
A DUAL-RADIX APPROACH TO STEINER’S 1-CYCLE THEOREM

ANDREY RUKHIN

Abstract. This article presents a variety of algebraic proofs of Steiner’s 1-Cycle Theo-
rem [12]. It also demonstrates that, under an exponential upper-bound on the iterates,
the only 1-cycles in the (accelerated) 3x− 1 dynamical system are (1) and (5, 7).

1. Introduction

Within the context of the 3x + 1 Problem, Steiner’s 1-cycle Theorem [12] is a result
pertaining to the non-existence of 1-cycles (or circuits): for all a, b ∈ N, Steiner shows that
a rational expression of the form

(1)
2a − 1

2a+b − 3b

does not assume a positive integer value except in the case where a = b = 1. In the proof,
the author appeals to the continued fraction expansion of log2 3, transcendental number
theory, and extensive numerical computation (see [11]). This argument serves as the basis
for demonstrating the non-existence of 2-cycles in [10], and the non-existence of m-cycles
in [11] where m ≤ 68.

However, the author in [7] declares that the “most remarkable thing about [the theorem]
is the weakness of its conclusion compared to the strength of the methods used in its proof.”
This article offers alternative proofs of this theorem using a variety of algebraic approaches;
assuming the upper bound on periodic iterates established in [1], these proofs exploit that
fact that the denominator in the above expression is coprime to both 2 and 3: this work
simultaneously analyzes the residues of the circuit elements in a 2-adic and 3-adic setting.
Based on the results in [9], the first proof employs elementary modular arithmetic, the
second exploits identities on weighted binomial coefficients, and the third proof analyzes
the 2-adic and 3-adic digits of such rational expressions.

2. Overview

2.1. Notation. This manuscript inherits all of the notation and definitions established in
[9], which we summarize here. Let τ ∈ N, and let m and l be coprime integers exceeding
1. Let e, f ∈ Nτ where e = (e0, . . . , eτ−1) and f = (f0, . . . , fτ−1). For each u ∈ Z, define
Eu =

∑
0≤w<u ew mod τ and Eu =

∑
0≤w<u e(τ−1−w) mod τ ; we will define Fu and F u in an

analogous manner with the elements of f .

This work was supported by the Naval Surface Warfare Center Dahlgren Division’s In-House Laboratory
Independent Research Program.
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For any integer a and positive base b (b ≥ 1), let [a]b denote the element1 of [b)0 that
satisfies the equivalence [a]b ≡ a mod b. We may also express this element as a mod b. We

will also write [a]−1b to denote the element in [b)0 that satisfies the equivalence [a]b [a]−1b ≡
b

1.

We will write (−)n = (−1)n for each n ∈ N.

2.2. Argument Overview. This dual-radix approach to the non-existence of circuits is
based upon the following premises:

i. Let τ ∈ N, let m and l be coprime integers exceeding 1, and let n be a periodic
orbit element from a given (m, l)-system of order τ satisfying the equivalences µτ ≡
n mod mFτ and λτ ≡ n mod lEτ , where µτ and λτ are the canonical representatives of
their corresponding equivalence classes.

In [9], the equalities

n =

∑
0≤w<τ m

Fw lEτ−1−waw

lEτ −mFτ
= µτ +mFτ

(
µτ − λτ
lEτ −mFτ

)
= λτ + lEτ

(
µτ − λτ
lEτ −mFτ

)

have been demonstrated for an admissible sequence of translation values a = (a0, . . . , aτ−1);
consequently, the denominator lEτ −mFτ divides the sum

∑
0≤w<τ m

Fw lEτ−1−waw if
and only if it divides the arithmetic difference of canonical representatives µτ − λτ .

Furthermore, as µτ ∈
[
mFτ

)
0

and λτ ∈
[
lEτ
)
0
, the iterate n ∈ N if and only if

µτ − λτ ∈ DN0.
ii. In the cases where m = 3, l = 2, f = 1τ = a, we apply the argument outlined in [9]:

we will establish an upper bound of 3τ for a potential, periodic iterate value over N
for the 3x+ 1 Problem. In this context, the authors in [1] have demonstrated that the
maximal iterate nmax within a periodic orbit admits the upper bound

(2) nmax <

(
3
2

)τ−1

1− 3τ

2Eτ

≤ τC
(

3

2

)τ−1
= o

(
3τ−1

)

for some effectively computable constant C (by applying the result in [13]). A recent
upper bound on C is available in [8], in which the author establishes the inequality

(3)
∣∣−Eτ log 2 + τ log 3

∣∣ ≥ E−13.3τ

(in their notation, we set u0 = 0, u1 = −Eτ , and u2 = τ); consequently, assuming

2Eτ > 3τ , we can bound2 the denominator in (2) from below

1− 3τ

2Eτ
≥ E

−13.3
τ

2
.

1This element is sometimes referred to as the standard (or canonical) representative of the equivalence
class a mod b.

2We can shed the logarithms: when |w| < 1, the power series expansion of log(1+w) =
∑
u≥1(−1)u−1 wu

u

yields | log(1 + w)| ≤ 2|w| when |w| ≤ 1
2
. See [4] (Corollary 1.6).
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According to [3], in a periodic orbit over N of length Eτ , the ratio Eτ
τ satisfies the

inequality

Eτ
τ
≤ lg

(
3 +

1

nmin

)
≤ 2;

numerical computation yields

nmax <

(
3

2

)τ−1
2 · (2τ)13.3 < 3τ

when τ ≥ 103.
Thus, if nmax > 3τ and nmax ∈ N, then τ < 103. However, the author in [5]

demonstrates that the length of a non-trivial periodic orbit (excluding 1) over N must
satisfy the inequality 2τ ≥ Eτ ≥ 35, 400.

Thus, if n ∈ N, then n < 3τ , and the equalities

n = µτ = λτ

must hold.
iii. Within a circuit of order τ in the (accelerated) 3x+ 1 dynamical system, the maximal

element equals

(2e + 1)3τ−1 − 2e+τ−1

2e+τ−1 − 3τ
= 2 · 3τ−1

(
2e−1 − 1

2e+τ−1 − 3τ

)
− 1

for some e ∈ N (see [2]).
When τ = 1, we note that 2e − 3 = 2e−1 − 1 + 2e−1 − 2 ≥ 2e−1 − 1 for e ≥ 2; thus

the ratio in (1), evaluated at a = e − 1 and b = 1, is at most one. When e = 1, the
left-hand side of the equality above is negative, and the ratio in (1) vanishes.

When τ > 1, we will analyze the difference of canonical residues

µτ =
[
(2e + 1)3τ−1 − 2e+τ−1

]
[2e+τ−1]−1 mod 3τ

and

λτ =
[
(2e + 1)3τ−1 − 2e+τ−1

]
[−3τ ]−1 mod 2Eτ ;

we will show that the difference µτ −λτ is non-zero (contradicting the assumption that
n = µτ = λτ < 3τ as per above).

We will also perform similar analyses on the maximal element of a circuit within the
(accelerated) 3x − 1 dynamical system; we will show that, assuming3 the inequality

n < 2Eτ , a circuit over N exists if and only if either e = 1, or τ = e = 2.

3Appealing to a similar argument outlined abve, this condition holds for finitely many τ for each fixed
e ∈ N.
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3. Circuits in (3, 2)-Systems

Throughout the remainder of the manuscript, unless otherwise stated, we assume that

i. τ ∈ N with τ ≥ 2;
ii. (m, l) = (3, 2);

iii. f = (1, . . . , 1) ∈ Nτ ;
iv. e = (1, . . . , 1︸ ︷︷ ︸

τ−1

, e) for some e ∈ N; and

v. a = (a0, . . . , aτ−1) ∈ {−1,+1}τ .

We begin with the following assumptions.

Assumptions 3.1. Assume 3.1 and 3.3 from [9], and let a = 1τ . Let N =
∑

0≤w<τ 3w2e+τ−2−w =

(2e + 1)3τ−1 − 2e+τ−1, and let D = 2e+τ−1 − 3τ where D > 0.
Assume that

n =
N

D
< min

(
3τ , 2Eτ

)
,

let µτ = n mod 3τ denote the 3-residue of n, and let λτ = n mod 2e+τ−1 denote the 2-
residue of n.

Under these assumptions, if n ∈ N, then the chain of equalities

n = µτ = λτ

holds.
Our goal for the remainder of this subsection is to prove the following theorem:

Theorem 3.1. Assume 3.1.
We have the equalities

µτ =





3τ−1 − 1 e ≡
2

0

3τ − 1 e ≡
2

1

when τ ≡
2

0, and

µτ =





2 · 3τ−1 − 1 e ≡
2

0

3τ − 1 e ≡
2

1

when τ ≡
2

1.

Furthermore, when τ ≡
2

1 ≡
2
e− 1, then

λτ = 2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
=

(2τ − 1)2e − 1

3
.

For completeness, we have

λτ =





(2τ−1−1)2e−1
3 e ≡

2
0

2e+τ−1 − 2e+1
3 e ≡

2
1

4



when τ ≡
2

0, and

λτ =





(2τ−1)2e−1
3 e ≡

2
0

2e+τ−1 − 2e+1
3 e ≡

2
1

when τ ≡
2

1. However, in order to expedite the proofs, we exclude three out of four cases

when the corresponding canonincal 3-residue µτ is even (assuring the inequality µτ 6= λτ ).
We exclude the remaining case with the following lemma.

Lemma 3.2. Assume that τ ≡
2

1 ≡
2
e− 1; furthermore, assume that

µτ = 2 · 3τ−1 − 1,

and

λτ =
(2τ − 1)2e − 1

3
.

The inequality µτ 6= λτ holds.

Proof. By way of contradiction, assume e satisfies the equality

2 · 3τ−1 − 1 =
(2τ − 1)2e − 1

3
;

equivalently, we require that the equality

2 (3τ − 1) = (2τ − 1)2e

holds. However, we have
3τ − 1

2
≡
2

∑

0≤w<τ
3w ≡

2
1

for all odd, positive τ . When e = 2, the value of τ must satisfy the equality

2τ+1 = 3τ + 1;

equivalently, we require that

2− 1

2τ
=

(
3

2

)τ
;

however, this equality fails to hold for τ > 1.
�

Lemma 3.2, Assumptions 3.1, and Theorem 3.1, along with the bounds provided in [11],
[3], and [5], demonstrate the non-existence of circuits in the 3x+ 1 dynamical system.

Before proceeding, we remind the reader of some elementary identities.

Identity 3.1. Let a and b be coprime, positive integers.

i. If g, h ∈ N with h > g, then bga ≡
bh
bg [a]bh−g ;

ii. [a]−1b =
b[−b]−1

a +1
a ;

iii. if a > b, then [a− b]−1b = [a]−1b = bγ+1
a−b for some γ ∈ [a− b)0;

5



iv. if a > b, then [a− b]−1a = [−b]−1a = aγ+1
a−b = γ + [a− b]−1b .

Proof. The elementary proofs of these identities are left to the reader. Note that

i: if a = [a]bh + bhu for some u ∈ Z, then

bga = bg [a]bh + bg+hu = bg
(

[a]bh−g + bh−ga′
)

+ bg+hu = bg [a]bh−g + bhu′

for some a′ ∈ N;
iv, v: as a ≡

a−b
b, we can write γ ≡

a−b
[−a]−1 ≡

a−b
[−b]−1.

�

3.1. Elementary Modular Arithmetic. Our first proof of Theorem 3.1 appeals to ele-
mentary modular arithmetic.

Proof. We can write

µτ ≡
3τ
ND−1

≡
3τ

[
(2e + 1)3τ−1 − 2e+τ−1

] [
2e+τ−1

]−1
3τ

≡
3τ

[[
2τ−1

]−1
31

+
[
2e+τ−1

]−1
31

]
3τ−1 − 1.

It follows that

µτ ≡
3τ

3τ−1(−1)τ−1 [1 + (−1)e]− 1.

Thus, when e ≡
2

1, we have µτ = 3τ − 1 ≡
2

0. Similarly, when e ≡
2

0 and τ ≡
2

0, we have

µτ = 3τ−1 − 1 ≡
2

0.

When τ ≡
2

1 ≡
2
e− 1, we arrive at the equality µτ = 2 · 3τ−1 − 1.

For the 2-residue, we begin by writing

λτ ≡
2e+τ−1

ND−1

≡
2e+τ−1

[
(2e + 1)3τ−1 − 2e+τ−1

]
[−3τ ]−12e+τ−1

≡
2e+τ−1

2e [−3]−12τ−1 + [−3]−12e+τ−1 .

When τ ≡
2

1 ≡
2
e− 1, we have

[
−31

]−1
2τ−1 = 2τ−1−1

3 and
[
−31

]−1
2e+τ−1 = 2e+τ−1−1

3 .

As

2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
=

(2τ − 1)2e − 1

3
< 2e+τ−1,

we arrive at the equality

λτ =
(2τ − 1)2e − 1

3
.

�
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3.2. Weighted Binomial Coefficients. The previous approach is apparently limited;
it is unclear to the author how to extrapolate this approach to admissible sequences of
order τ with an arbitrary 2-grading (e0, . . . , eτ−1). In this subsection, we introduce a more
robust approach to identifying the 3-residues and 2-residues of the iterates of an admissible
cycle in a (3, 2)-system. Moreover, we do so by connecting the residues of (3, 2)-systems to
the well-known Fibonacci sequence by way of elementary equivalence identities, which we
establish first.

Lemma 3.3. For a, b, z ∈ N, the equivalence

 ∑

0≤w<b
zw



a

≡
zb

∑

0≤w<b

(
a− 1 + w

w

)
zw

holds.

Proof. Define Sb(z) =
∑

0≤w<b z
w, and define Ta,b(z) =

∑
0≤w<b

(
a−1+w
w

)
zw. The proof is

by induction on b.
When b = 1, we arrive at the equivalence 1a ≡

z

(
a−1
0

)
for all a, z ∈ N.

Assume the claim holds for b ∈ N. The identity Sb+1(z) = zSb(z) + 1 allows the chain
of equivalences

[Sb+1(z)]
a ≡
zb+1

∑

0≤y<b+1

(
a

y

)
zy [Sb(z)]

y

≡
zb+1

(
a

0

)
z0 +

∑

1≤y<b+1

(
a

y

)
zyTy,b(z).

We will recast the coefficient of z0 as
(
a−1
0

)
, and we will write

∑

1≤y<b+1

(
a

y

)
zyTy,b(z) =

∑

1≤y<b+1

∑

0≤u<b
zu+y

(
a

y

)(
y − 1 + u

u

)
.

For each w ∈ [b+ 1), the coefficient of zw is
∑

1≤y≤w
(
a
y

)(
w−1
w−y

)
=
∑

0≤y<w
(

a
w−y

)(
w−1
y

)
,

which equals
(
a−1+w
w

)
as per theVandermonde-Chu identity.

�

Identity 3.2 (Fibonacci Identity). Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
The equality

Fn =
∑

0≤k<n

(
n− 1− k

k

)

holds.

We will use this identity to establish the residue approximation functions for (3, 2)-
systems.
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Lemma 3.4. Define the map Mτ : Nτ × Nτ → Z to be

Mτ = Mτ (e,a) =
∑

0≤w<u
(−)Ew+13waw

∑

0≤y<τ−w

(
Ew+1 − 1 + y

y

)
3y,

and define the map Λτ : Nτ × Nτ → Z to be

Λτ = Λτ (e,a) =
∑

0≤w<τ
(−)w2Ewaτ−1−w

∑

0≤y<ηw

(
w + y

y

)
4y,

where ηw =
⌈
Eτ−w

2

⌉
.

Then, the equivalences Mτ ≡
3τ
µτ and Λτ ≡

2Eτ
λτ hold.

Proof. We will make use of the following elementary identities involving Euler’s totient
function φ: we have 3φ(2) − 1 = 2 and 2φ(3) − 1 = 3. In light of these identities, we will
appeal to Lemma 3.3: for a, b ∈ N, we will write

[2a]−1 ≡
3b


1− 3

φ(2)
⌈

b
φ(2)

⌉

2



a

≡
3b

(−)a


 ∑

0≤y<b
3y



a

≡
3b

(−)a
∑

0≤y<b

(
a− 1 + y

y

)
3y,

and

[
3b
]−1
≡
2a


1− 2

φ(3)
⌈

a
φ(3)

⌉

3



b

≡
2a

(−)b




∑

0≤y<da2e
4y




b

≡
2a

(−)b
∑

0≤y<da2e

(
b− 1 + y

y

)
4y.

We derive the 3-residue approximation function as follows:

µτ ≡
3τ

[
ND−1

]
3τ

≡
3τ

∑

0≤w<τ
3w2Eτ−1−waw

[
2Eτ

]−1

≡
3τ

∑

0≤w<τ
3waw

[
2Ew+1

]−1
3τ−w

≡
3τ

∑

0≤w<τ
(−)Ew+13waw

∑

0≤y<τ−w

(
Ew+1 − 1 + y

y

)
3y.

8



We derive the 2-residue approximation function as follows:

λτ ≡
2Eτ

[
ND−1

]
2Eτ

≡
2Eτ

∑

0≤w<τ
3w2Eτ−1−waw [−3τ ]−1

≡
2Eτ

∑

0≤w<τ
−2Eτ−1−waw

[
3τ−w

]−1
2Ew+1

≡
2Eτ

∑

0≤w<τ
(−)τ−1−w2Eτ−1−waw

∑

0≤y<
⌈
Ew+1

2

⌉

(
τ − 1− w + y

y

)
4y

≡
2Eτ

∑

0≤w<τ
(−)w2Ewaτ−1−w

∑

0≤y<ηw

(
w + y

y

)
4y.

�
It will prove useful to re-index these double-sums: for example, in the 3-residue approx-

imation, for each fixed w ∈ [τ)0 the coefficient of 3w is

Sw =
∑

0≤y≤w
(−)Ey+1

(
Ey+1 − 1 + w − y

w − y

)
ay;

thus, we can write Mτ =
∑

0≤w<τ 3wSw.
The following example will illustrate the connection between an orbit over N within the

3x+ 1 dynamical system and the Fibonacci Sequence.

3.2.1. Example: The (1, 4, 2)-Orbit in the 3x + 1 Dynamical System. For this example,
define ew = 2 and aw = 1 for each w ∈ [τ)0. The sum Ew+1 = 2(w+1) ≡

2
0 for all w ∈ [τ ]0;

therefore, we can express the 3-residue approximation as Mτ =
∑

0≤w<τ 3wSw, where

Sw :=
∑

0≤y≤w

(
2(y + 1)− 1 + w − y

w − y

)
=

∑

0≤y≤w

(
2w + 1− y

y

)
.

The sequence (Sw)w≥0 is the even-indexed bisection of the Fibonacci sequence (Fw)w≥0 as

per Identity 3.2; we have Sw = F2(w+1) for w ≥ 0. It is known4 that this bisection5 satisfies
the recurrence6 F2w = 3F2(w−1) − F2(w−2) for w ≥ 0; thus, induction yields the identity
Mτ = 3τF2(τ−1) + 1 for τ ∈ N.

For the 2-residue approximation, we have the equalities

Λτ =
∑

0≤w<τ
4w

∑

0≤y≤w

(
w

y

)
(−1)y =

∑

0≤w<τ
4w(1− 1)w = 1

4OEIS:A001906
5The interested reader will find the elements of the odd-indexed bisection of the Fibonacci sequence in

the 3-residue approximation of the same (3, 2) system (i.e., “3x+ 1”) where e0 = 1 and ew = 2 for w ∈ [τ).
6We assume the definition of the sequence to be F−n = (−)n−1Fn.
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for τ ∈ N.
The Fibonacci sequence appears within the 2-residue approximation for the following

proof of Theorem 3.1. In order to expedite the derivation of this 2-residue, we will first
prove the following lemma.

Lemma 3.5. For a ∈ N, let Fa denote the a-th Fibonacci number; furthermore, for k ∈ N0,
define σ (a, k) = 2

(
a+1
k

)
−
(
a
k

)
, and define S (k) =

∑
0≤i<k σ (2k − i, i+ 1).

We have the equality S (0) = 0, and, for k > 0, the equality

S (k) = F2k+2 + 2F2k+1 − 3

holds.

Proof. Assume the conditions within the statement of the lemma. Clearly, S (0) = 0. As
per Identity 3.2, when k > 0, we will write

S (k) =
∑

0≤i<k

[
2

(
2k − i+ 1

i+ 1

)
−
(

2k − i
i+ 1

)]

=
∑

1≤i<k+1

[
2

(
2k + 2− i

i

)
−
(

2k + 1− i
i

)]

= 2

[
F2k+3 −

(
2k + 2

0

)
−
(
k + 1

k + 1

)]
−
[
F2k+2 −

(
2k + 1

0

)]

= F2k+2 + 2F2k+1 − 3.

�

We proceed with the proof of the theorem.

Proof. First, we will demonstrate the equality

Mτ = −1 + 3τ−1(−1)τ−1 [1 + (−1)e] ;

afterwards, by assuming τ ≡
2

1 ≡
2
e− 1, we will show that

Λτ = 2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
+ 2e+τ−1 (Fτ−2 − 1) .

In circuits, we have

Ew =

{
w w < τ

e+ τ − 1 w = τ,
10



and Ew = e+ w − 1 for w ∈ [τ). Thus, when w < τ − 1, we have

Sw =
∑

0≤y≤w
(−)Ey+1

(
Ey+1 − 1 + w − y

w − y

)

=
∑

0≤y≤w
(−)y+1

(
w

w − y

)

= −
∑

0≤y≤w
(−)w−y

(
w

y

)

= −(1− 1)w

=

{
0 w > 0

−1 w = 0.
;

when w = τ − 1 ≥ 1, we have

Sτ−1 =
∑

0≤y≤τ−1
(−)Ey+1

(
Ey+1 − 1 + τ − 1− y

τ − 1− y

)

=
∑

0≤y≤τ−2
(−)y+1

(
τ − 1

τ − 1− y

)
+ (−)e+τ−1

(
e+ τ − 2

0

)

= −(1− 1)τ−1 + (−)τ−1
(
τ − 1

τ − 1

)
+ (−)e+τ−1

(
e+ τ − 2

0

)

= (−)τ−1 [1 + (−1)e] .

It follows that

Mτ = −1 + 3τ−1(−1)τ−1 [1 + (−1)e] .

Thus, when e ≡
2

1, we have µτ = 3τ − 1. Similarly, when e ≡
2

0 and τ ≡
2

0, we have

µτ = 3τ−1 − 1.
When τ ≡

2
1 ≡

2
e− 1, we arrive at the equality µτ = 2 · 3τ−1 − 1. Continuing with these

parity conditions, we let Tw denote the sum
∑

0≤y<
⌈
Eτ−w

2

⌉ (w+y
y

)
4y. We write

Λτ =
∑

0≤w<τ
(−)w2EwTw

= T0 +
∑

1≤w<τ
(−)w2EwTw

=
∑

0≤y< e+τ−1
2

(
y

y

)
4y +

∑

1≤w<τ
(−)w2Ew

(
w

0

)
+
∑

1≤w<τ
(−)w2Ew

[
Tw −

(
w

0

)]
.
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We proceed with the first two sums in this expression. When e+ τ − 1 ≡
2

0, we can write

T0 =
∑

0≤y< e+τ−1
2

(
y

y

)
4y =

2e+τ−1 − 1

3
;

furthermore, as τ − 1 ≡
2

0, we can also write

∑

1≤w<τ
(−)w2Ew ≡

2e+τ−1
2e

∑

0≤w<τ−1
(−)w+12w

≡
2e+τ−1

2e
∑

0≤w< τ−1
2

[
22w+1 − 22w

]

≡
2e+τ−1

2e
∑

0≤w< τ−1
2

4w

≡
2e+τ−1

2e
(

2τ−1 − 1

3

)
.

What remains to be shown is that
∑

1≤w<τ
(−)w2Ew

[
Tw −

(
w

0

)]
≡

2e+τ−1
0.

To this end, for each k ∈ N, we will define

Λ̂2k+1 =
∑

1≤w<2k−1
(−)w2w−1

∑

1≤y<d 2k+1−w
2 e

(
w + y

y

)
4y;

we will show that
∑

1≤w<τ
(−)w2Ew

[
Tw −

(
w

0

)]
= 2eΛ̂τ = 2e+τ−1 (Fτ−2 − 1) .

Assume the notation from the statement of Lemma 3.5. We will demonstrate the chain
of equalities

Λ̂2k+1 = Λ̂2k−1 + 4k−1S (k − 1) = 4k (F2k−1 − 1)

inductively for k ∈ N. Firstly, we have

Λ̂3 = 0 = 40S (0) = 40 (F1 − 1)

for k = 1. Assuming the inductive claim, we proceed with the chain of equalities for k ≥ 2:

Λ̂2k+1 =
∑

1≤w<2k−1
(−)w2w−1

∑

1≤y<d 2k+1−w
2 e

(
w + y

y

)
4y

= Λ̂2k−1 +Ak +Bk,

12



where

Ak =
∑

1≤w<2k−1
(−)w2w−1

(
w +

⌈
2k−1−w

2

⌉
⌈
2k−1−w

2

⌉
)

4d 2k−1−w
2 e,

and

Bk =
∑

2k−1≤w<2k+1

(−)w2w−1
∑

1≤y<d 2k−1−w
2 e

(
w + y

y

)
4y.

Firstly, the sum Bk =
∑

2k−1≤w<2k+1(−)w2w−1 · ∅ = 0, and the sum

Ak =
∑

1≤w<2k−1
(−)w2w−1

(
k + w +

⌈−1−w
2

⌉

k +
⌈−1−w

2

⌉
)

4k+d−1−w
2 e

=
∑

1≤w< 2k−1
2

[
22w−1

(
k + w

k − w

)
− 22w−2

(
k − 1 + w

k − w

)]
4k−w

= 4k−1
∑

1≤w≤k−1

[
2

(
k + w

k − w

)
−
(
k − 1 + w

k − w

)]

= 4k−1
∑

1≤w≤k−1

[
2

(
2k − w
w

)
−
(

2k − 1− w
w

)]

= 4k−1
∑

0≤w<k−1

[
2

(
2k − 1− w
w + 1

)
−
(

2k − 2− w
w + 1

)]

= 4k−1S (k − 1) .

Thus, with Lemma 3.5 and the inductive hypothesis, we can write

Λ̂2k+1 = Λ̂2k−1 + 4k−1S (k − 1)

= 4k−1 [F2k−3 − 1 + F2k + 2F2k−1 − 3]

= 4k−1 [F2k−3 + F2k−2 + 3F2k−1 − 4]

= 4k [F2k−1 − 1]

as required.
Consequently, when τ ≡

2
1 ≡

2
e− 1, the 2-approximation

Λτ = 2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
+ 2e+τ−1 (Fτ−2 − 1) ,

and we conclude that

λτ = 2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
=

(2τ − 1)2e − 1

3
.

�
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Note that the approach within this subsection exploits the serendipitous pair of identities
3φ(2) − 1 = 2 and 2φ(3) − 1 = 3. In general, Euler’s Theorem allows one to write

mφ(l) − 1 = [−l]−1
mφ(l)

l

and

lφ(m) − 1 = [−m]−1
lφ(m) m;

however, for arbitrary, coprime m and l exceeding 1, the terms [−l]−1
mφ(l)

and [−m]−1
lφ(m) may

prevent one from executing the approach above in an analogous manner.

3.3. Dual-Radix Modular Division. The approach in this section, based on the work
in [9], demonstrates a different method of proving Theorem 3.1 using dual-radix modular
division.

Proof. Under the assumption that

ew =

{
1 w ∈ [τ − 1)0
e w = τ − 1,

we have the following initial conditions for the recurrence in Theorem 4.4 in [9]. For

w ∈ [τ)0, the 3-adic digit dw,0 ≡
3

[2ew ]−1; thus, we have

dw,0 =

{
2 w ∈ [τ − 1)0
1 + e mod 2 w = τ − 1;

furthermore, the 2-adic digit bw,0 ≡
2ew−1

[−3]−1; thus, we have

bw,0 =

{
22d e2 e−1

3 w = 0

1 w ∈ [τ − 1] .

For u > 0, the equivalences

dv,u ≡
3

[2ev ]−1 [dv+1,u−1 − bv+u,u−1]

and

bv,u ≡
2ev−1−u

[−3]−1 [dv−u,u−1 − bv−1,u−1]

yields, by induction on u, the equalities dv,u = 2[2 − 1] = 2 for v < τ − 1 − u, and
bv,u = 1[2− 1] = 1 for v > u.

We will first identify the 3-adic digits of the 3-residue of n(= n0). When e ≡
2

1, we have

the initial condition dτ−1,0 = 2. Thus, for u ∈ [τ), we have

dτ−1−u,u ≡
3

[2eτ−1−u ]−1 [dτ−u,u−1 − bτ−1,u−1]
≡
3

2 [2− 1]

≡
3

2.

14



Consequently, we have

µτ =
∑

0≤w<τ
3wd0,w = 2

(
3τ − 1

2

)
= 3τ − 1.

When e ≡
2

0, we have the initial condition dτ−1,0 = 1, and

dτ−2,1 ≡
3

[
21
]−1

[dτ−1,0 − bτ−1,0] ≡
3

[
21
]−1

[1− 1] ≡
3

0.

By induction, for u ∈ [τ) where u ≡
2

0, we have

dτ−1−u,u ≡
3

[2eτ−1−u ]−1 [dτ−u,u−1 − bτ−1,u−1]
≡
3

2 [0− 1]

≡
3

1.

For u ≡
2

1, we have

dτ−1−u,u ≡
3

[2eτ−1−u ]−1 [dτ−u,u−1 − bτ−1,u−1]
≡
3

2 [1− 1]

≡
3

0.

Thus,

(4) d0,τ−1 =





0 τ ≡
2

0

1 τ ≡
2

1.

Thus, when τ ≡
2

0, the 3-adic residue

µτ =
∑

0≤w<τ−1
3w(2) = 3τ−1 − 1 ≡

2
0;

and, when τ ≡
2

1, the 3-adic residue

µτ = 2

(
3τ−1 − 1

2

)
+ 3τ−1 = 2 · 3τ−1 − 1.

We will now determine the 2-adic digits of n when τ ≡
2

1 ≡
2
e − 1: when e ≡

2
0, the

2-adic digit

b0,0 =
2e − 1

3
,

and the digit

b0,1 ≡
2eτ−2

[−3]−1 [dτ−1,0 − bτ−1,0] ≡
21

(1) · [1− 1] ≡
21

0.
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For u ∈ [τ) where u ≡
2

0, we have

b0,u ≡
2eτ−1−u

[−3]−1 [dτ−u,u−1 − bτ−1,u−1] ≡
21

(1) · [0− 1] ≡
21

1,

and, when u ≡
2

1, we have

b0,u ≡
2eτ−1−u

[−3]−1 [dτ−u,u−1 − bτ−1,u−1] ≡
21

(1) · [1− 1] ≡
21

0.

Thus, when τ ≡
2

1 ≡
2
e− 1, the 2-adic residue

λτ = b0,0 +
∑

1≤u<τ
2Eub0,u

=
2e − 1

3
+ 2e

∑

2≤u<τ
2u−1[u ≡

2
0]

=
2e − 1

3
+ 2e+1

∑

0≤u<τ−2
2u[u ≡

2
0]

=
2e − 1

3
+ 2e+1

∑

0≤u≤ τ−3
2

4u

=
2e − 1

3
+ 2e+1

(
4
τ−1
2 − 1

3

)

=
2e+τ − 2e − 1

3

= 2e
(

2τ−1 − 1

3

)
+

2e+τ−1 − 1

3
.

�

3.4. Circuits in the 3x− 1 Dynamical System. We conclude this article by applying
the previous analyses to the 3x−1 dynamical system; now, we will consider the case where
aw = −1 for all w ∈ [τ)0.

We will extend the argument in [1] to the case where 3τ > 2Eτ : the magnitude of the
numerator of a maximal iterate in a periodic orbit can be bound from above as follows:

∣∣∣(2e + 1) 3τ−1 − 2Eτ
∣∣∣ = 3τ

[
2e + 1

3
− 2Eτ

3τ

]
< 3τ−1 (2e + 1) .

We can bound the denominator 3τ − 2Eτ from below by appealing to the inequality (3)
once again7 to conclude that the maximal iterate within a periodic orbit in the 3x − 1

7The changing of the signs of u1 and u2 does not alter the bound.
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dynamical system satisfies the inequality

nmax <
2e+1
3

1− 2e+τ−1

3τ

<

(
2e + 1

3

)
2 (e+ τ − 1)13.3 = o(2e+τ−1)

for any fixed e ∈ N. Thus, we will reuse the notation of the previous section and begin
with the following assumptions.

Assumptions 3.2. Assume 3.1, except that now we assume that N = 2e+τ−1 − (2e +
1)3τ−1 < 0, and D = 2e+τ−1 − 3τ < 0.

As before, under these assumptions, if n ∈ N, then the chain of equalities

n = µτ = λτ

holds.
Our goal for the remainder of this subsection is to prove the following theorem:

Theorem 3.6. Assume 3.2.
The 3-residue

µτ =





2 · 3τ−1 + 1 e ≡
2

0

1 e ≡
2

1

when τ ≡
2

0, and

µτ =





3τ−1 + 1 e ≡
2

0

1 e ≡
2

1

when τ ≡
2

1.

The 2-residue

λτ =





2e(2τ+1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2

0, and

λτ =





2e(2τ−1+1)+1

3 e ≡
2

0

2e+1
3 e ≡

2
1

when τ ≡
2

1.

Analogous to Lemma 3.2, the following lemma will aid in identifying circuits within the
3x− 1 Dynamical System.

Lemma 3.7. Assume that the 3-residue is

µτ =





2 · 3τ−1 + 1 e ≡
2

0

1 e ≡
2

1

17



when τ ≡
2

0, and

µτ =





3τ−1 + 1 e ≡
2

0

1 e ≡
2

1

when τ ≡
2

1. Moreover, assume that the 2-residue is

λτ =





2e(2τ+1)+1
3 e ≡

2
0

2e+1
3 e ≡

2
1

when τ ≡
2

0, and

λτ =





2e(2τ−1+1)+1

3 e ≡
2

0

2e+1
3 e ≡

2
1

when τ ≡
2

1.

The equality µτ = λτ holds if and only if either i.) e = 1 or ii.) e = τ = 2.

Proof. When e ≡
2

1, we require that the equality 2e+1
3 = 1 holds; consequently, we require

that e = 1 (irrespective of the parity of τ).
When e ≡

2
0 and τ ≡

2
0, we require that the equality

2 · 3τ−1 + 1 =
2e (2τ + 1) + 1

3

holds. Equivalently, we require that 2·3τ +3 = 2e (2τ + 1) + 1; after simplifying, we require

that 3τ+1
2e−1 = 2τ + 1. When τ ≡

2
0, the numerator on the left-hand side 9

τ
2 + 1 ≡

4
2; thus, it

follows that we require that e = 2. The equality 3τ = 2τ+1 + 1 holds only when τ = 2 as
per a result of Gersonides8 on harmonic numbers.

When e ≡
2

0 and τ ≡
2

1, we have µτ ≡
2

0 and λτ ≡
2

1.

�
We offer one proof of Theorem 3.6.

Proof. We can write

µτ ≡
3τ
−N

[
3τ − 2e+τ−1

]−1

≡
3τ

[
(2e + 1)3τ−1 − 2e+τ−1

] [
−2e+τ−1

]−1
3τ

≡
3τ

[[
−2τ−1

]−1
31

+
[
−2e+τ−1

]−1
31

]
3τ−1 + 1.

It follows that
µτ ≡

3τ
3τ−1(−1)τ [1 + (−1)e] + 1.

8Levi Ben Gerson, 1342 AD. See [6].
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For the 2-residue, we begin by writing

λτ ≡
2e+τ−1

−N
[
3τ − 2Eτ

]−1

≡
2e+τ−1

[
(2e + 1)3τ−1 − 2e+τ−1

]
[3τ ]−12e+τ−1

≡
2e+τ−1

2e [3]−12τ−1 + [3]−12e+τ−1 .

We have the identities [3]−12τ−1 = 2τ−(τ−1) mod 2+1
3 , and [3]−12e+τ−1 = 2e+τ−(e+τ−1) mod 2+1

3 .
We complete the proof by cases.

i. (e ≡
2

0, τ ≡
2

0) µτ = 2 · 3τ−1 + 1, and λτ =
[
2e
(
2τ−1+1

3

)
+ 2e+τ−1+1

3

]
mod 2e+τ−1 =

2e+τ+2e+1
3

ii. (e ≡
2

0, τ ≡
2

1) µτ = 3τ−1+1, and λτ =
[
2e
(
2τ+1
3

)
+ 2e+τ+1

3

]
mod 2e+τ−1 = 2e+τ−1+2e+1

3 .

iii. (e ≡
2

1, τ ≡
2

0) µτ = 1, and λτ =
[
2e
(
2τ−1+1

3

)
+ 2e+τ+1

3

]
mod 2e+τ−1 = 2e+1

3 .

iv. (e ≡
2

1, τ ≡
2

1) µτ = 1, and λτ =
[
2e
(
2τ+1
3

)
+ 2e+τ−1+1

3

]
mod 2e+τ−1 = 2e+1

3 .

�

Thus, under the assumption that n < 2e+τ−1, the only circuits within the 3x − 1 dy-
namical system are (1) and (5, 7).
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