligned}
d_{\tau-1-u, u} & \equiv\left[2^{e_{\tau-1-u}}\right]^{-1}\left[d_{\tau-u, u-1}-b_{\tau-1, u-1}\right] \\
& \equiv 2[0-1] \\
& \equiv \overline{3} 1 .
\end{aligned}
$$

For $u \underset{\overline{2}}{\overline{\overline{2}}} 1$, we have

$$
\begin{aligned}
d_{\tau-1-u, u} & \overline{\overline{3}}\left[2^{e_{\tau-1-u}}\right]^{-1}\left[d_{\tau-u, u-1}-b_{\tau-1, u-1}\right] \\
& \overline{\overline{3}} 2[1-1] \\
& \equiv \overline{\overline{3}} 0 .
\end{aligned}
$$

Thus,

$$
d_{0, \tau-1}= \begin{cases}0 & \tau \overline{\overline{2}} 0 \tag{4}\\ 1 & \tau \overline{\overline{\overline{2}}} 1\end{cases}
$$

Thus, when $\tau \underset{\overline{2}}{\overline{2}} 0$, the 3 -adic residue

$$
\mu_{\tau}=\sum_{0 \leq w<\tau-1} 3^{w}(2)=3^{\tau-1}-1 \overline{\overline{2}} 0
$$

and, when $\tau \underset{\overline{2}}{\overline{1}} 1$, the 3 -adic residue

$$
\mu_{\tau}=2\left(\frac{3^{\tau-1}-1}{2}\right)+3^{\tau-1}=2 \cdot 3^{\tau-1}-1
$$

We will now determine the 2-adic digits of n when $\tau \underset{\overline{2}}{\overline{2}} \underset{\overline{2}}{\overline{2}} e-1$: when $e \underset{\overline{2}}{\overline{2}} 0$, the 2-adic digit

$$
b_{0,0}=\frac{2^{e}-1}{3}
$$

and the digit

$$
b_{0,1} \underset{2^{e} \overline{\tau-2}}{\equiv}[-3]^{-1}\left[d_{\tau-1,0}-b_{\tau-1,0}\right] \underset{2^{1}}{\equiv}(1) \cdot[1-1] \underset{2^{1}}{\equiv} 0
$$

For $u \in[\tau)$ where $u \overline{\overline{2}} 0$, we have
and, when $u \underset{\overline{2}}{\bar{E}} 1$, we have

$$
b_{0, u}{\underset{2^{e} \tau-1-u}{ } \equiv}_{\equiv}^{\overline{2^{-}}}[-3]^{-1}\left[d_{\tau-u, u-1}-b_{\tau-1, u-1}\right] \overline{\overline{2}^{1}}(1) \cdot[1-1] \underset{2^{1}}{\equiv} 0 .
$$

Thus, when $\tau \overline{\overline{2}} 1 \overline{\overline{2}} e-1$, the $\mathbf{2}$-adic residue

$$
\begin{aligned}
\lambda_{\tau} & =b_{0,0}+\sum_{1 \leq u<\tau} 2^{\bar{E}_{u}} b_{0, u} \\
& =\frac{2^{e}-1}{3}+2^{e} \sum_{2 \leq u<\tau} 2^{u-1}[u \overline{\overline{2}} 0] \\
& =\frac{2^{e}-1}{3}+2^{e+1} \sum_{0 \leq u<\tau-2} 2^{u}[u \overline{\overline{2}} 0] \\
& =\frac{2^{e}-1}{3}+2^{e+1} \sum_{0 \leq u \leq \frac{\tau-3}{2}} 4^{u} \\
& =\frac{2^{e}-1}{3}+2^{e+1}\left(\frac{4^{\frac{\tau-1}{2}}-1}{3}\right) \\
& =\frac{2^{e+\tau}-2^{e}-1}{3} \\
& =2^{e}\left(\frac{2^{\tau-1}-1}{3}\right)+\frac{2^{e+\tau-1}-1}{3} .
\end{aligned}
$$

3.4. Circuits in the $3 x-1$ Dynamical System. We conclude this article by applying the previous analyses to the $3 x-1$ dynamical system; now, we will consider the case where $a_{w}=-1$ for all $w \in[\tau)_{0}$.

We will extend the argument in [1] to the case where $3^{\tau}>2^{\bar{E}_{\tau}}$: the magnitude of the numerator of a maximal iterate in a periodic orbit can be bound from above as follows:

$$
\left|\left(2^{e}+1\right) 3^{\tau-1}-2^{\bar{E}_{\tau}}\right|=3^{\tau}\left[\frac{2^{e}+1}{3}-\frac{2^{\bar{E}_{\tau}}}{3^{\tau}}\right]<3^{\tau-1}\left(2^{e}+1\right) .
$$

We can bound the denominator $3^{\tau}-2^{\bar{E}_{\tau}}$ from below by appealing to the inequality (3) once again 7 to conclude that the maximal iterate within a periodic orbit in the $3 x-1$

[^4]dynamical system satisfies the inequality
$$
n_{\max }<\frac{\frac{2^{e}+1}{3}}{1-\frac{2^{e+\tau-1}}{3^{\tau}}}<\left(\frac{2^{e}+1}{3}\right) 2(e+\tau-1)^{13.3}=o\left(2^{e+\tau-1}\right)
$$
for any fixed $e \in \mathbb{N}$. Thus, we will reuse the notation of the previous section and begin with the following assumptions.

Assumptions 3.2. Assume 3.1, except that now we assume that $N=2^{e+\tau-1}-\left(2^{e}+\right.$ 1) $3^{\tau-1}<0$, and $D=2^{e+\tau-1}-3^{\tau}<0$.

As before, under these assumptions, if $n \in \mathbb{N}$, then the chain of equalities

$$
n=\mu_{\tau}=\lambda_{\tau}
$$

holds.
Our goal for the remainder of this subsection is to prove the following theorem:
Theorem 3.6. Assume 3.2.
The 3-residue

$$
\mu_{\tau}= \begin{cases}2 \cdot 3^{\tau-1}+1 & e \underset{\overline{2}}{\equiv} 0 \\ 1 & e \underset{\overline{\overline{2}}}{ } 1\end{cases}
$$

when $\tau \underset{2}{\overline{2}} 0$, and

$$
\mu_{\tau}= \begin{cases}3^{\tau-1}+1 & e \overline{\overline{2}} 0 \\ 1 & e \overline{\overline{=}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{=1 .}$
The 2-residue

$$
\lambda_{\tau}= \begin{cases}\frac{2^{e}\left(2^{\tau}+1\right)+1}{3} & e \equiv 0 \\ \frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\equiv} 0$, and

$$
\lambda_{\tau}= \begin{cases}\frac{2^{e}\left(2^{\tau-1}+1\right)+1}{3} & e \overline{\overline{2}} 0 \\ \frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \overline{\overline{2}} 1$.
Analogous to Lemma 3.2, the following lemma will aid in identifying circuits within the $3 x-1$ Dynamical System.

Lemma 3.7. Assume that the 3 -residue is

$$
\mu_{\tau}= \begin{cases}2 \cdot 3^{\tau-1}+1 & e \underset{\overline{2}}{\equiv} 0 \\ 1 & e \underset{\overline{\overline{2}}}{ } 1\end{cases}
$$

when $\tau \overline{\overline{2}} 0$, and

$$
\mu_{\tau}= \begin{cases}3^{\tau-1}+1 & e \overline{\overline{\overline{2}}} 0 \\ 1 & e \overline{\overline{=}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\overline{2}} 1$. Moreover, assume that the $\mathbf{2}$-residue is

$$
\lambda_{\tau}= \begin{cases}\frac{2^{e}\left(2^{\tau}+1\right)+1}{3} & e \overline{\overline{2}} 0 \\ \frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\overline{2}} 0$, and

$$
\lambda_{\tau}= \begin{cases}\frac{2^{e}\left(2^{\tau-1}+1\right)+1}{3} & e \overline{\overline{2}} 0 \\ \frac{2^{e}+1}{3} & e \overline{\overline{2}} 1\end{cases}
$$

when $\tau \underset{\overline{2}}{\equiv} 1$.
The equality $\mu_{\tau}=\lambda_{\tau}$ holds if and only if either i.) $e=1$ or ii.) $e=\tau=2$.
Proof. When $e \overline{\overline{2}} 1$, we require that the equality $\frac{2^{e}+1}{3}=1$ holds; consequently, we require that $e=1$ (irrespective of the parity of τ).

When $e \underset{2}{\equiv} 0$ and $\tau \underset{2}{\equiv} 0$, we require that the equality

$$
2 \cdot 3^{\tau-1}+1=\frac{2^{e}\left(2^{\tau}+1\right)+1}{3}
$$

holds. Equivalently, we require that $2 \cdot 3^{\tau}+3=2^{e}\left(2^{\tau}+1\right)+1$; after simplifying, we require that $\frac{3^{\tau}+1}{2^{e-1}}=2^{\tau}+1$. When $\tau \equiv 0$, the numerator on the left-hand side $9^{\frac{\tau}{2}}+1 \equiv 2$; thus, it follows that we require that $e=2$. The equality $3^{\tau}=2^{\tau+1}+1$ holds only when $\tau=2$ as per a result of Gersonides ${ }^{8}$ on harmonic numbers.

When $e \underset{{ }_{2}}{\equiv} 0$ and $\tau \underset{{ }_{2}^{2}}{\overline{1}} 1$, we have $\mu_{\tau} \underset{\overline{2}}{\overline{2}} 0$ and $\lambda_{\tau} \underset{{ }_{2}}{ } 1$.

We offer one proof of Theorem 3.6.
Proof. We can write

$$
\begin{aligned}
\mu_{\tau} & \overline{\overline{3^{\tau}}}-N\left[3^{\tau}-2^{e+\tau-1}\right]^{-1} \\
& \overline{\overline{3^{\tau}}}\left[\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[-2^{e+\tau-1}\right]_{3^{\tau}}^{-1} \\
& \equiv \overline{\overline{3^{\tau}}}\left[\left[-2^{\tau-1}\right]_{3^{1}}^{-1}+\left[-2^{e+\tau-1}\right]_{3^{1}}^{-1}\right] 3^{\tau-1}+1 .
\end{aligned}
$$

It follows that

$$
\mu_{\tau} \overline{\overline{3^{\tau}}} 3^{\tau-1}(-1)^{\tau}\left[1+(-1)^{e}\right]+1 .
$$

[^5]For the 2 -residue, we begin by writing

$$
\left.\begin{array}{rl}
\lambda_{\tau} & \underset{2^{e+\tau}-1}{\equiv}-N\left[3^{\tau}-2^{\bar{E}_{\tau}}\right]^{-1} \\
& \equiv \\
2^{e+\tau}-1
\end{array}\left(2^{e}+1\right) 3^{\tau-1}-2^{e+\tau-1}\right]\left[3^{\tau}\right]_{2^{e+\tau-1}}^{-1} .
$$

We have the identities $[3]_{2^{\tau-1}}^{-1}=\frac{2^{\tau-(\tau-1) \bmod 2}+1}{3}$, and $[3]_{2^{e+\tau-1}}^{-1}=\frac{2^{e+\tau-(e+\tau-1) \bmod 2}+1}{3}$.
We complete the proof by cases.
i. $(e \overline{\overline{2}} 0, \tau \overline{\overline{2}} 0) \mu_{\tau}=2 \cdot 3^{\tau-1}+1$, and $\lambda_{\tau}=\left[2^{e}\left(\frac{2^{2-1}+1}{3}\right)+\frac{2^{e+\tau-1}+1}{3}\right] \bmod 2^{e+\tau-1}=$ $\frac{2^{e+\tau}+2^{e}+1}{3}$
ii. $(e \overline{\overline{2}} 0, \tau \overline{\overline{2}} 1) \mu_{\tau}=3^{\tau-1}+1$, and $\lambda_{\tau}=\left[2^{e}\left(\frac{2^{\tau}+1}{3}\right)+\frac{2^{e+\tau}+1}{3}\right] \bmod 2^{e+\tau-1}=\frac{2^{e+\tau-1}+2^{e}+1}{3}$.
iii. $(e \overline{\overline{2}} 1, \tau \overline{\overline{2}} 0) \mu_{\tau}=1$, and $\lambda_{\tau}=\left[2^{e}\left(\frac{2^{\tau-1}+1}{3}\right)+\frac{2^{e+\tau}+1}{3}\right] \bmod 2^{e+\tau-1}=\frac{2^{e}+1}{3}$.
iv. $(e \overline{\overline{2}} 1, \tau \overline{\overline{2}} 1) \mu_{\tau}=1$, and $\lambda_{\tau}=\left[2^{e}\left(\frac{2^{\tau}+1}{3}\right)+\frac{2^{e+\tau-1}+1}{3}\right] \bmod 2^{e+\tau-1}=\frac{2^{e}+1}{3}$.

Thus, under the assumption that $n<2^{e+\tau-1}$, the only circuits within the $3 x-1$ dynamical system are (1) and (5, 7).

References

[1] Edward G. Belaga and Maurice Mignotte. Embedding the $3 \mathrm{x}+1$ conjecture in a $3 \mathrm{x}+\mathrm{d}$ context. Experimental Mathematics, 7(2):145-151, 1998.
[2] Corrado Böhm and Giovanna Sontacchi. On the Existence of Cycles of Given Length in Integer Sequences Like $x_{n+1}=x_{n} / 2$ if x_{n} Even, and $x_{n+1}=3 x_{n}+1$ Otherwise. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 64(3):260-264, 1978.
[3] Shalom Eliahou. The $3 x+1$ problem: new lower bounds on nontrivial cycle lengths. Discrete Mathematics, 118(1):45-56, 1993.
[4] Jan-Hendrik Evertse. Linear forms in logarithms. Available at http://www.math.leidenuniv.nl/ evertse/dio2011-linforms.pdf, April 2011.
[5] Lynn E. Garner. On the collatz $3 n+1$ algorithm. Proceedings of the American Mathematical Society, 82(1):19-22, 1981.
[6] Ivor Grattan-Guinness. The Norton History of the Mathematical Sciences: The Rainbow of Mathematics. New York: W.W. Norton, 1998.
[7] Jeffrey Lagarias. The $3 x+1$ problem and its generalizations. American Mathematical Monthly, 92(1):323, 011985.
[8] Georges Rhin. Approximants de Padé et mesures effectives d'irrationalité, pages 155-164. Birkhäuser Boston, Boston, MA, 1987.
[9] Andrey Rukhin. A dual-radix division algorithm for computing periodic orbits within syracuse dynamical systems. preprint, submitted, 2018.
[10] John Simons. On the nonexistence of 2-cycles for the problem. Mathematics of Computation, 74:15651572, 2005.
[11] John Simons and Benne de Weger. Theoretical and computational bounds for m-cycles of the 3n+1problem. Acta Arithmetica, 117(1):51-70, 2005.
[12] R. Steiner. A theorem on the syracuse problem. Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing, 1977.
[13] Baker A. Wüstholz G. Logarithmic forms and group varieties. Journal für die reine und angewandte Mathematik, 442:19-62, 1993.

[^0]: This work was supported by the Naval Surface Warfare Center Dahlgren Division's In-House Laboratory Independent Research Program.

[^1]: ${ }^{1}$ This element is sometimes referred to as the standard (or canonical) representative of the equivalence class $\bar{a} \bmod b$.
 ${ }^{2}$ We can shed the logarithms: when $|w|<1$, the power series expansion of $\log (1+w)=\sum_{u \geq 1}(-1)^{u-1} \frac{w^{u}}{u}$ yields $|\log (1+w)| \leq 2|w|$ when $|w| \leq \frac{1}{2}$. See [4] (Corollary 1.6).

[^2]: ${ }^{3}$ Appealing to a similar argument outlined abve, this condition holds for finitely many τ for each fixed $e \in \mathbb{N}$.

[^3]: ${ }^{4}$ OEIS:A001906
 ${ }^{5}$ The interested reader will find the elements of the odd-indexed bisection of the Fibonacci sequence in the 3 -residue approximation of the same $(3,2)$ system (i.e., " $3 x+1$ ") where $e_{0}=1$ and $e_{w}=2$ for $w \in[\tau)$.
 ${ }^{6}$ We assume the definition of the sequence to be $F_{-n}=(-)^{n-1} F_{n}$.

[^4]: ${ }^{7}$ The changing of the signs of u_{1} and u_{2} does not alter the bound.

[^5]: ${ }^{8}$ Levi Ben Gerson, 1342 AD. See [6].

