ON CERTAIN COMBINATORIAL EXPANSIONS OF THE LEGENDRE-STIRLING NUMBERS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

Abstract

The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. In this paper, we provide a combinatorial code for Legendre-Stirling set partitions. As an application, we obtain combinatorial expansions of the Legendre-Stirling numbers of both kinds. Moreover, we present grammatical descriptions of the Jacobi-Stirling numbers of both kinds.

Keywords: Legendre-Stirling numbers; Jacobi-Stirling numbers; Context-free grammars

1. Introduction

Let $\ell[y](t)=-\left(1-t^{2}\right) y^{\prime \prime}(t)+2 t y^{\prime}(t)$ be the Legendre differential operator. Then the Legendre polynomial $y(t)=P_{n}(t)$ is an eigenvector for the differential operator ℓ corresponding to $n(n+1)$, i.e., $\ell[y](t)=n(n+1) y(t)$. Following Everitt et al. [7], for $n \in \mathbb{N}$, the Legendre-Stirling numbers LS (n, k) of the second kind appeared originally as the coefficients in the expansion of the n-th composite power of ℓ, i.e.,

$$
\ell^{n}[y](t)=\sum_{k=0}^{n}(-1)^{k} \operatorname{LS}(n, k)\left(\left(1-t^{2}\right)^{k} y^{(k)}(t)\right)^{(k)}
$$

For each $k \in \mathbb{N}$, Everitt et al. [7, Theorem 4.1)] obtained that

$$
\begin{gather*}
\prod_{r=1}^{k} \frac{1}{1-r(r+1) x}=\sum_{n=0}^{\infty} \operatorname{LS}(n, k) x^{n-k}, \quad\left(|x| \leq \frac{1}{k(k+1)}\right), \tag{1}\\
\mathrm{LS}(n, k)=\sum_{r=0}^{k}(-1)^{r+k} \frac{(2 r+1)\left(r^{2}+r\right)^{n}}{(r+k+1)!(k-r)!}
\end{gather*}
$$

According to [2, Theorem 5.4], the numbers LS (n, k) have the following horizontal generating function

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} \operatorname{LS}(n, k) \prod_{i=0}^{k-1}(x-i(1+i)) \tag{2}
\end{equation*}
$$

It follows from (2) that the numbers LS (n, k) satisfy the recurrence relation

$$
\operatorname{LS}(n, k)=\operatorname{LS}(n-1, k-1)+k(k+1) \operatorname{LS}(n-1, k) .
$$

with the initial conditions $\operatorname{LS}(n, 0)=\delta_{n, 0}$ and $\operatorname{LS}(0, k)=\delta_{0, k}$, where $\delta_{i, j}$ is the Kronecker's symbol.

By using (11), Andrews et al. [2, Theorem 5.2] derived that the numbers LS (n, k) satisfy the vertical recurrence relation

$$
\mathrm{LS}(n, j)=\sum_{k=j}^{n} \mathrm{LS}(k-1, j-1)(j(j+1))^{n-k}
$$

A particular values of $\operatorname{LS}(n, k)$ is provided at the end of [3]:

$$
\begin{equation*}
\mathrm{LS}(n+1, n)=2\binom{n+2}{3} \tag{3}
\end{equation*}
$$

In [6, Eq. (19)], Egge found that

$$
\mathrm{LS}(n+2, n)=40\binom{n+2}{6}+72\binom{n+2}{5}+36\binom{n+2}{4}+4\binom{n+2}{3}
$$

Using the triangular recurrence relation $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$, we get

$$
\begin{equation*}
\mathrm{LS}(n+2, n)=40\binom{n+3}{6}+32\binom{n+3}{5}+4\binom{n+3}{4} . \tag{4}
\end{equation*}
$$

Egge [6, Theorem 3.1] showed that for $k \geq 0$, the quantity $\operatorname{LS}(n+k, n)$ is a polynomial of degree $3 k$ in n with leading coefficient $\frac{1}{3^{k} k!}$.

This paper is a continuation of [6], and it is motivated by the following problem.
Problem 1. Let k be a given nonnegative integer. Could the numbers $\operatorname{LS}(n+k, n)$ be expanded in the binomial basis?

The paper is organized as follows. In Section 2, by introducing a combinatorial code for Legendre-Stirling set partitions, we give a solution of Problem 1. Moreover, we get a combinatorial expansion of the Legendre-Stirling numbers of the first kind. In Section 3, we present grammatical interpretations of Jacobi-Stirling numbers of both kinds.

2. Legendre-Stirling set partitions

The combinatorial interpretation of the Legendre-Stirling numbers LS (n, k) of the second kind was first given by Andrews and Littlejohn [3]. For $n \geq 1$, let M_{n} denote the multiset $\{1, \overline{1}, 2, \overline{2}, \ldots, n, \bar{n}\}$, in which we have one unbarred copy and one barred copy of each integer i, where $1 \leq i \leq n$. Throughout this paper, we always assume that the elements of M_{n} are ordered by

$$
\overline{1}=1<\overline{2}=2<\cdots<\bar{n}=n .
$$

A Legendre-Stirling set partition of M_{n} is a set partition of M_{n} with $k+1$ blocks $B_{0}, B_{1}, \ldots, B_{k}$ and with the following rules:
$\left(r_{1}\right)$ The 'zero box' B_{0} is the only box that may be empty and it may not contain both copies of any number;
$\left(r_{2}\right)$ The 'nonzero boxes' $B_{1}, B_{2}, \ldots, B_{k}$ are indistinguishable and each is non-empty. For any $i \in[k]$, the box B_{i} contains both copies of its smallest element and does not contain both copies of any other number.

Let $\mathcal{L S}(n, k)$ denote the set of Legendre-Stirling set partitions of M_{n} with one zero box and k nonzero boxes. The standard form of an element of $\mathcal{L S}(n, k)$ is written as

$$
\sigma=B_{1} B_{2} \cdots B_{k} B_{0}
$$

where B_{0} is the zero box and the minima of B_{i} is less than that of B_{j} when $1 \leq i<j \leq k$. Clearly, the minima of B_{1} are 1 and $\overline{1}$. Throughout this paper we always write $\sigma \in \mathcal{L} \mathcal{S}(n, k)$ in the standard form. As usual, we let angle bracket symbol $\langle i, j, \ldots\rangle$ and curly bracket symbol $\{k, \bar{k}, \ldots\}$ denote the zero box and nonzero box, respectively. In particular, let $<>$ denote the empty zero box. For example, $\{1, \overline{1}, 3\}\{2, \overline{2}\}<\overline{3}>\in \mathcal{L} \mathcal{S}(3,2)$. A classical result of Andrews and Littlejohn [3, Theorem 2] says that

$$
\mathrm{LS}(n, k)=\# \mathcal{L S}(n, k)
$$

We now provide a combinatorial code for Legendre-Stirling partitions (CLS-sequence for short).

Definition 2. We call $Y_{n}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) a$ CLS -sequence of length n if $y_{1}=X$ and

$$
y_{k+1} \in\left\{X, A_{i, j}, B_{s}, \bar{B}_{s}, 1 \leq i, j, s \leq n_{x}\left(Y_{k}\right), i \neq j\right\} \quad \text { for } k=1,2, \ldots, n-1 \text {, }
$$

where $n_{x}\left(Y_{k}\right)$ is the number of the symbol X in $Y_{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
For example, $\left(X, X, A_{1,2}\right)$ is a CLS -sequence, while $\left(X, X, A_{1,2}, B_{3}\right)$ is not since $y_{4}=B_{3}$ and $3>n_{x}\left(Y_{3}\right)=2$. Let $\mathcal{C} \mathcal{L} S_{n}$ denote the set of CLS-sequences of length n.

The following lemma is a fundamental result.
Lemma 3. For $n \geq 1$, we have $\operatorname{LS}(n, k)=\#\left\{Y_{n} \in \mathcal{C} \mathcal{L} \mathcal{S}_{n} \mid n_{x}\left(Y_{n}\right)=k\right\}$.
Proof. Let

$$
\mathcal{C} \mathcal{L S}(n, k)=\left\{Y_{n} \in \mathcal{C} \mathcal{L} \mathcal{S}_{n} \mid n_{x}\left(Y_{n}\right)=k\right\} .
$$

Now we start to construct a bijection, denoted by Φ, between $\mathcal{L S}(n, k)$ and $\mathcal{C} \mathcal{L}(n, k)$. When $n=1$, we have $y_{1}=X$. Set $\Phi\left(Y_{1}\right)=\{1, \overline{1}\}<>$. This gives a bijection from $\mathcal{C} \mathcal{L} \mathcal{S}(1,1)$ to $\mathcal{L S}(1,1)$. Let $n=m$. Suppose Φ is a bijection from $\mathcal{C} \mathcal{L S}(n, k)$ to $\mathcal{C} \mathcal{L}(n, k)$ for all k. Consider the case $n=m+1$. Let

$$
Y_{m+1}=\left(y_{1}, y_{2}, \ldots, y_{m}, y_{m+1}\right) \in \mathcal{C} \mathcal{L S}_{m+1}
$$

Then $Y_{m}=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathcal{C} \mathcal{L}(m, k)$ for some k. Assume $\Phi\left(Y_{m}\right) \in \mathcal{L S}(m, k)$. Consider the following three cases:
(i) If $y_{m+1}=X$, then let $\Phi\left(Y_{m+1}\right)$ be obtained from $\Phi\left(Y_{m}\right)$ by putting the box $\{m+$ $1, \overline{m+1}\}$ just before the zero box. In this case, $\Phi\left(Y_{m+1}\right) \in \mathcal{L} \mathcal{S}(m+1, k+1)$.
(ii) If $y_{m+1}=A_{i, j}$, then let $\Phi\left(Y_{m+1}\right)$ be obtained from $\Phi\left(Y_{m}\right)$ by inserting the entry $m+1$ to the i th nonzero box and inserting the entry $\overline{m+1}$ to the j th nonzero box. In this case, $\Phi\left(Y_{m+1}\right) \in \mathcal{L S}(m+1, k)$.
(iii) If $y_{m+1}=B_{s}$ (resp. $y_{m+1}=\bar{B}_{s}$), then let $\Phi\left(Y_{m+1}\right)$ be obtained from $\Phi\left(Y_{m}\right)$ by inserting the entry $m+1$ (resp. $\overline{m+1}$) to the s th nonzero box and inserting the entry $\overline{m+1}$ (resp. $m+1$) to the zero box. In this case, $\Phi\left(Y_{m+1}\right) \in \mathcal{L} \mathcal{S}(m+1, k)$.

After the above step, it is clear that the obtained $\Phi\left(Y_{m+1}\right)$ is in standard form. By induction, we see that Φ is the desired bijection from $\mathcal{C} \mathcal{L} \mathcal{S}(n, k)$ to $\mathcal{C} \mathcal{L}(n, k)$, which also gives a constructive proof of Lemma 3.

Example 4. Let $Y_{5}=\left(X, X, A_{2,1}, B_{2}, \bar{B}_{1}\right)$. The correspondence between Y_{5} and $\Phi\left(Y_{5}\right)$ is built up as follows:

$$
\begin{aligned}
X & \Leftrightarrow\{1, \overline{1}\}<>; \\
X & \Leftrightarrow\{1, \overline{1}\}\{2, \overline{2}\}<>; \\
A_{2,1} & \Leftrightarrow\{1, \overline{1}, \overline{3}\}\{2, \overline{2}, 3\}<>; \\
B_{2} & \Leftrightarrow\{1, \overline{1}, \overline{3}\}\{2, \overline{2}, 3,4\}<\overline{4}>; \\
\bar{B}_{1} & \Leftrightarrow\{1, \overline{1}, \overline{3}, \overline{5}\}\{2, \overline{2}, 3,4\}<\overline{4}, 5>.
\end{aligned}
$$

As an application of the CLS-sequences, we present the following result.
Lemma 5. Let k be a given positive integer. Then for $n \geq 1$, we have

$$
\begin{equation*}
\mathrm{LS}(n+k, n)=2^{k} \sum_{t_{k}=1}^{n}\binom{t_{k}+1}{n} \sum_{t_{k-1}=1}^{t_{k}}\binom{t_{k-1}+1}{2} \cdots \sum_{t_{2}=1}^{t_{3}}\binom{t_{2}+1}{2} \sum_{t_{1}=1}^{t_{2}}\binom{t_{1}+1}{2} . \tag{5}
\end{equation*}
$$

Proof. It follows from Lemma 3 that

$$
\operatorname{LS}(n+k, n)=\#\left\{Y_{n+k} \in \mathcal{C} \mathcal{L} \mathcal{S}_{n+k} \mid n_{x}\left(Y_{n+k}\right)=n\right\}
$$

Let $Y_{n+k}=y_{1} y_{2} \cdots y_{n+k}$ be a given element in $\mathcal{C} \mathcal{L S}_{n+k}$. Since $n_{x}\left(Y_{n+k}\right)=n$, it is natural to assume that $y_{i}=X$ except $i=t_{1}+1, t_{2}+2, \cdots, t_{k}+k$. Let σ be the corresponding LegendreStirling partition of Y_{n+k}. For $1 \leq \ell \leq k$, consider the value of $y_{t_{\ell}+\ell}$. Note that the number of the symbol X before $y_{t_{\ell}+\ell}$ is t_{ℓ}. Let $\widehat{\sigma}$ be the corresponding Legendre-Stirling partition of $y_{1} y_{2} \cdots y_{t_{\ell}+\ell-1}$. Now we insert $y_{t_{\ell}+\ell}$. We distinguish two cases:
(i) If $y_{t_{\ell}+\ell}=A_{i, j}$, then we should insert the entry $t_{\ell}+\ell$ to the i th nonzero box of $\widehat{\sigma}$ and insert $\overline{t_{\ell}+\ell}$ to the j th nonzero box. This gives $2\binom{t_{\ell}}{2}$ possibilities, since $1 \leq i, j \leq t_{\ell}$ and $i \neq j$.
(ii) If $y_{t_{\ell}+\ell}=B_{s}$ (resp. $y_{t_{\ell}+\ell}=\bar{B}_{s}$), then we should insert the entry $t_{\ell}+\ell$ (resp. $\overline{t_{\ell}+\ell}$) to the s th nonzero box of $\widehat{\sigma}$ and insert $\overline{t_{\ell}+\ell}$ (resp. $t_{\ell}+\ell$) to the zero box. This gives $2\binom{t_{\ell}}{1}$ possibilities, since $1 \leq s \leq t_{\ell}$.
Therefore, there are exactly $2\binom{t_{\ell}}{2}+2\binom{t_{\ell}}{1}=2\binom{t_{\ell}+1}{2}$ Legendre-Stirling partitions of $\mathrm{M}_{t_{\ell}+\ell}$ can be generated from $\widehat{\sigma}$ by inserting the entry $y_{t_{\ell}+\ell . ~ N o t e ~ t h a t ~} 1 \leq t_{j-1} \leq t_{j} \leq n$ for $2 \leq j \leq k$. Applying the product rule for counting, we immediately get (5).

The following simple result will be used in our discussion.
Lemma 6. Let a and b be given integers. Then

$$
\binom{x-b}{2}\binom{x}{a}=\binom{a+2}{2}\binom{x}{a+2}+(a+1)(a-b)\binom{x}{a+1}+\binom{a-b}{2}\binom{x}{a} .
$$

In particular,

$$
\binom{x-1}{2}\binom{x}{a}=\binom{a+2}{2}\binom{x}{a+2}+\left(a^{2}-1\right)\binom{x}{a+1}+\binom{a-1}{2}\binom{x}{a} .
$$

Proof. Note that

$$
\binom{a+2}{2} \frac{(x-a)(x-a-1)}{(a+2)(a+1)}+(a+1)(a-b) \frac{x-a}{a+1}+\binom{a-b}{2}=\binom{x-b}{2} .
$$

This yields the desired result.
We can now conclude the main result of this paper from the discussion above.
Theorem 7. Let k be a given nonnegative integer. Then for $n \geq 1$, the numbers $\operatorname{LS}(n+k, n)$ can be expanded in the binomial basis as

$$
\begin{equation*}
\mathrm{LS}(n+k, n)=2^{k} \sum_{i=k+2}^{3 k} \gamma(k, i)\binom{n+k+1}{i}, \tag{6}
\end{equation*}
$$

where the coefficients $\gamma(k, i)$ are all positive integers for $k+2 \leq i \leq 3 k$ and satisfy the recurrence relation

$$
\begin{equation*}
\gamma(k+1, i)=\binom{i-k-1}{2} \gamma(k, i-1)+(i-1)(i-k-2) \gamma(k, i-2)+\binom{i-1}{2} \gamma(k, i-3), \tag{7}
\end{equation*}
$$

with the initial conditions $\gamma(0,0)=1, \gamma(0, i)=\gamma(i, 0)=0$ for $i \neq 0$. Let $\gamma_{k}(x)=\sum_{i=k+2}^{3 k} \gamma(k, i) x^{i}$. Then the polynomials $\gamma_{k}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
\gamma_{k+1}(x)=\left(\frac{k(k+1)}{2}-k x+x^{2}\right) x \gamma_{k}(x)-\left(k+(k-2) x-2 x^{2}\right) x^{2} \gamma_{k}^{\prime}(x)+\frac{(1+x)^{2} x^{3}}{2} \gamma_{k}^{\prime \prime}(x), \tag{8}
\end{equation*}
$$

with the initial conditions $\gamma_{0}(x)=1, \gamma_{1}(x)=x^{3}$ and $\gamma_{2}(x)=x^{4}+8 x^{5}+10 x^{6}$.
Proof. We prove (6) by induction on k. It is clear that

$$
\mathrm{LS}(n, n)=1=\binom{n+1}{0}
$$

When $k=1$, by using the Chu Shih-Chieh's identity

$$
\binom{n+1}{k+1}=\sum_{i=k}^{n}\binom{i}{k}
$$

we obtain

$$
\sum_{t_{1}=1}^{n}\binom{t_{1}+1}{2}=\binom{n+2}{3}
$$

and so (3) is established. When $k=2$, it follows from Lemma 5 that

$$
\begin{aligned}
\mathrm{LS}(n+2, n) & =4 \sum_{t_{2}=1}^{n}\binom{t_{2}+1}{2} \sum_{t_{1}=1}^{t_{2}}\binom{t_{1}+1}{2} \\
& =4 \sum_{t_{2}=1}^{n}\binom{t_{2}+1}{2}\binom{t_{2}+2}{3} .
\end{aligned}
$$

Setting $x=t_{2}+2$ and $a=3$ in Lemma 6, we get

$$
\begin{aligned}
\mathrm{LS}(n+2, n) & =4 \sum_{t_{2}=1}^{n}\left(10\binom{t_{2}+2}{5}+8\binom{t_{2}+2}{4}+\binom{t_{2}+2}{3}\right) \\
& =4\left(10\binom{n+3}{6}+8\binom{n+3}{5}+\binom{n+3}{4}\right)
\end{aligned}
$$

which yields (4). Along the same lines, it is not hard to verify that

$$
\begin{aligned}
\mathrm{LS}(n+3, n) & =8 \sum_{t_{3}=1}^{n}\binom{t_{3}+1}{2}\left(10\binom{t_{3}+3}{6}+8\binom{t_{3}+3}{5}+\binom{t_{3}+3}{4}\right) \\
& =8\left(280\binom{n+4}{9}+448\binom{n+4}{8}+219\binom{n+4}{7}+34\binom{n+4}{6}+\binom{n+4}{5}\right) .
\end{aligned}
$$

Hence the formula (6) holds for $k=0,1,2,3$, so we proceed to the inductive step. For $k \geq 3$, assume that

$$
\mathrm{LS}(n+k, n)=2^{k} \sum_{i=k+2}^{3 k} \gamma(k, i)\binom{n+k+1}{i}
$$

It follows from Lemma 5 that

$$
\mathrm{LS}(n+k+1, n)=2^{k+1} \sum_{t_{k+1}=1}^{n}\binom{t_{k+1}+1}{2} \sum_{i=k+2}^{3 k} \gamma(k, i)\binom{t_{k+1}+k+1}{i}
$$

By using Lemma 6, it is routine to verify that the coefficients $\gamma(k, i)$ satisfy the recurrence relation (7), and so (6) is established for general k. Multiplying both sides of (17) by x^{i} and summing for all i, we immediately get (8).

In [2], Andrews et al. introduced the (unsigned) Legendre-Stirling numbers Lc (n, k) of the first kind, which may be defined by the recurrence relation

$$
\operatorname{Lc}(n, k)=\operatorname{Lc}(n-1, k-1)+n(n-1) \operatorname{Lc}(n-1, k)
$$

with the initial conditions $\operatorname{Lc}(n, 0)=\delta_{n, 0}$ and $\operatorname{Lc}(0, n)=\delta_{0, n}$. Let $f_{k}(n)=\operatorname{LS}(n+k, n)$. According to Egge [6, Eq. (23)], we have

$$
\begin{equation*}
\operatorname{Lc}(n-1, n-k-1)=(-1)^{k} f_{k}(-n) \tag{9}
\end{equation*}
$$

for $k \geq 0$. For $m, k \in \mathbb{N}$, we define

$$
\binom{-m}{k}=\frac{(-m)(-m-1) \cdots(-m-k+1)}{k!}
$$

Combining (6) and (9), we immediately get the following result.
Corollary 8. Let k be a given nonnegative integer. For $n \geq 1$, the numbers $\operatorname{Lc}(n-1, n-k-1)$ can be expanded in the binomial basis as

$$
\begin{equation*}
\operatorname{Lc}(n-1, n-k-1)=(-1)^{k} 2^{k} \sum_{i=k+2}^{3 k} \gamma(k, i)\binom{-n+k+1}{i} \tag{10}
\end{equation*}
$$

where the coefficients $\gamma(k, i)$ are defined by (7).

It follows from (8) that

$$
\begin{aligned}
\gamma(k+1, k+3) & =\left(\frac{k(k+1)}{2}-k(k+2)+\frac{(k+2)(k+1)}{2}\right) \gamma(k, k+2), \\
\gamma(k+1,3 k+3) & =\left(1+6 k+\frac{3 k(3 k-1)}{2}\right) \gamma(k, 3 k) \\
\gamma_{k+1}(-1) & =-\left(\frac{k(k+1)}{2}+k+1\right) \gamma_{k}(-1) .
\end{aligned}
$$

Since $\gamma(1,3)=1$ and $\gamma_{1}(-1)=-1$, it is easy to verify that for $k \geq 1$, we have

$$
\gamma(k, k+2)=1, \gamma(k, 3 k)=\frac{(3 k)!}{k!(3!)^{k}}, \gamma_{k}(-1)=(-1)^{k} \frac{(k+1)!k!}{2^{k}} .
$$

It should be noted that the number $\gamma(k, 3 k)$ is the number of partitions of $\{1,2, \ldots, 3 k\}$ into blocks of size 3 (see [18, A025035]), and the number $\frac{(k+1)!k!}{2^{k}}$ is the product of first k positive triangular numbers (see [18, A006472]). Moreover, if the number LS $(n+k, n)$ is viewed as a polynomial in n, then its degree is $3 k$, which is implied by the quantity $\binom{n+k+1}{3 k}$. Furthermore, the leading coefficient of $\mathrm{LS}(n+k, n)$ is given by

$$
2^{k} \gamma(k, 3 k) \frac{1}{(3 k)!}=2^{k} \frac{(3 k)!}{k!(3!)^{k}} \frac{1}{(3 k)!}=\frac{1}{k!3^{k}},
$$

which yields [6, Theorem 3.1].

3. Grammatical interpretations of Jacobi-Stirling numbers of both kinds

In this section, a context-free grammar is in the sense of Chen [4: for an alphabet A, let $\mathbb{Q}[[A]]$ be the rational commutative ring of formal power series in monomials formed from letters in A. A context-free grammar over A is a function $G: A \rightarrow \mathbb{Q}[[A]]$ that replace a letter in A by a formal function over A. The formal derivative D is a linear operator defined with respect to a context-free grammar G. More precisely, the derivative $D=D_{G}: \mathbb{Q}[[A]] \rightarrow \mathbb{Q}[[A]]$ is defined as follows: for $x \in A$, we have $D(x)=G(x)$; for a monomial u in $\mathbb{Q}[[A]], D(u)$ is defined so that D is a derivation, and for a general element $q \in \mathbb{Q}[[A]], D(q)$ is defined by linearity. The reader is referred to [5, 14] for recent progress on this subject.

Let $[n]=\{1,2, \ldots, n\}$. The Stirling number $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ of the second kind is the number of ways to partition [n] into k blocks. Chen [4, Eq. 4.8] showed that if $G=\{x \rightarrow x y, y \rightarrow y\}$, then

$$
D^{n}(x)=x \sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} y^{k}
$$

Let \mathfrak{S}_{n} be the symmetric group of all permutations of $[n]$. Let cyc (π) be the number of cycles of π. The (unsigned) Stirling number of the first kind is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\#\left\{\pi \in \mathfrak{S}_{n} \mid \operatorname{cyc}(\pi)=k\right\}
$$

From [13. Eq. 4.8], we see that if $G=\left\{x \rightarrow x y, y \rightarrow y z, z \rightarrow z^{2}\right\}$, then

$$
D^{n}(x)=x \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] y^{k} z^{n-k} .
$$

According to [8, Theorem 4.1], the Jacobi-Stirling number $\mathrm{JS}_{n}^{k}(z)$ of the second kind is defined by

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} \mathrm{JS}_{n}^{k}(z) \prod_{i=0}^{k-1}(x-i(z+i)) \tag{11}
\end{equation*}
$$

It follows from (11) that the numbers $\mathrm{JS}_{n}^{k}(z)$ satisfy the recurrence relation

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z)
$$

with the initial conditions $\mathrm{JS}_{n}^{0}(z)=\delta_{n, 0}$ and $\mathrm{JS}_{0}^{k}(z)=\delta_{0, k}$. It is clear that $\mathrm{JS}_{n}^{k}(1)=\mathrm{LS}(n, k)$. Following [10, Eq. (1.3), Eq. (1.5)], the (unsigned) Jacobi-Stirling number $\mathrm{Jc}_{n}^{k}(z)$ of the first kind is defined by

$$
\prod_{i=0}^{n-1}(x+i(z+i))=\sum_{k=0}^{n} \mathrm{Jc}_{n}^{k}(z) x^{k}
$$

and the numbers $\mathrm{Jc}_{n}^{k}(z)$ satisfy the following recurrence relation

$$
\mathrm{Jc}_{n}^{k}(z)=\mathrm{Jc}_{n-1}^{k-1}(z)+(n-1)(n-1+z) \mathrm{Jc}_{n-1}^{k}(z),
$$

with the initial conditions $\mathrm{Jc}_{n}^{0}(z)=\delta_{n, 0}$ and $\mathrm{Jc}_{0}^{k}(z)=\delta_{k, 0}$. In particular, $\mathrm{Jc}_{n}^{k}(1)=\operatorname{Lc}(n, k)$.
Properties and combinatorial interpretations of the Jacobi-Stirling numbers of both kinds were extensively studied in [1, 10, 11, 12, 15, 16, 17. The Jacobi-Stirling numbers share many similar properties to those of the Stirling numbers. A question arises immediately: are there grammatical descriptions of the Jacobi-Stirling numbers of both kinds? In this section, we give the answer.

As a variant of the CLS-sequence, we now introduce a marked scheme for Legendre-Stirling partitions. Given a Legendre-Stirling partition $\sigma=B_{1} B_{2} \cdots B_{k} B_{0} \in \mathcal{L} \mathcal{S}(n, k)$, where B_{0} is the zero box of σ. We mark the box vector $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ by the label a_{k}. We mark any box pair $\left(B_{i}, B_{j}\right)$ by a label b and mark any box pair $\left(B_{s}, B_{0}\right)$ by a label c, where $1 \leq i<j \leq k$ and $1 \leq s \leq k$. Let σ^{\prime} denote the Legendre-Stirling partition that generated from σ by inserting $n+1$ and $\overline{n+1}$. If $n+1$ and $\overline{n+1}$ are in the same box, then

$$
\sigma^{\prime}=B_{1} B_{2} \cdots B_{k} B_{k+1} B_{0}
$$

where $B_{k+1}=\{n+1, \overline{n+1}\}$. This case corresponds to the operator $a_{k} \rightarrow a_{k+1} b^{k} c$. If $n+1$ and $\overline{n+1}$ are in different boxes, then we distinguish two cases:
(i) Given a box pair $\left(B_{i}, B_{j}\right.$), where $1 \leq i<j \leq k$. We can put $n+1$ (resp. $\overline{n+1}$) into the box B_{i} and put $\overline{n+1}$ (resp. $n+1$) into the box B_{j}. This case corresponds to the operator $b \rightarrow 2 b$.
(ii) Given a box pair $\left(B_{i}, B_{0}\right)$, where $1 \leq i \leq k$. We can put $n+1$ (resp. $\overline{n+1}$) into the box B_{i} and put $\overline{n+1}$ (resp. $n+1$) into the zero box B_{0}. Moreover, we mark any barred entry in the zero box B_{0} by a label z. This case corresponds to the operator $c \rightarrow(1+z) c$.
Let $A=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots, b, c\right\}$ be a set of alphabet. Using the above marked scheme, it is natural to consider the following grammars:

$$
\begin{equation*}
G_{k}=\left\{a_{0} \rightarrow a_{1} c, a_{1} \rightarrow a_{2} b c, \ldots, a_{k-1} \rightarrow a_{k} b^{k-1} c, b \rightarrow 2 b, c \rightarrow(1+z) c\right\} \tag{12}
\end{equation*}
$$

where $k \geq 1$.

Theorem 9. Let G_{k} be the grammars defined by (12). Then we have

$$
D_{n} D_{n-1} \cdots D_{1}\left(a_{0}\right)=\sum_{k=1}^{n} \mathrm{JS}_{n}^{k}(z) a_{k} b\binom{k}{2} c^{k} .
$$

Proof. Note that $D_{1}\left(a_{0}\right)=a_{1} c$ and $D_{2} D_{1}\left(a_{0}\right)=a_{2} b c^{2}+(1+z) a_{1} c$. Thus the result holds for $n=1,2$. For $m \geq 2$, we define $P_{m}^{k}(z)$ by

$$
D_{m} D_{m-1} \cdots D_{1}\left(a_{0}\right)=\sum_{k=1}^{n} P_{m}^{k}(z) a_{k} b \begin{gathered}
\binom{k}{2}
\end{gathered} c^{k} .
$$

We proceed by induction. Consider the case $n=m+1$. Since

$$
D_{m+1} D_{m} D_{m-1} \cdots D_{1}\left(a_{0}\right)=D_{m+1}\left(D_{m} D_{m-1} \cdots D_{1}\left(a_{0}\right)\right)
$$

it follows that

$$
\begin{aligned}
D_{m+1} D_{m} \cdots D_{1}\left(a_{0}\right) & =D_{m+1}\left(\sum_{k=1}^{n} P_{m}^{k}(z) a_{k} b\binom{k}{2} c^{k}\right) \\
& =\sum_{k=1}^{n} P_{m}^{k}(z)\left(a_{k+1} b^{\binom{k+2}{2}} c^{k+1}+k(k-1) a_{k} b\binom{k}{2} c^{k}+(1+z) k a_{k} b b^{\binom{k}{2}} c^{k}\right) .
\end{aligned}
$$

Therefore, we obtain $P_{m+1}^{k}(z)=P_{m}^{k-1}(z)+k(k+z) P_{m}^{k}(z)$. Since the numbers $P_{n}^{k}(z)$ and $\mathrm{JS}_{n}^{k}(z)$ satisfy the same recurrence relation and initial conditions, so they agree.

Combining the marked scheme for Legendre-Stirling partitions and Theorem 9, it is clear that for $n \geq k$, the number $\mathrm{JS}_{n}^{k}(z)$ is a polynomial of degree $n-k$ in z, and the coefficient z^{i} of $\mathrm{JS}_{n}^{k}(z)$ is the number of Legendre-Stirling partitions in $\mathcal{L S}(n, k)$ with exactly i barred entries in the zero box, which gives a proof of [10, Theorem 2].

We end this section by giving the following result.
Theorem 10. Let $A=\left\{a, b_{0}, b_{1}, \ldots\right\}$ be a set of alphabet. Let G_{k} be the grammars defined by

$$
G_{k}=\left\{a \rightarrow(k-1)(k-1+z) a, b_{0} \rightarrow b_{1}, b_{1} \rightarrow b_{2}, \ldots, b_{k-1} \rightarrow b_{k}\right\},
$$

where $k \geq 1$. Then we have

$$
D_{n} D_{n-1} \cdots D_{1}\left(a b_{0}\right)=a \sum_{k=1}^{n} \mathrm{Jc}_{n}^{k}(z) b_{k}
$$

Proof. Note that $D_{1}\left(a b_{0}\right)=a b_{1}$ and $D_{2} D_{1}\left(a b_{0}\right)=(1+z) a b_{1}+a b_{2}$. Hence the result holds for $n=1,2$. For $m \geq 2$, we define $Q_{m}^{k}(z)$ by $D_{m} D_{m-1} \cdots D_{1}\left(a b_{0}\right)=a \sum_{k=1}^{m} Q_{m}^{k}(z) b_{k}$. We proceed by induction. Consider the case $n=m+1$. Since

$$
D_{m+1} D_{m} D_{m-1} \cdots D_{1}\left(a b_{0}\right)=D_{m+1}\left(D_{m} D_{m-1} \cdots D_{1}\left(a b_{0}\right)\right)
$$

it follows that

$$
\begin{aligned}
D_{m+1} D_{m} \cdots D_{1}\left(a b_{0}\right) & =D_{m+1}\left(a \sum_{k=1}^{m} Q_{m}^{k}(z) b_{k}\right) \\
& =a \sum_{k=1}^{m} Q_{m}^{k}(z) m(m+z) b_{k}+a \sum_{k=1}^{m} Q_{m}^{k} b_{k+1} .
\end{aligned}
$$

Therefore, we obtain $Q_{m+1}^{k}(z)=Q_{m}^{k-1}(z)+m(m+z) Q_{m}^{k}(z)$. Since the numbers $Q_{n}^{k}(z)$ and $\mathrm{Jc}_{n}^{k}(z)$ satisfy the same recurrence relation and initial conditions, so they agree.

4. Concluding remarks

Note that the Jacobi-Stirling numbers are polynomial refinements of the Legendre-Stirling numbers. It would be interesting to explore combinatorial expansions of Jacobi-Stirling numbers of both kinds.

Let $\gamma_{k}(x)$ be the polynomials defined by (8). We end our paper by proposing the following.
Conjecture 11. For any $k \geq 1$, the polynomial $\gamma_{k}(x)$ has only real zeros. Set

$$
\gamma_{k}(x)=\gamma(k, 3 k) x^{k+2} \prod_{i=1}^{2 k-2}\left(x-r_{i}\right), \gamma_{k+1}(x)=\gamma(k+1,3 k+3) x^{k+3} \prod_{i=1}^{2 k}\left(x-s_{i}\right),
$$

where $r_{2 k-2}<r_{2 k-3}<\cdots<r_{2}<r_{1}$ and $s_{2 k}<s_{2 k-1}<s_{2 k-2}<\cdots<s_{2}<s_{1}$. Then

$$
s_{2 k}<r_{2 k-2}<s_{2 k-1}<r_{2 k-3}<s_{2 k-2}<\cdots<r_{k}<s_{k+1}<s_{k}<r_{k-1}<\cdots<s_{2}<r_{1}<s_{1},
$$

in which the zeros s_{k+1} and s_{k} of $\gamma_{k+1}(x)$ are continuous appearance, and the other zeros of $\gamma_{k+1}(x)$ separate the zeros of $\gamma_{k}(x)$.

References

[1] G.E. Andrews, E.S Egge, W. Gawronski, L.L. Littlejohn, The Jacobi-Stirling numbers, J. Combin. Theory Ser. A, 120(1) (2013), 288-303.
[2] G.E. Andrews, W. Gawronski, L.L. Littlejohn, The Legendre-Stirling numbers, Discrete Math., 311 (2011), 1255-1272.
[3] G.E. Andrews, L.L. Littlejohn, A combinatorial interpretation of the Legendre-Stirling numbers, Proc. Amer. Math. Soc., 137 (2009), 2581-2590.
[4] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci., 117 (1993), 113-129.
[5] W.Y.C. Chen, A.M. Fu, Context-free grammars for permutations and increasing trees, Adv. in Appl. Math., 82 (2017), 58-82.
[6] E.S. Egge, Legendre-Stirling permutations, European J. Combin., 31(7) (2010), 1735-1750.
[7] W.N. Everitt, L.L. Littlejohn, R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and the leftdefinite analysis of the Legendre differential expression, J. Comput. Appl. Math., 148 (1) (2002), 213-238.
[8] W.N. Everitt, K.H. Kwon, L.L. Littlejohn, R. Wellman, G.J. Yoon, Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J. Comput. Appl. Math., 208 (2007), 29-56.
[9] W. Gawronski, L.L. Littlejohn, T. Neuschel, On the asymptotic normality of the Legendre-Stirling numbers of the second kind, European J. Combin., 49 (2015), 218-231.
[10] Y. Gelineau, J. Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin., 17 (2010), \#R70.
[11] I.M. Gessel, Z. Lin, J. Zeng, Jacobi-Stirling polynomials and P-partitions, European J. Combin., 33 (2012), 1987-2000.
[12] Z. Lin, J. Zeng, Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials, Adv. in Appl. Math., 53 (2014), 12-27.
[13] S.-M. Ma, Some combinatorial arrays generated by context-free grammars, European J. Combin., 34 (2013), 1081-1091.
[14] S.-M. Ma, J. Ma, Y.-N. Yeh, B.-X. Zhu, Context-free grammars for several polynomials associated with Eulerian polynomials, Electron. J. Combin., 25(1) (2018), \#P1.31.
[15] M. Merca, A connection between Jacobi-Stirling numbers and Bernoulli polynomials, J. Number Theory, 151(2015), 223-229.
[16] P. Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric functions, Electron. J. Combin., 19 (2012), \#P60.
[17] P. Mongelli, Total positivity properties of Jacobi-Stirling numbers, Adv. in Appl. Math., 48 (2012), 354-364.
[18] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066000, P.R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)
Department of mathematics, Shanghai jiao tong university, Shanghai, P.R. China
E-mail address: majun904@sjtu.edu.cn(J. Ma)
Institute of Mathematics, Academia Sinica, Taipei, Taiwan
E-mail address: mayeh@math.sinica.edu.tw (Y.-N. Yeh)

