arXiv:1805.10496v1 [math.NT] 26 May 2018

A DUAL-RADIX APPROACH TO STEINER’S 1-CYCLE THEOREM

ANDREY RUKHIN

ABSTRACT. This article presents a variety of algebraic proofs of Steiner’s 1-Cycle Theo-
rem [12]. It also demonstrates that, under an exponential upper-bound on the iterates,
the only 1-cycles in the (accelerated) 3z — 1 dynamical system are (1) and (5, 7).

1. INTRODUCTION

Within the context of the 3z 4+ 1 Problem, Steiner’s I-cycle Theorem [12] is a result
pertaining to the non-existence of 1-cycles (or circuits): for all a,b € N, Steiner shows that
a rational expression of the form

2¢ —1
(1) Qatb _ 30
does not assume a positive integer value except in the case where a = b = 1. In the proof,
the author appeals to the continued fraction expansion of log, 3, transcendental number
theory, and extensive numerical computation (see [11]). This argument serves as the basis
for demonstrating the non-existence of 2-cycles in [10], and the non-existence of m-cycles
in [11] where m < 68.

However, the author in [7] declares that the “most remarkable thing about [the theorem]
is the weakness of its conclusion compared to the strength of the methods used in its proof.”
This article offers alternative proofs of this theorem using a variety of algebraic approaches;
assuming the upper bound on periodic iterates established in [1], these proofs exploit that
fact that the denominator in the above expression is coprime to both 2 and 3: this work
simultaneously analyzes the residues of the circuit elements in a 2-adic and 3-adic setting.
Based on the results in [9], the first proof employs elementary modular arithmetic, the
second exploits identities on weighted binomial coefficients, and the third proof analyzes
the 2-adic and 3-adic digits of such rational expressions.

2. OVERVIEW

2.1. Notation. This manuscript inherits all of the notation and definitions established in
[9], which we summarize here. Let 7 € N, and let m and [ be coprime integers exceeding
1. Let e,f € N” where e = (eg,...,e,—1) and £ = (fo,..., fr—1). For each u € Z, define
E, = ZOS@K“ €wmodr and B, = 20§w<u €(r—1—w) mod +; We will define F,, and F',, in an
analogous manner with the elements of f.

This work was supported by the Naval Surface Warfare Center Dahlgren Division’s In-House Laboratory
Independent Research Program.
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For any integer a and positive base b (b > 1), let [a], denote the element! of [b), that
satisfies the equivalence [a], = @ mod b. We may also express this element as a mod b. We
will also write [a], ' to denote the element in [b), that satisfies the equivalence [a], [a], ! = 1.

We will write (—)" = (—1)" for each n € N.

2.2. Argument Overview. This dual-radix approach to the non-existence of circuits is
based upon the following premises:
i. Let 7 € N, let m and [ be coprime integers exceeding 1, and let n be a periodic
orbit element from a given (m,)-system of order 7 satisfying the equivalences p, =
n mod m!™ and A\, = n mod 7, where u, and A, are the canonical representatives of
their corresponding equivalence classes.
In [9], the equalities

FuiEr_1_w
lET — mF‘r lET — mF‘r lET _ mFT

have been demonstrated for an admissible sequence of translation values a = (ag, ..., a,—1)

consequently, the denominator 1Er — mFr divides the sum Y 0<wer mt’ wlﬁ“lﬂmw if

and only if it divides the arithmetic difference of canonical representatives p, — Ar.

Furthermore, as u, € [me)O and A\, € [ZET> , the iterate n € N if and only if
0

wr — Ar € DNp.

ii. In the cases where m = 3,1 = 2, f = 17 = a, we apply the argument outlined in [9]:
we will establish an upper bound of 37 for a potential, periodic iterate value over N
for the 3z + 1 Problem. In this context, the authors in [1] have demonstrated that the
maximal iterate nm,ax within a periodic orbit admits the upper bound

3\7—1 T—1
5 3
(2) Nmax < 1(2_)3T < ¢ (2) =0 (3T_1)

2B~

for some effectively computable constant C' (by applying the result in [13]). A recent
upper bound on C' is available in [8], in which the author establishes the inequality

(3) |—E;log2+Tlog3| > oM

T

(111 their notation, we set ug = 0, u; = —F,, and uy = 7); consequently, assuming
2F7 > 37 we can bound? the denominator in (2) from below
g7 N E;13.3

1—- —=
o2E; — 2

IThis element is sometimes referred to as the standard (or canonical) representative of the equivalence
class @ mod b.

u

(—1 e

u

2We can shed the logarithms: when |w| < 1, the power series expansion of log(1+w) = >
yields |log(1 + w)| < 2|w| when |w| < 1. See [4] (Corollary 1.6).

u>1
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According to [3], in a periodic orbit over N of length E,, the ratio % satisfies the
inequality

E, 1
— <lg(3+ <2
T Nmin

numerical computation yields

3 T—1 .
Nmax < <2> 2. (27_)13.3 <37

when 7 > 103.

Thus, if nmax > 37 and npax € N, then 7 < 103. However, the author in [5]
demonstrates that the length of a non-trivial periodic orbit (excluding 1) over N must
satisfy the inequality 27 > E, > 35, 400.

Thus, if n € N, then n < 37, and the equalities

n:MT:AT

must hold.
ili. Within a circuit of order 7 in the (accelerated) 3z + 1 dynamical system, the maximal
element equals

(26 + 1)3771 - 26+T?1 _ 2 . 37’—1 ( 2671 - 1 )

2etT—1 _ 37 ge+7—1 _ 37

for some e € N (see [2]).

When 7 = 1, we note that 26 —3 =271 — 142671 —2 > 2¢71 _ 1 for e > 2; thus
the ratio in (1), evaluated at @ = e — 1 and b = 1, is at most one. When e = 1, the
left-hand side of the equality above is negative, and the ratio in (1) vanishes.

When 7 > 1, we will analyze the difference of canonical residues

;= [(26 + 1)3771 _ 26+T71:| [2e+771]71 mod 37

and
Ar = [(2°+1)37 1 = 27771] [=37] ! mod 27

we will show that the difference pr — A, is non-zero (contradicting the assumption that
n = ur = A < 37 as per above).

We will also perform similar analyses on the maximal element of a circuit within the
(accelerated) 3z — 1 dynamical system; we will show that, assuming® the inequality

n < 2ET, a circuit over N exists if and only if either e =1, or 7 = e = 2.

3Appeading to a similar argument outlined abve, this condition holds for finitely many 7 for each fixed
eeN.
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3. CIRCUITS IN (3,2)-SYSTEMS

Throughout the remainder of the manuscript, unless otherwise stated, we assume that

i. 7 € Nwith 7 > 2;
it (m,1) = (3,2):
iii. f=(1,...,1) e N7;
iv.e=(1,...,1,e) for some e € N; and

N——
T—1

V. a= (ao, .. ,aT_l) S {—1, —|—1}T.

We begin with the following assumptions.

Assumptions 3.1. Assume 3.1 and 3.3 from 9], and leta =17. Let N = Y7, . 3¥2°T7727% =
(2¢ +1)37t — 26471 "gnd let D = 26771 — 37 where D > 0.
Assume that

N < mi <3T 2*5 )
= — min T
" D ’ ’

let u; = nmod 3™ denote the 3-residue of n, and let A, = n mod 2°T7~! denote the 2-
residue of n.

Under these assumptions, if n € N, then the chain of equalities
n=pur= )\T
holds.

Our goal for the remainder of this subsection is to prove the following theorem:

Theorem 3.1. Assume 3.1.
We have the equalities

3711 e§
fr = 37 —1 e=
2
when7§0,and
2.3771 -1 e=0
Hr= s 1 e=1
2

when 7 = 1.
2

Furthermore, when T ? 1 ? e—1, then
271 -1 2erT=l 1 (27 —1)2¢ -1

3 3 - 3

For completeness, we have
(27—1-1)2¢—1
3

Ar = ge+r—1 _ 2°41
3

0|l o]l



when 7 ? 0, and

(27—1)2¢—1
3
etr—1 _ 2°41
E 3

e

0

Ar =
1

0|l o]l

e

when 7 = 1. However, in order to expedite the proofs, we exclude three out of four cases

when the corresponding canonincal 3-residue p, is even (assuring the inequality g, # A;).
We exclude the remaining case with the following lemma.

Lemma 3.2. Assume that T % 1 % e — 1; furthermore, assume that

pr=2-37""-1,

and
(27 —1)2° -1

A =
3

The inequality pr # A+ holds.
Proof. By way of contradiction, assume e satisfies the equality
(27 —1)2°—1

2.3771 1= ;
3

equivalently, we require that the equality
237 —-1)= (2" —1)2¢

holds. However, we have

3T -1 w
= =1
2 2 Z 3 2
o<w<rt
for all odd, positive 7. When e = 2, the value of 7 must satisfy the equality

27 =37 + 1

|
2=
27 2

however, this equality fails to hold for 7 > 1.

equivalently, we require that

0

Lemma 3.2, Assumptions 3.1, and Theorem 3.1, along with the bounds provided in [11],
[3], and [5], demonstrate the non-existence of circuits in the 3z 4+ 1 dynamical system.
Before proceeding, we remind the reader of some elementary identities.

Identity 3.1. Let a and b be coprime, positive integers.
i. If g,h € N with h > g, then bJa = b9 [a)yh—g;
b
. —1 _ b[=b 41
ii. [a], = %;

iti. if a > b, then [a — bl " = [a]; ! = bgfbl for some v € [a —b),;




w. if a>b, then [a— b, = [-b]," = 25 =~ 4 [a—b]; "

a
Proof. The elementary proofs of these identities are left to the reader. Note that
i: if a = [a]y, + b*u for some u € Z, then

ba = b [a]y + b9 u = b ([a]bh,g + bhfga’) + 69y = b9 ]y + b
for some a’ € N;

i, v: as a = b, we can write v = [—a]”' = [-b L.
a—b a—b a—b

0

3.1. Elementary Modular Arithmetic. Our first proof of Theorem 3.1 appeals to ele-
mentary modular arithmetic.

Proof. We can write

pr = ND™!
T— T— T— -1
357_ [(26 + 1)3 1 _ 2€+ 1:| [26+ 1]31—
= “27—1]3—11 n [25—&-7'—1];11} 371 _ 1.

It follows that
pr = 3717 1 (1) - 1

Thus, when e % 1, we have pu, = 3" — 1 % 0. Similarly, when e = 0 and 7 = 0, we have

T—1 —
T p— - 1 = .
" 3 > 0

2

When 7 > 1 Se- 1, we arrive at the equality p, =2-37"1 — 1.

For the 2-residue, we begin by writing

A\, = ND!
ge+7—1
263_1 [(26 + 1)37’*1 o 26+T71:| [_37—]7«;7——1
263_1 26 [_3]277'171 + [_3]275:5»7'71 .

—1 T—1_ —1 et+7T—1__
When 7 % 1 % e — 1, we have [—31]2,,1 =2 3 L and [—31]26+T,1 = 2731

As

271 1 2etT=1 1 (27 —1)2¢ —1
28 < ) + — < 26+T71’
3 3 3

we arrive at the equality
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3.2. Weighted Binomial Coefficients. The previous approach is apparently limited;
it is unclear to the author how to extrapolate this approach to admissible sequences of
order 7 with an arbitrary 2-grading (ep, ..., er—1). In this subsection, we introduce a more
robust approach to identifying the 3-residues and 2-residues of the iterates of an admissible
cycle in a (3, 2)-system. Moreover, we do so by connecting the residues of (3, 2)-systems to
the well-known Fibonacci sequence by way of elementary equivalence identities, which we
establish first.

Lemma 3.3. For a,b, z € N, the equivalence

2.

0<w<b 0<w<b

a

Rl
R
S
|
g =
+
S
~——
N
g

holds.

Proof. Define Sy(z) = > <p<p 2" and define T, 4(2) = > g<pep (alejw) 2. The proof is
by induction on b. B -
When b = 1, we arrive at the equivalence 1* = (aal) for all a,z € N.
z

Assume the claim holds for b € N. The identity Sp41(2) = 2Sp(2) + 1 allows the chain
of equivalences

s 7, X (0)e s
= (g>z°+ 3 <Z>zyTy7b(2).

1<y<b+1

We will recast the coefficient of 20 as (“61), and we will write

> ()= 2 5 ()

1<y<b+1 1<y<b+10<u<b
. w s a\ (w—1\ __ a w—1
For each w € [b+ 1), the coefficient of 2% is Z1gygw (y) (w_y) = Zogy<w (w_y)( ; ),
which equals (a_qlfw) as per theVandermonde-Chu identity.
O

Identity 3.2 (Fibonacci Identity). Let Fy =0, Fy =1, and F,, = F,—1 + F,—2 forn > 2.

The equality
n—1—k
rey (07)

0<k<n
holds.

We will use this identity to establish the residue approximation functions for (3,2)-
systems.
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Lemma 3.4. Define the map M, : N™ x N™ — Z to be

M, = M, (e a Z ( )Ew+13w Z (Eerl _1+y>3y7

0<w<u 0<y<r—w Yy

and define the map A, : NT x N™ — Z to be

A, = ea) Z( w2EwaT L Z <w+y>4y’

0<w<r 0<y<nw y

where Ny, = [%

Then, the equivalences M. % wr and A = A; hold.

Proof. We will make use of the following elementary identities involving Euler’s totient
function ¢: we have 3% —1 = 2 and 2¢(®) — 1 = 3. In light of these identities, we will
appeal to Lemma 3.3: for a,b € N, we will write

1_34’(2)[%-‘ ’ a y ’ a—14+y
) s [T ) ser ()

0<y<b 0<y<b

[211]71

2
2
KL

and
b

. L, b
[31)}712% 1_2¢§>h<3)1 S B <b—1+y>4y.

0<y<[3] 0<y<[3]

A
A

We derive the 3-residue approximation function as follows:

_ -1
Hr 321— [ND ]37‘

= 3 9P, [oR]

o<w<Tt
= D a2l
3 0<w<Tt

Ew+1—1+y

D SN SN
3 o<w<Tt 0<y<t—w Y



We derive the 2-residue approximation function as follows:

Ar = [ND™] 9B+

2B
% Z 31U2E7—,1,waw [_37’]*1
25T 0<w<Tt
E _ -1
= Y e
25T 0<w<Tt
= Z ( )T—l—sz.r,l,waw Z (7’ —1—w-+ y) 4Y
28T 0<w<T 0<y< IVEUJ2+1—‘ y
w +
= Y (e, Y ( y>4y
25T g<w<r 0<y<nuw y

O

It will prove useful to re-index these double-sums: for example, in the 3-residue approx-
imation, for each fixed w € [7), the coefficient of 3" is

By —14w-—
Sy = Z (_)Ey+l< y+1 + y)ay;
w—=y
0<y<w
thus, we can write M, =3 o, ., 3“Su.
The following example will illustrate the connection between an orbit over N within the
3z + 1 dynamical system and the Fibonacci Sequence.

3.2.1. Ezample: The (1,4,2)-Orbit in the 3z + 1 Dynamical System. For this example,
define e,, = 2 and a,, = 1 for each w € [r),. The sum Ey 41 = 2(w+1) = 0 for all w € [7]y;

therefore, we can express the 3-residue approximation as M, =3 (., ., 3" Sy, where

Sui= 3 <2(y+1)—1+w—y>_ > (2w+y1—y>.

0<y<uw vy 0<y<uw
The sequence (Sy),,~ is the even-indexed bisection of the Fibonacci sequence (F,),,~o as
per Identity 3.2; we have Sy, = Fy(w1) for w > 0. Tt is known? that this bisection® satisfies
the recurrence® Iy, = 3Fyw—1) — Fow—2) for w > 0; thus, induction yields the identity

M; =3"Fy;_y+1for T €N.
For the 2-residue approximation, we have the equalities

A= Y 4w Y (Z’)(ny: Y o4 - =1

0<w<Tt 0<y<w 0<w<Tt

40OEIS:A001906
5The interested reader will find the elements of the odd-indexed bisection of the Fibonacci sequence in

the 3-residue approximation of the same (3,2) system (i.e., “3z +1”) where eg = 1 and e,, = 2 for w € [7).
5We assume the definition of the sequence to be F_,, = ()" ' F,.
9



for 7 € N.

The Fibonacci sequence appears within the 2-residue approximation for the following
proof of Theorem 3.1. In order to expedite the derivation of this 2-residue, we will first
prove the following lemma.

Lemma 3.5. Fora € N, let F, denote the a-th Fibonacci number; furthermore, for k € Ny,
define o (a, k) = 2(‘“,:1) — (1), and define S (k) = Y gcicp 0 (2k — 4,0+ 1).
We have the equality S (0) = 0, and, for k > 0, the equality
S (k) = Fopqa +2Fop 41 — 3
holds.

Proof. Assume the conditions within the statement of the lemma. Clearly, S (0) = 0. As
per Identity 3.2, when k& > 0, we will write

sw- 3 b (1)
_ K;H [2 (% r2 z> - <2k - zﬂ

2 (M) - ()] [ ()

= Fopio + 2Fo 41 — 3.

We proceed with the proof of the theorem.

Proof. First, we will demonstrate the equality
My = —14+37 (=17 1+ (=1)7;

afterwards, by assuming 7 = 1 =e- 1, we will show that

2771 -1 2e+771 -1
)

In circuits, we have

B, — w w< T
e+7—-1 w=rm,

10



and B, = e+ w — 1 for w € [7). Thus, when w < 7 — 1, we have

FE —14+w-—
— _E+1 y+1 y
Sw= 2, () ( w—y >

0<y<w

= 2, (w% y)

0<y<w

when w =7 —12> 1, we have

Sri= >, (2)Bm (Ey+1 —l47-1- y>

0<y<r—1 T-1-y

T—1 r1fetT—2
— Z (_)y+1<T_1_ >+(_)e+ 1< 0 )
0<y<r—2 y

(=1 4 (o) <: : 1) 4 (=)t <€ + 7(; - 2)
= (=) L+ (-1
It follows that
M, =143 -1)"1 1+ (-1)9.
0 and 7

Thus, when e % 1, we have pu, = 37 — 1. Similarly, when e 0, we have

pr =371 —1.
When 7 = 1 e~ 1, we arrive at the equality g, = 237! — 1. Continuing with these
W (w;y)ély. We write

2 2

parity conditions, we let T, denote the sum ) 0 <y<"ET_w
= 2

Ar= Y (-)e2fer,

0<w<rt
=To+ Y (—)v2PT,
1<w<T
- Yy By, (W Fo w
-2 <y>4y+ 2, (2 <o)+ 2, (" [T‘”<o)]’
05y<6+72'*1 1<w<Tt 1<w<t

11



We proceed with the first two sums in this expression. When e +7 — 1 = 0, we can write

2e+7'—1 -1

SRS

et+7—1
O0<y<=75—
furthermore, as 7 — 1 S 0, we can also write

Z (_)wQEw = 9e Z (_)w+12w

1<w<r 0<w<r—1

2w+1 2
=, 26 Z [2 w—+ _ 2 ’LU]

0<w< T3t

+

+

26

What remains to be shown is that

Z (_)’IUQEw

()
1<w<T 2
To this end, for each k € N, we will define

e 5 2 ()

1<w<2k—1 1§y<’72k+21_w‘|

we will show that

2°N, = 2T (Fr_y — 1).

)

1<w<T

Assume the notation from the statement of Lemma 3.5. We will demonstrate the chain
of equalities

At = Aoy + 45718 (k= 1) = 4F (Fye_y — 1)
inductively for k € N. Firstly, we have
As=0=4°5(0) =4°(F, — 1)
for Kk = 1. Assuming the inductive claim, we proceed with the chain of equalities for k > 2:
—~ _ w +
Ran= X et Y (M)
1<w<2k—1 1<y<[ 21w Y

= Aop_1 + Ap + By,
12



where

2k—1—w
Ay = Z (_)wzw_l(w—:l[—l—%u 1)4[%_21_“}17

1<w<2k—1 { 2 ]
and

Bi= Y (et Y (w + y) av,

2k—1<w<2k+1 1<y< "219—217101 Yy
Firstly, the sum By = Y o 1 cypcoppr (—)¥2%71 -0 = 0, and the sum

Ak: w w— 1<k+w+ —|>4k+|712“ﬂ

1<w<2k 1

k4w k—14+w
22'w 1 2w 2 4k—w
eu 2k ) { <k w) k—w
<2k-1

5 ()

1<w<k-—1

i
- 2 POV ()
("

—1-w 2%k —2—w
=4+t 2
X ) - ()]

0<w<k—1
= 4k-1S(k—1).
Thus, with Lemma 3.5 and the inductive hypothesis, we can write
Agpr1 = Mgy + 45718 (k- 1)
= 4" [Py 3 — 1+ Fop + 2Fo 1 — 3]
= 4" [Fo_3 + Foj—2 + 3Fo_1 — 4]
=45 [Fyp_y — 1]

as required.
Consequently, when 7 % 1 % e — 1, the 2-approximation

27’71 -1 26+T71 -1
A=z < ) * +27TH (F oy - 1),

3 3

and we conclude that

271 1 2¢t7-1 1 (2" —1)2¢ —1
Ar = 2° = :
( 3 ) * 3 3




Note that the approach within this subsection exploits the serendipitous pair of identities
3%2) —1 =2 and 293 — 1 = 3. In general, Euler’s Theorem allows one to write

mf0 1 = [0, 1

and
-1
I
however, for arbitrary, coprime m and [ exceeding 1, the terms [—l];j)(l) and [—m]l;}m) may
prevent one from executing the approach above in an analogous manner.

3.3. Dual-Radix Modular Division. The approach in this section, based on the work
in [9], demonstrates a different method of proving Theorem 3.1 using dual-radix modular
division.
Proof. Under the assumption that
1 elr—1
ew = { we|[r )o

e w=71-—1,

we have the following initial conditions for the recurrence in Theorem 4.4 in [9]. For
w € [T),, the 3-adic digit dyo 3 [2ew]_1; thus, we have

2 we [t —1),
dw,O:
l+emod2 w=r71-—1;

furthermore, the 2-adic digit by, [—3]71; thus, we have

9ew—1

bwo = {22(%3]_1 w =0

1 we [r—1].
For u > 0, the equivalences

) % [281)]_1 [dv-l-l,u—l - bv-}—u,u—l]

and

by

[_3}_1 [dv—u,u—l - bv—l,u—l]

yields, by induction on wu, the equalities d,, = 2[2 —1] = 2 for v < 7 — 1 — u, and
byu=12—-1] =1 for v > u.
We will first identify the 3-adic digits of the 3-residue of n(= ng). When e = 1, we have

)

u
26v—1—u

the initial condition d,_; 9 = 2. Thus, for u € [T), we have

dT—l—u,u % [267717%_1 [dT—u,u—l - bT—l,u—l]
= 212-1]
=2.
3
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Consequently, we have

37 -1
[y = §:3wmw_2< 5 >_3f—L

0<w<Tt

When e % 0, we have the initial condition d,_10 = 1, and

1
dr—21 = [2']7 [dr—1,0 — br—1,0]

By induction, for u € [7) where u = 0, we have

dT—l—u,u ? [26T_1_u]_1 [dT—u,u—l - bT—l,u—l]
=2(0—1]
=1.
3
For u % 1, we have
d‘r—l—u,u ? [26T717u]_1 [dT—u,u—l - bT—l,u—l]
=2[1-1]
=0.
3
Thus,
0 7=0
(4) dor1 = 2
T ? 1.

Thus, when 7 S 0, the 3-adic residue

pr= Y. 32 =3"'-1=0;
0<w<t—1 2

and, when 7 ? 1, the 3-adic residue
3711
NT:2(2!)+3“1:28“1—L
We will now determine the 2-adic digits of n when 7 = 1

2-adic digit

S|

2

2¢ — 1
boo = 3

and the digit

bo,1
2

3

2€

e —1: when e

(3] [dr—1.0 — br_1,0] =()-1-1=0

0, the

15



For u € [r) where u = 0, we have

e — -1 — — . — —
bO,u 267_7:17“ [ 3] [dT—u,u—l b’r—l,u—l] 2—1 (1) [0 1] 2—1 17
and, when u % 1, we have
e — -1 — e . — —
bO,u 267_7:17“ [ 3] [dT—u,u—l b’r—l,u—l] o (1) [1 1] o 0.
Thus, when 7 = 1 =e- 1, the 2-adic residue
Ar =boo+ Z QE“bo,u
1<u<r

2¢—1

==+ > 2 =0]
2<u<r

2¢ —1

== + 20+ Z 2%u = 0]
0<u<T—2
_ % Sl T
0<u<TF2
T—1

2¢ —1 472 1
— 2€+1
_ 2etT —2¢ — 1
B 3
_ge 27'71 -1 2e+‘rfl -1
B 3 3

O

3.4. Circuits in the 3x — 1 Dynamical System. We conclude this article by applying
the previous analyses to the 3z — 1 dynamical system; now, we will consider the case where
ay = —1 for all w € [7),.

We will extend the argument in [1] to the case where 37 > 27 : the magnitude of the
numerator of a maximal iterate in a periodic orbit can be bound from above as follows:

2¢ 41 2F-

2¢ 4 1)371 — 9B~

} <371 (2¢ +1).

We can bound the denominator 37 — 28 from below by appealing to the inequality (3)
once again’ to conclude that the maximal iterate within a periodic orbit in the 3z — 1

"The changing of the signs of u; and us does not alter the bound.
16



dynamical system satisfies the inequality

5 2°+1 13.3

Nmax < 1 23;+7_,1 < < 3 ) 2 (e + 7= 1) i S 0(26+771)
-7

for any fixed e € N. Thus, we will reuse the notation of the previous section and begin

with the following assumptions.

Assumptions 3.2. Assume 3.1, except that now we assume that N = 26771 — (2¢ 4
)37t <0, and D =2¢t7"1 - 37 < 0.

As before, under these assumptions, if n € N, then the chain of equalities
n = /“LT = )\7_

holds.
Our goal for the remainder of this subsection is to prove the following theorem:

Theorem 3.6. Assume 3.2.
The 3-residue

2.37714+1 e§0
Fr= 01 e=1
2
wheano, and
3741 e=0
Fr= 1 e=1
2
whenrgl.
The 2-residue
2(2;1)+1 e=0
. = 2
T = 2e+1 :1
3 €3
whenT%O, and
e(oT—1
2¢(2 3+1)+1 e=0
Ar = 241 :
e =1
3 €3
when T = 1.
2

Analogous to Lemma 3.2, the following lemma will aid in identifying circuits within the
3z — 1 Dynamical System.

Lemma 3.7. Assume that the 3-residue is
2.377141 e

fr = 1 e

] woll]

17



when T % 0, and

341 e =0
7= 1 e=1
2
when T % 1. Moreover, assume that the 2-residue is
26(2T§1)+1 e=0
)\7‘ = 2¢41 e i 1
3 2
when T % 0, and
e(or—1
2¢(2 3+1)+1 e =0
Ar = 2¢41 ’
e =1
3 €3

when T = 1.
The equality pr = \r holds if and only if either i.) e =1 orii.) e =7 = 2.

Proof. When e = 1, we require that the equality % = 1 holds; consequently, we require
that e = 1 (irrespective of the parity of 7).
When e % 0 and 7 % 0, we require that the equality

2027+ 1)+ 1

B 3

holds. Equivalently, we require that 2-37+3 = 2¢ (27 4 1) + 1; after simplifying, we require
that ?é:,‘fll =2"+4+1. When 7 ? 0, the numerator on the left-hand side 97 +1 % 2; thus, it

2.3 141

follows that we require that e = 2. The equality 37 = 27! + 1 holds only when 7 = 2 as
per a result of Gersonides® on harmonic numbers.
Whene§0and7'§1, Wehaveu7§0and)\7§1.

We offer one proof of Theorem 3.6.

Proof. We can write

Uy = _N [37‘ _ 2e+7—1]—1

w
3

r_ _ —17—-1
[(26+1)3 1 _ getT 1] [_26+7‘ 1]3T

il

[[_27—1];1 + [_26+T—1]3_11:| 3714 1.

il

It follows that

pr = 371 14 (1) + 1.

8Levi Ben Gerson, 1342 AD. See [6].
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For the 2-residue, we begin by writing

= _N [37 - 2@} B
ge+7—1

1 [(26 + 1)37—71 _ 2€+T71:| [37]2761+T71

getr—

2°[3] 31 + [3)51-

26;71

We have the identities [3]5,, = 2241 and 3], , = 2T Dmedi
We complete the proof by cases.

i

(e 5 0,7 = 0) pr =2-37714+1,and N\, = {26 <2T_1+1) + 28+T3_1+1] mod 2671 =

3
20742041
3
(e % 0,7 % 1) pr = 37141, and \, = [26 (273»“) + ‘2e+;+1} mod 2471 = %
(6 ? 1?7_ % 0) [y = 1’ and \, = [25 (27’73}14_1) + 26+;+1] mod 26+7’71 — 26;_1.
T et+7—1 €
(6 % 1,7 % 1) =1, and A\, = |:2€ (2 ?:I»l) + ge+ - +1} mod 2¢+7-1 = 2 ?;I»l'

0

Thus, under the assumption that n < 2¢77~1 the only circuits within the 3z — 1 dy-
namical system are (1) and (5, 7).
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