arXiv:1805.11532v1 [nlin.CG] 27 May 2018

The GraftalLace
Cellular Automaton

Kaszanyitzky, Andras
kaszi75@gmail.com

Abstract. We introduce our GraftalLace Cellular Automaton in short GLCA
which is a new one-dimensional cellular automaton on the regular square lattice.
It makes a monochromatic infinite directed graph which evolve deterministically
row by row, by a defined rule and a single initial row of arc patterns. Arcs overlap
each other and partly influence the states of the next cells in another arrangement.
The data structure of GLCA is a number triangle or number trapezoid consists of
octal digits formed by bit operations. We show examples of GLCA patterns which
represent all four classes of Wolfram’s classification. Some of the patterns belongs
to Sierpinski-like fractals as Pascal Triangle modulo 2 and modulo 3 patterns
which can be realized by GLCA in many different ways. We show these fractals,
observe the reversibility of the rules and give ideas to extend our automaton by
using more colours and other representations to find new interesting patterns.

1 Definition of GLCA

I invented GLCA in 1991 inspired by the articles of Scientific American mag-
azine about elementary cellular automata of Stephen Wolfram [W84,W02] and
graftal trees otherwise recursive fractal plants of Aristid Lindenmayer [D86,PL90].
Graftal is a combination of two words: graph + fractal.

GLCA connects root patterns with branch patterns through a junction (other-
wise a grid point of the square lattice) by a defined rule. Both patterns are triplets
of arcs formed by the incoming and the outgoing arcs of a junction from and into
the same horizontal position with the left and right neighbour cells. Usually we
get a porous, lace-like chaotic pattern. For illustration see Figure 1.

1.1 Formal definition of GLCA

GLCA operating with a chain of deterministic finite automata (DFA) and can be
represented as a 4-tuple (3, ¢, B, ¢p), where X is an octal alphabet (cell states), ¢
is the local transition function, B is a function to define the cell neighbourhood
with bit operations and ¢ is the initial configuration. GLCA evolves on an array
of cells (s;) where [€ N and each cell takes a state from the octal alphabet. This

array represents a global configuration ¢, such that ¢ € ¥*. The set of finite
configurations of length [is represented as X'. Cell states in a configuration c(j),
where j € Z, are updated by the next configuration ¢(j + 1) simultaneously by
the local transition function (¢) otherwise the rule (R). This rule tells how to
transform all possible octal digits into another octal digit.

In the next subsections we show two bit operating functions: B,(n) and BY(m)
to define the neighbourhood of the cells because transition function in GLCA unlike
other cellular automata only partly influences the states of the next cells (3 cells,
one at the same horizontal position with the left and right neighbour cells) and
new states come from another arrangement of the new bit triplets.

The array increases maximum 2 cells in each time steps (j). Evolution of
GLCA is represented by a sequence of finite configurations (¢;) given by the global
mapping, ® : ©! — B2,

53
P

7
S

PRI
S
TG
R SRS
NG O N s
U AT I D]
NP IR
ST IILLETL L

Figure 1. First 40 rows of Rule 512545505 with gridpoints, from a single
vertical root. It was the first interesting GLCA pattern I have found in 1991.

7 6 5 4 3 2 1 0
5 1 2 5 4 5 5 0

Figure 2. A rule as an octal number R = 512545505 means how to connect
all the root patterns (upper triplets) with branch patterns (lower triplets
in reverse order binary code) through the junction (centre point).

1.2 Basic definitions

Our cell space is the regular simple upright square lattice. All grid points are cells
called the junctions. We use the Cartesian coordinate system with upside-down

y-coordinates. We only allow connections between a cell and its closest 3 neigh-
bour cells in a positive (nonzero) vertical direction with arcs and we denote the
connection between two cells with a binary digit (1=connected, O=independent).
It means only vertical and diagonal arcs are allowed and the maximum number
of the connecting arcs in one junction is six (3 indegrees and 3 outdegrees). We
call the possible incoming arrangement of arcs into a junction: the root pattern.
We call the possible outgoing arrangement of arcs from a junction: the branch
pattern. We draw only the root pattern (states of the cells) in each time step and
upload the next row with bits of the branches by the rule. Branches automatically
become roots in another arrangement in the next time step.

Both patterns form binary triplets which have 8 possible variants denoted by an
octal digit therefore we use the octal alphabet: ¥ = {0,1,2,3,4,5,6,7}. The state
of a cell (s) specified by its incoming arc triplet, the root pattern. By choosing an
eight-digits long octal number (R) we get a rule for our GLCA which tells how
to combine the potential root patterns with branch patterns. This rule gives the
local transition function of GLCA: ¢(s). Root patterns are denoted by the place
values of the rule, their connecting branch patterns are denoted by the digits of
the rule. See mini trees on Figure 2 and more details on Figure 5.

For practical reasons we denote the branch patterns with a reverse order binary
number because in the next time step (next row of the evolving pattern) branch
arcs become root arcs in another arrangement where every arc belongs to different
junctions in a reverse order. Both patterns overlap each other. Figure 3 shows
the overlapping patterns and the potential adjacency of neighbour cells.

Figure 3. Overlapping roots and branches. We show 3 cells
in the middle row (X,Y,Z) with all of their possible connections.
Their branches make a new root pattern by the incoming arcs of cell S.

0 T1| Yol x2| Y1|?0 jY2[=1 2

Figure 4. Data representation of overlapping branch patterns
from 3 junctions (X,Y,Z above) into 5 next junctions (below).
Binary digits in a new combination represent a new root pattern: S = T2y12g.

The rule defines the corresponding branch pattern for any potential root pat-
terns otherwise for any potential states of the cells: s; ; — ¢(s; ;) which means
3 possible outgoing connecting arcs from the junction. These arcs form an octal
digit as a reverse order binary triplet by the highest bit: (v;; — vit1,41), the
middle bit: (v;; — v; j+1) and the lowest bit: (v; ; = v;—1,j41) Where v is a cell
otherwise a grid point (vertex). The horizontal position of the vertex in a row
denoted by 1, its vertical position otherwise the actual time step is denoted by j
where 1, j € Z.

One branch pattern (outgoing triplet of arcs from a junction) partly influences
the states of its 3 different neighbour cells in the next row by changing their
corresponding bits. The states of the cells come from their root pattern as their
incoming connecting arcs from 3 different cells into a junction by the highest bit:
(Ui—l,j — U,‘7j+1), the middle bit: (U@j — Ui7j+1) and the lowest bit: (Ui+1,j —
Vij+1)-

Our rule is assigning all possible s values into not necessarily different ¢(s)
values. The total number of the possible rules are 88=16777216. We avoid growing
branches from nothing therefore the last digit of the rule is always equal to zero.
The number of the remaining rules is 8”=2097152.

1.3 Bit operating functions

In this section we show how the local transition function creates the states of the
new cells in the next time step automatically (1). We define a new bit operating
function B, (n) which gives back the value of the 2P component of an octal digit
n.

For example: By(6) = 4, B1(6) = 2, By(6) = 0.

2
@ Sijr1 = ZBp(¢(Si+1—p,j)) (1)
p=0

Let’s consider another bit operating function B%(m) = b which means let the
gth bit of the octal number m is equal to bit b. For example: if m = 0 then
B?(m) = 1 means m = 4, and after that B°(m) = 1 means m = 5. Now we can
show how the local transition function creates the branches (2) at the same time
with root patterns. It is only another grouping of the arcs.

The following branches partly influence the states of 3 different cells in the
next row:

B?(siy1,5+1) = Ba(¢(s:5))
sij = ¢(si) = § B'(si511) = Bi(¢(si ;) (2)
BO%(si—1,j+1) = Bo(¢(si,5))

See Figure 4 for data representation of a new root pattern (new state of the
cell S below cell Y) made by combined bits of different branch patterns. Branch

patterns with reverse order bits: X — Tax120, Y — U2y190, £ — 222120 automat-
ically make a new root pattern in the right order: S = ZT3y1 2.

Figure 5. Rule 51254550z, 200 rows.

Figure 6. Complex pattern of GLCA, Rule 71055670g, 200 rows.

2 Symmetric fractal patterns

We can find all the pattern groups of Wolfram’s classification (Class I-IV) among
GLCA patterns otherwise the evolution of the patterns leads to homogenous, reg-
ular, chaotic and complex patterns. See Figure 5 and 6.

We show how can we realize Pascal triangle modulo 3 symmetric fractal pattern
by the monochromatic GLCA. See Figure 7.

The Sierpinski triangle (Pascal triangle modulo 2) pattern can be realized in
many ways. For example by applying an XOR binary operation or an iterated

Figure 7. Rule 005205205 of GLCA = Pascal triangle modulo 3.
162 rows of a nested pattern = 4th approximation (2 - 3™ rows of arcs).

function system (IFS) rule onto a binary square matrix. We get the same result
with Wolfram’s elementary cellular automaton [WE]. His simple rules 60, 102, 90
and 126 also give this pattern on different ways.

GLCA also gives other possibilities to realize this fractal pattern. The simplest
one, Rule 000505505 can be drawn from any single root arc. The rule means draw
two vertical branch arcs from single arcs and do not draw in other cases. See
Figure 8. Rule 000205205, 065235205 and 007205205 also make this fractal in
another way.

Figure 8. Rule 0005055053 of GLCA = Pascal triangle modulo 2.
33 rows of a nested pattern = 5th approximation (1 + 2™ rows of arcs).

We can realize Pascal triangle modulo 3 pattern in many different ways also.
As an IFS fractal [W02], by recursive curves otherwise by Hamiltonian paths or
Hamiltonian cycles [K17a,K17b]. With Wolfram’s automaton we have to use more
colours [W84,W02] (3 colours, totalistic rule, code 420) unlike my monochromatic
GLCA pattern on Figure 7.

3 Searching for reversible rules

A reversible cellular automaton is a system that is deterministic in both directions
in terms of time. It is also called invertible cellular automaton. In GLCA it means
if we change the direction of all arcs of the mini trees into reverse we can continue
the drawing at the other side of a root pattern. Most of the cases these directions
belongs to different rule numbers. For reversible rules we have to find bijective
pairs with the same rule number.

In reversible rules we have to avoid growing branches from nothing therefore the
last digit of the rule is always equal to zero. We have to use assignments amongst
root patterns and branch patterns with one-to-one correspondence. We have 7
different patterns so the maximum number of these unambigous assignments are
equal to the number of the permutations of our patterns: 7! = 5040.

By leaving odd numbers of digits at their place-values in the octal rule num-
ber and changing the remaining digits pairwise by mutuality of the number of
the place value and the correlating digit we get the following sum of binomials:
(g)—i—(g) +3 (1)4—15(;). In this case the rule number does not depend on the direc-
tion of the mini trees (assignments) therefore we get 232 different reversible rules.
This is the number of the self-inverse permutations on 7 letters, also known as
involutions [OEIS]. For example Rule 672345105 is a reversible one.

In the remaining cases we get a different rule number by changing the direction
of the drawing. We get the correlating rule pair by replacing the digit values
with the place-values of the rule number for example: Rule 357241605 and Rule
51637420g are correlating pairs.

4 Extensions and variations of the basic idea

By using the same 3 arcs long root and branch patterns and bichromatic arcs (2
drawing colours and 1 background colour) the triplets can be described as 3-digit
long numbers in ternary numeral system. In this case we combine 33 root patterns
with also 27 branch patterns and we have 2727 = 38! different rules. We can
represent these numbers with 0 to 9 and A to Q symbols (as digits of numeral
system 27). In this case the rule is a 27-digit long number consisting of these
symbols. See Figure 9.

We recommend Wolfram’s method the totalistic rules to define the assignments
in an easier way. Instead of defining branch patterns for every possible root pattern
it is enough to assign branch patterns to groups of root patterns as hues or densities
of arcs. These hues or densities are equal to the sum of the digits of a root pattern.
For example in monochromatic GLCA (1 drawing and 1 background colour) we
have binary triplets as root patterns. The sum of the digits is between 0 and 3
therefore it is enough to define 4 assignings instead of 8. By using bichromatic arcs
(2 drawing and 1 background colour) we have ternary triplets as root patterns.
The sum of the digits is between 0 and 6 therefore it is enough to define 7 assignings
instead of 27.

Figure 9. Rule HPDg8962896 DGHO067TK4M HQL013C057
Complex pattern in bichromatic version of GLCA.
300 rows, root pattern is a single black vertical arc.

We can imagine GLCA on a fixed width space or on a cylindric grid also.

We can colour and draw only the junctions instead of the arcs. It is a number
triangle (from a single root pattern) or a number trapezoid (from a single row of
root patterns). We have to use 8 colours to show the root patterns (junctions as
data containers contain these octal values). Rule 512545505 on Figure 1 and Fig-
ure 5 makes the following number triangle of octal digits: 2,104,10504, 1042104,
105154504, 10430706104, ... etc.

The number triangle constructed as follows: for example root patterns 7,4,2,1
are assigned with branch pattern 5. As a reverse binary number it is equal to
14 0+ 4. From root pattern 2 we get 104, then from root pattern 104 we get:

104
104..
.000.
..104
10504

We can make the 2D version of GLCA represented by arcs in 3D cubic space.
Consider y axis as the growing direction otherwise the time. We get 9 possible arcs
(1 vertical, 4 diagonal and 4 space diagonal arcs) at every grid point. By using
monochromatic arcs we get 2% possible root patterns and the same 512 different
branch patterns. It’s worth to use a grouping of arcs to define the rules in an
easy way. By using totalistic rules we have to summarize the number of arcs in
an elementary pattern. In this case a pattern consists of 0 to 9 arcs therefore a
totalistic rule contains 10 numbers between 0 and 511. These numbers symbolize a
branch pattern for each density or hue of arcs. Beyond the natural monochromatic
representation we can visualize every layer as a 2D animation as patterns change
in time steps like a stroboscope. In this case it’s worth to represent the coloured
junctions as a square tessellation instead of the arcs. It could be a closer relative
of Conway’s Game of Life.

5 Summary

We have introduced our GraftalLace Cellular Automaton which makes a one-
dimensional infinite monochromatic digraph otherwise an octal number triangle
or number trapezoid by partly influences the states of the neighbour cells with bit
operations. We have shown new ways to make known symmetric fractal patterns
and unknown complex patterns. The monochromatic GLCA has 8% possible rules.
We have chosen 87 rules in which none of the branches grow from nothing. We have
found 7! unambigous rules in which 232 are reversible. We have shown possibilities
to represent and extend our automaton in different ways. The 2D version of GLCA
can be represented by a 3D graph in cubic space or as a 2D animated tessellation
formed by the coloured junctions changing in time steps. It could be a closer
relative of Conway’s Game of Life. Beyond cryptographic utilization, the physical,
chemical and biological connections might also be interesting.

References.

[W84] Wolfram, S.: Computer Software in Science and Mathematics, Scientific
American, Vol. 251, Issue 3, September 1984.

[W02] Wolfram, S.: A New Kind of Science, Wolfram Media Inc., 2002

[D86] Dewdney, A. K.: Computer Recreations — of fractal mountains, graftal
plants and other computer graphics at Pizar, Scientific American, Dec. 1986

[PLI0] Prusinkiewicz, P. and Lindenmayer, A.: The algorithmic beauty of plants,
Springer, 1990.

[WE] Wolfram MathWorld / Elementary Cellular Automaton,
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

[K17a] Kaszanyitzky, A.: The generalized Sierpiriski Arrowhead Curve, 2017
https://arxiv.org/abs/1710.08480

[K17b] Kaszanyitzky, A.: Triangular fractal approzimating graphs and their cov-
ering paths and cycles, 2017
https://arxiv.org/abs/1710.09475

[OEIS] Sloane, N.J.A.: The On-line Encyclopedia of Integer Sequences,
http://oeis.org/A000085

10

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
https://arxiv.org/abs/1710.08480
https://arxiv.org/abs/1710.09475
http://oeis.org/A000085

	1 Definition of GLCA
	1.1 Formal definition of GLCA
	1.2 Basic definitions
	1.3 Bit operating functions

	2 Symmetric fractal patterns
	3 Searching for reversible rules
	4 Extensions and variations of the basic idea
	5 Summary

