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The number of the non-full-rank Steiner triple systems

Minjia Shi∗† Li Xu† Denis S. Krotov‡§

Abstract

The p-rank of a Steiner triple system B is the dimension of the linear span of the
set of characteristic vectors of blocks of B, over GF(p). We derive a formula for the
number of different Steiner triple systems of order v and given 2-rank r2 < v and
the number of Steiner triple systems of order v and given 3-rank r3 < v − 1. We
prove that there are no Steiner triple systems of 2-rank smaller than v and, at the
same time, 3-rank smaller than v − 1.

1. Introduction

A Steiner triple system STS(v) is a finite set S of cardinality v whose elements are called
points, provided with a collection of 3-subsets called blocks such that every 2-subset of
S is contained in one and only one block. We assume that S = {1, . . . , v} and do not
distinguish a block b with its characteristic vectors, that is, the v-tuple of 0s and 1s having
1s in the coordinates numbered by the elements of b. E.g., (0, 1, 0, 1, 1, 0, 0) = {2, 4, 5}
(v = 7). The dimension of the space over GF(p) spanned by the blocks (to be exact,
by their characteristic vectors) of a Steiner triple system T is called the p-rank of T . As
shown in [4], the p-rank of every STS(v) is v for all prime p except 2 and 3. The series of
papers [1, 17, 13, 24, 25, 26, 23, 8, 6, 7] are devoted to the study of STS(v) of deficient
2- or 3-rank. In particular, in [17], [25], [23], there found formulas for the number of
STS(2m−1) of 2-rank 2m−m, 2m−m+1, 2m−m+2, respectively. In a recent work [7],
a formula for the number of STS dual to a fixed binary or ternary subspace was found.

In the current paper, we derive formulas for the number of STS(v) of arbitrary 2-rank
smaller than v, see Theorem 4.6, or 3-rank smaller than v − 1 (note that the 3-rank of
STS cannot exceed v − 1, as it is always orthogonal to the all-one vector (1, 1, . . . , 1)
over GF(3)), see Theorem 3.6. In particular, our result generalizes the formulas for 2-
rank 2m − m [17], 2m − m + 1 [25],MinGW32 and 2m − m + 2 [23], obtained before.
The generalization is based on the Möbius transform, which makes possible to derive a
common formula for different ranks and also to simplify some arguments. The formulas
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are tight but conditional: they involve the numbers of objects of smaller order (Steiner
triple systems, 1-factorizations of complete graph, and latin squares).

For partial cases where these numbers are known, we obtain explicit values. Namely,
in addition to the results known before, we get the number of STS(3k) of 3-rank v − k
and v − k + 1, the number of STS(7 · 3k) of 3-rank 7 · 3k − k − 1, and the number of
STS(10 ·2k−1) of 2-rank 10 ·2k−k−1, for every k (Corollaries 3.7 and 4.7). In the other
cases, our formulas can be combined with the asymptotic estimations of the number of
Steiner triple systems [21, 10], 1-factorizations [3, 10, 22], and latin squares, see e.g. [18,
Theorems 17.2, 17.3].

In the next section, we define necessary concepts and mention related facts. In Sec-
tion 3, we describe the structure of STS(v) of 3-rank smaller than v − 1 and of its dual
space and derive a formula for the number of such systems. In Section 4, similar results
are obtained for STS(v) of 2-rank smaller than v.

2. Definitions and notations

Orthogonality and duality. Two v-tuples x = (x1, . . . , xv) and y = (y1, . . . , yv) under-
stood as vectors over GF(q) are said to be orthogonal, denoted x ⊥ y, if x1y1+ . . .+xvyv =
0. Given a set B of vectors, the dual space B⊥ is the set of all vectors orthogonal to each
element of B. By 〈B〉, we denote the linear span of the vector set B.

To simplify the formulas, we will use the standard notation of q-factorial [n]q! =
∏n

s=1

∑s−1
i=0 q

i. Using this notation, the number
∏n

t=1(q
n − qt−1) of different bases in an

n-dimensional space over GF(q) can be written as q
n(n−1)

2 (q − 1)n[n]q!.

Latin squares. A latin square of order n is a function f : {1, . . . , n}2 → {1, . . . , n}
invertible in each argument. Traditionally, latin squares are represented by their value
tables, whose rows and columns, by definition, contain all elements from 1 to n. (A system
from the set {1, . . . , n} with a latin square operation f is known as a quasigroup of order
n.) A latin square f is called symmetric if f(x, y) ≡ f(y, x) (i.e., the corresponding
quasigroup is commutative). A latin square f is called totally symmetric if f(x, y) = z
implies f(y, x) = z, f(x, z) = y, f(z, x) = y, f(y, z) = x, and f(z, y) = x. A latin square
f is called idempotent if f(x, x) ≡ x. It is well known and obvious that the idempotent
totally symmetric latin squares of order n are in one-to-one correspondence with the
Steiner triple systems of order n.

Proposition 2.1. Let S = {1, . . . , n}. For every Steiner triple system (S,B), the function
f defined as f(x, x) ≡ x and f(x, y) = z for every {x, y, z} ∈ B is an idempotent
totally symmetric latin square. Inversely, every idempotent totally symmetric latin square
f : S2 → S induces the Steiner triple system (S,B), B = {{x, y, z} : x 6= y, f(x, y) = z}.

Slightly less obvious but also well known is the following bijection.

Proposition 2.2. For every odd n, there is a one-to-one correspondence between sym-
metric latin squares of order n and symmetric latin squares f of order n + 1 such that
f(x, x) ≡ n+ 1.
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Proof. Given symmetric latin square f of order n+1 such that f(x, x) ≡ n+1, the
function g : {1, . . . , n}2 → {1, . . . , n} defined by g(x, x) = f(x, n + 1), g(x, y) = f(x, y)
for every different x and y from {1, . . . , n} is straightforwardly a symmetric latin square.

4 1 3 2

1 4 2 3

3 2 4 1

2 3 1 4

←→
2 1 3
1 3 2
3 2 1

To see the inverse, it is important to note that for a symmetric latin square g of odd
order n, the set {g(x, x) : x ∈ {1, . . . , n}} coincides with {1, . . . , n} (indeed, for every x
the number of the pairs (y, z) such that g(y, z) = x is odd n, while the number of the
pairs (y, z) such that g(y, z) = x and y 6= z is even, from the symmetry). Then we define
the required f by the identities f(x, x) = n + 1, f(x, n + 1) = f(n + 1, x) = g(x, x), and
f(x, y) = g(x, y) for every x, y ∈ {1, . . . , n}, x 6= y. N

Remark 1. The symmetric latin squares f of even order n such that f(x, x) ≡ n are
in a straightforward one-to-one correspondence with the ordered 1-factorizations of the
complete graph on the vertex set {1, . . . , n} (i.e., the ordered partitions of the set of
edges of this graph into n− 1 sets of mutually disjoint edges; the number of the ordered
partitions equals (n − 1)! times the number of unordered partitions, see [27]), with the
tournament schedules for n teams, see e.g. [30], and with the resolutions of the complete
system of pairs from {1, . . . , n}, see e.g. [1]. Under these different names, but in the
same context as in the current paper, the symmetric latin squares can be mentioned in
the literature on combinatorial designs.

Möbius coefficients. For a prime power q, define the numbers µ(q)

i , i = 0, 1, 2, . . . by
the following recursion: µ(q)

i = 1, and for an i-dimensional space S over GF(q), i ≥ 0, and
the set S of its subspaces,

µ(q)

i = −
∑

C∈S\{S}

µ(q)

dim(C), or, equivalently,
∑

C∈S

µ(q)

dim(C) = 0. (1)

Remark 2. The numbers µ(q)

i are related with the so-called Möbius function on the poset
of spaces over GF(q). Namely, for two spaces U and V , the Möbius function µU(V ) equals
µ(q)

dim(U)−dim(V ) if V ⊆ U and 0 otherwise.

Lemma 2.3 ([16, 3.10]). For every prime power q, it holds µ(q)

i = (−1)iq(
i

2).

3. Non-full-3-rank STS

Let v ≡ 1, 3 mod 6; that is, there exist STS(v). By V v, we denote the vector space of all
v-tuples over GF(3). Denote by D the set of subspaces of V v, each including the all-one
vector and being orthogonal to at least one STS(v); denote

Di = {D ∈ D : dim(D) = i+ 1}.

3



The following lemma can be considered as a treatment of the results of [4, Sect. 4] in
terms of the structure of a basis for the dual space of STS.

Lemma 3.1 ([8, Thm 5.1]). Let M be a (i+ 1)× v generator matrix for D ∈ Di, and
let the first row of M be the all-one vector. Then M consists of 3i different columns, each
occurring v/3i times.

The prove given in [8] includes a proof of more deep mathematical result, a variation
of Bonisoli’s theorem. We give an independent simple prove.

Proof. Without loss of generality, we can assume that the first column of M is
(1, 0, ..., 0)T (we can achieve this by subtracting the first row from some of the others).

Claim (*). If a and b are columns of M , then −a− b is also a column of M . Consider
an STS(v) orthogonal to the rows of M . Let a and b be the jth and kth columns of M ,
and let {j, k, l} be the STS block containing j and k. Since all rows of M are orthogonal
to the characteristic vector of this block, the lth column c satisfies a + b + c = 0, i.e.,
c = −a− b. This proves (*).

Claim (**). If c and d are columns of M , then c + d − (1, 0, ..., 0)T is also a column

of M . This is proved by applying (*) with a = c, b = d first, and then with a = −c− d,
b = (1, 0, ..., 0)T.

The last claim means that the set of columns of the matrix M ′ obtained from M by
removing the first row is closed under the addition. Since there are i linearly independent
columns, this set contains all possible 3i columns of height i.

It remains to prove that different columns a and b occur the same number of times in
M . Let J and K be the sets of positions in which M has the columns a and b, respectively.
And let l be a position of the column −a− b. For each j from J , there is k from K such
that {j, k, l} is a block of the STS. Moreover, different js correspond to different ks. This
shows that |J | ≤ |K|. Similarly, |K| ≤ |J |. N

Example 1. If v = 27, then a generator matrix for a subspace from D2 has the following
form, up to permutation of the columns:





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2



 .

Lemma 3.2. Let i and j be nonnegative integers such that i ≤ j. If Dj is not empty,
then every subspace from Di is contained in exactly Γv,i,j subspaces from Dj , where

Γv,i,j =
( v

3i
!
)3i /

3
(j+i+1)(j−i)

2

( v

3j
!
)3j

2j−i[j − i]3!. (2)

In particular, |Dj| = Γv,0,j.

Proof. Firstly, let us fix some Di from Di and construct all Dj from Dj that satisfy
Di ⊆ Dj . Let Mi be a generator matrix of Di whose first row contains only 1s. According
to Lemma 3.1, Mi divides the coordinates into 3i “cells” such that each cell contains the
same columns in it. Since Di ⊆ Dj, so Dj has a generator matrix Mj that starts with the
i+ 1 rows of Mi, and this matrix subdivides the cells into 3j “subcells” of the same size.

The number of such subdivisions is A =
(

v
3i
!
)3i/( v

3j
!
)3j

.
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Next, let us count the number of such matrices that generate the same code. Let M ′
j

be another generator matrix of Dj that also starts with i + 1 rows of Mi; what is more,
its ts row, i+ 2 ≤ t ≤ j + 1, is a linear combination of the rows of Mj , but is not a linear
combination of the rows above it in the matrix M ′

j . So, we can get there are 3j+1 − 3i+1

kinds of values for the row i+ 2, 3j+1 − 3i+2 kinds of values for the row i+ 3 and so on.
Therefore, the number of such matrices M ′

j is B = (3j+1−3i+1)(3j+1−3i+2) . . . (3j+1−3j) =

3
(j−i)(j+i+1)

2

j−i
∏

s=1

(3s−1). Finally, the number of different Dj that satisfy Di ⊆ Dj is Γv,i,j =
A
B

.

N

Lemma 3.3 (the structure of non-full-3-rank STS[7]). Given a subspace D from
Dj, the set of STS(v) orthogonal to D is in one-to-one correspondence with the collections
of 3j Steiner triple systems of order v/3j and 3j(3j − 1)/6 latin squares of order v/3j.

Proof (a sketch). According to Lemma 3.1, a generator matrix M of D divides
the coordinates into 3j groups of size v/3j. It can be seen that every STS(v) orthogonal
to D is divided into the 3j + 3j(3j − 1)/6 following subsets:

• For each of 3j groups, the triples with all 3 points in these group form STS(v/3j).

• For every 3 distinct groups {α1, . . . , αv/3j}, {β1, . . . , βv/3j}, {γ1, . . . , γv/3j} corre-
sponding to columns a, b, c with a+ b+ c = 0, the triples with one point in each of
these 3 groups have the form {αx, βy, γf(x,y)} for some latin square f of order v/3j.

N

Corollary 3.4 ([7]). Given a subspace D from Dj, the number Φ(D) of STS(v) orthog-
onal to D equals Φv,j , where

Φv,j = Ψ3j

v/3jΛ
3j(3j−1)/6

v/3j
,

Ψu is the number of STS(u), and Λu is the number of latin squares of order u.

Now, given a subspace D from Dj , we know the number Φ(D) of STS that are orthog-
onal to some subspace of D. To find the number of STS that are dual to D, we should
apply to the function Φ(D) the Möbius transform on the poset of subspaces of D. This
is essentially done in the next lemma.

Lemma 3.5. Assume that v is divided by 3k and k is the largest integer with this property.
Let i ∈ {0, . . . , k}, and let D be in Di. The number of STS(v) with dual space D equals
Υv,i, where

Υv,i =

k
∑

j=i

Γv,i,jµ
(3)

j−iΦv,j , (3)

where Γv,i,j and Φv,j are from Lemma 3.2 and Corollary 3.4.

Proof. Utilizing the definition of Γv,i,j and then expanding Φv,j , we have

k
∑

j=i

Γv,i,jµ
(3)

j−iΦv,j =

k
∑

j=i

∑

D′∈Dj

D⊆D′

µ(3)

j−iΦv,j =

k
∑

j=i

∑

D′∈Dj

D⊆D′

∑

B∈P (D′)

µ(3)

j−i,
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where P (D′) is the set of STS(v) orthogonal to D′. We continue:

=
∑

D′∈D

D⊆D′

∑

B∈P (D′)

µ(3)

dim(D′)−i =
∑

D′∈D

D⊆D′

∑

B∈P (D)

B⊥D′

µ(3)

dim(D′)−i =
∑

B∈P (D)

∑

D′∈D

D⊆D′, B⊥D′

µ(3)

dim(D′)−i

=
∑

B∈P (D)

∑

D′∈D:
D⊆D′⊆B⊥

µ(3)

dim(D′)−i

D∗=D′/D
=

∑

B∈P (D)

∑

D∗⊆B⊥/D

µ(3)

dim(D∗)

(1)
=

∑

B∈P (D)

(1 if B⊥ = D; 0 otherwise).

We see that the last formula meets the definition of Υv,i. N

Theorem 3.6. Assume that v is divided by 3k and k is the largest integer with this
property. Let i ∈ {0, . . . , k}. The total number of different STS(v) of 3-rank v − i − 1
equals

Γv,0,i

k
∑

j=i

Γv,i,jµ
(3)

j−iΦv,j , where µ(3)

l = (−1)l3(
l

2), Φv,j = Ψ3j

v/3jΛ
3j(3j−1)/6

v/3j
,

Γv,i,j =
( v

3i
!
)3i
/

3
(j+i+1)(j−i)

2

( v

3j
!
)3j

j−i
∏

s=1

(3s − 1),

Ψu is the number of STS(u) (and also the number of idempotent totally symmetric latin
squares of order u), and Λu is the number of latin squares of order u.

Proof. The number of STS(v) of 3-rank v − i− 1 equals the number Υv,i of STS(v)
of 3-rank v − i − 1 orthogonal to a given subspace D from Di multiplied by the number
Γv,0,i of such subspaces. Utilizing the formulas from Lemma 3.5 and Corollary 3.4, we get
the result. N

Corollary 3.7. The number of STS(v), v = 3k, of 3-rank v − k − 1 is

v!

3
k(k+1)

2 · 2k · [k]3!
.

The number of STS(v), v = 3k, of 3-rank v − k is

v! · (2v
2/27−4v/9+1 · 3v

2/54−7v/18+k − 1)

2k · 3
k(k+1)

2 · [k − 1]3!
.

The number of STS(v), v = 3k, of 3-rank v − k + 1 is

v!

2k+2 · 3
k(k+1)

2
−1 · [k − 2]3!

×

(

(235 · 38 · 52 · 72 · 5231 · 3824477)
v(v−9)
486

24v/9−4 · 3v/3−2k+1
− 2v

2/27−4v/9+3 · 3v
2/54−7v/18+k−1 + 1

)

.

6



The number of STS(v), v = 7 · 3k, of 3-rank v − k − 1 is

v! · 61479419904000
3k(3k−1)

6

2k · 3
k(k+1)

2 · 168 3k · [k]3!
.

Proof. According to [28], we have Λ1 = 1, Λ3 = 12, Λ7 = 61479419904000 = 218 · 35 ·
53 · 7 · 1103 [14, 15], Λ9 = 5524751496156892842531225600 = 235 · 38 · 52 · 72 · 5231 · 3824477
[2] (the last known value is Λ11 [12]). According to [29], we have Ψ1 = Ψ3 = 1, Ψ7 = 30,
Ψ9 = 840 (the last known value is Ψ19 [9]). Applying the result of Theorem 3.6, we get
the formulas. N

A computer-aimed classification of equivalence classes of STS(27) of 3-rank 24 is de-
scribed in [6]. In particular, the total number of different systems with these parameters
can be calculated from [6, Table 1] as the sum

∑

Nr27!/|Aut(S)| over the all rows of the
table except the last one (corresponding to the 3-rank 23). This number coincides with
the one given by our formula, 22 300 404 167 684 260 773 163 008 000 000.

4. Non-full-2-rank STS

In this section, to simplify the formulas, we denote the order of STS by w − 1 instead of
v. By V̇ w−1, we denote the vector space of all (w − 1)-tuples over GF(2). Denote by Ḋi

the set of i-dimensional subspaces of V̇ w−1 orthogonal to at least one STS(w − 1). The
following lemma can be considered as a treatment of the results of [4, Sect. 3] in terms of
the structure of a basis for the dual space of STS.

Lemma 4.1 ([8, Thm 4.1]). Let M be a i× (w−1) generator matrix for D ∈ Ḋi. Then
each of the 2i− 1 nonzero columns of height i occurs w/2i times as a column of M , while
the all-zero column occurs w/2i − 1 times.

Proof. Claim (*). If a and b are different nonzero columns of M , then a+ b is also

a column of M . The proof is similar to that of Claim (*) in the proof of Lemma 4.1.
Since the rank of M is i, it contains i linearly independent columns. It follows from

(*) that it contains all 2i − 1 different nonzero columns of height i.
It remains to show that every nonzero column a occur |K|+ 1 times, where K is the

set of positions in which M has the all-zero column. Let J be the sets of positions in
which M has the column a, and let l ∈ J . For each j from J\{l}, there is k from K such
that {j, k, l} is a block of the STS. Moreover, different js correspond to different ks. This
shows that |J\{l}| ≤ |K|. Similarly, |K| ≤ |J\{l}|. N

Example 2. If w = 32, then a generator matrix for a subspace from Ḋ3 has the following
form, up to permutation of the columns:





0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1



 .

Lemma 4.2. Let i and j be nonnegative integers such that i ≤ j. If Ḋj is not empty,
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then every subspace from Ḋi is contained in exactly Γ̇w,i,j subspaces from Ḋj, where

Γ̇w,i,j =
(w

2i
!
)2i
/

2
(j−i)(j+i+1)

2

(w

2j
!
)2j

[j − i]2!. (4)

In particular, |Ḋj| = Γ̇w,0,j.

Proof. The proof is similar to that of Lemma 3.2. The difference is that the size of
one cell, corresponding to the all-zero columns of the generator matrix, is one less than
for each of the other cells; the same can be said for the subcells. So, totally we have

A =
(w

2i
!
)2i−1 (w

2i
− 1
)

!
/(w

2j
!
)2j−1 (w

2j
− 1
)

! =
(w

2i
!
)2i/

2j−i
(w

2j
!
)2j

subdivisions. Dividing this number by the number B = 2
(j−i)(j+i−1)

2

j−i
∏

s=1

(2s − 1) of the

matrices generating the same space, we get the result. N

The following lemma describes the structure of an arbitrary non-full-2-rank STS. It
was proved in [26] for the partial case of STS(2k − 1) of rank 2k + 2; the arguments,
however, are applicable to the general case. It should be also noted that Theorem 4.1 in
[1] is close to this result, but the structure of the part of the block set connected with latin
squares is not described there (with the exception of one partial example in Remark 6).

Lemma 4.3 (the structure of non-full-2-rank STS [7]). Given a subspace D from
Ḋj, the set of STS(w − 1) orthogonal to D is in one-to-one correspondence with the
collections of one STS(w/2j − 1), 2j − 1 symmetric latin squares of order w/2j − 1, and
(2j − 1)(2j − 2)/6 latin squares of order w/2j.

Proof (a sketch). According to Lemma 3.1, a generator matrix M of D divides
the coordinates into 2j − 1 groups of size w/2j and one group of size w/2j − 1 (the last
group corresponds to the all-zero columns of M). It can be seen that the set of triples of
every STS(v) orthogonal to D is divided into the 2j+(2j − 1)(2j − 2)/6 following subsets:

• The triples with all 3 points in the group of size w/2j − 1 form STS(w/2j − 1).

• The triples with one points in the group {γ1, . . . , γw/2j−1} of size w/2j − 1 and two
points in one of the 2j−1 groups {α1, . . . , αw/2j} of size w/2j. Such triples have the
form {αx, αy, γf(x,y)} for some symmetric latin square f satisfying f(x, x) ≡ w/2j.
Proposition 2.2 relates f with a symmetric latin square of order w/2j − 1.

• For every 3 distinct groups {α1, . . . , αw/2j}, {β1, . . . , βw/2j}, {γ1, . . . , γw/2j} corre-
sponding to columns a, b, c with a+ b+ c = 0, the triples with one point in each of
these 3 groups have the form {αx, βy, γf(x,y)} for some latin square f of order v/2j.

N

Corollary 4.4 ([7]). Given a subspace D from Ḋj, the number Φ̇(D) of STS(w − 1)
orthogonal to D equals Φ̇w−1,j, where

Φ̇w−1,j = Ψw/2j−1Π
2j−1
w/2j−1Λ

(2j−1)(2j−2)/6

w/2j ,
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Ψu is the number of STS(u) (and the number of idempotent totally symmetric latin
squares of order u), Πu is the number of symmetric latin squares of order u, Λu is the
number of latin squares of order u.

Lemma 4.5. Assume that w is divided by 2k and k is the largest integer with this
property. Let i ∈ {0, . . . , k}, and let D be in Ḋi. The number of STS(w − 1) with dual
space D equals Υ̇w−1,i, where

Υ̇w−1,i =
k
∑

j=i

Γ̇w,i,jµ
(2)

j−iΦ̇w−1,j , (5)

where Γ̇w,i,j and Φ̇w−1,j are from Lemma 3.2 and Corollary 3.4.

The proofs of the lemma and the following theorem are the same as those of Lemma 3.5,
and we omit them.

Theorem 4.6. Assume that w is divided by 2k and k is the largest integer with this
property. Let i ∈ {0, . . . , k}. The total number of different STS(w−1) of 2-rank w− i−1
equals

Γ̇w,0,i

k
∑

j=i

Γ̇w,i,jµ
(2)

j−iΦ̇w−1,j,

where µ(2)

l = (−1)l2(
l

2), Φ̇w−1,j = Ψw/2j−1Π
2j−1
w/2j−1

Λ
(2j−1)(2j−2)/6

w/2j
, Ψu is the number of

STS(u) (and also the number of idempotent totally symmetric latin squares of order u),
Πu is the number of symmetric latin squares of order u (and also u! times the number of
1-factorizations of the complete graph of order u + 1), Λu is the number of latin squares
of order u, and

Γ̇w,i,j =
(w

2i
!
)2i
/

2
(j−i)(j+i+1)

2

(w

2j
!
)2j

j−i
∏

s=1

(2s − 1)

Corollary 4.7. The number of STS(w − 1), w = 2k, of 2-rank w − k is

w!(2w
2/24−3w/4+k+1/3 − 1)

/

2
k(k+1)

2 [k − 1]2! (see [17]).

The number of STS(w − 1), w = 2k, of 2-rank w − k + 1 is

w!
(

3w
2/48−w/4+2/3 · 2w

2/16−5w/4+2k−1 − 3 · 2w
2/24−3w/4+k−2/3 + 1

)

3 · 2
(k+2)(k−1)

2 · [k − 2]2!
(see [25]).

The number of STS(w − 1), w = 2k, of 2-rank w − k + 2 is

2k!

21 · 2
k(k+1)

2
−3 · [k − 3]2!

×
(

780w/8−1 · (228 · 35 · 52 · 72 · 1361291)w
2/384−w/16+1/3 · 23k−12
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−7 ·2w
2/16−5w/4+2k−3 ·3w

2/48−w/4+2/3+7 ·2w
2/24−3w/4−5/3+k−1

)

(see [23]).

The number of STS(10w − 1), w = 2k, of 2-rank 10w − 1− k is

(10w)! · 122556672w−1 · (243 · 310 · 54 · 72 · 31 · 37 · 547135293937)
(w−1)(w−2)

6

2
k(k+1)

2
+5 · 135 · [k]2!

.

Proof. To apply the formula from Theorem 4.6, in addition to the values considered
in the proof of Corollary 3.7, we need Π1 = 1, Π3 = 6, Π7 = 31449600 = 7! · 6240 [19],
Π9 = 444733651353600 = 9! · 1225566720 [5], see also [30],

Λ2 = 2, Λ4 = 576, Λ8 = 108776032459082956800 = 228 ·35·52 ·72·1361291 [20],

Λ10 = 9982437658213039871725064756920320000 = 243·310·54·72·31·37·547135293937 [11],

see also [28]. We also formally need the trivial values Π0 = 1 and Φ0 = 1. N

Remark 3. Taking into account Propositions 2.1 and 2.2, we know that Ψ(u − 1)
and Π(u − 1) are the numbers of latin squares of order u with certain restrictions. So,
Ψ(u− 1) < Π(u− 1) < Λ(u). It can be then noted that if j ≥ 3, then the most valuable
factor in the formulas for the number of STS(v) of 2- or 3-rank at most v−j is connected
with the number of unrestricted latin squares.

5. Concluding remarks

As we see from the results of [7], the structure of the Steiner triple systems of deficient
rank, either 2- or 3-rank, with fixed orthogonal subspace, is well understood, meaning
that it can be described in terms of latin squares and Steiner triple systems of smaller
order. The possibility to derive an explicit formula for the number of the non-full-rank
STS (involving the number of latin squares and smaller STS) implies that this description
is constructive even if we do not fix the orthogonal subspace of the systems. We finish the
paper with a simple statement that shows that the privileges given by the knowledge of
the structure of a Steiner triple system depending on the value of its 2-rank or the value
of its 3-rank cannot be combined in the same system.

Proposition 5.1. There is no a Steiner triple system of order v larger than 3 that is both
non-full-2-rank and non-full-3-rank, i.e., of 2-rank less than v and 3-rank less than v − 1.

Proof. Assume that S an a STS(v), v > 3, which is (i) of 3-rank at most v − 2
and (ii) 2-rank at most v − 1, v > 3. By Lemma 3.1, (i) means that there is a vector
with v/3 zeros, v/3 ones, and v/3 twos that is orthogonal to S over GF(3); in particular,
v ≡ 0 mod 3. Assumption (ii) means that S has a Steiner subsystem S ′ of order (v−1)/2,
by Lemma 4.3. Since v > 3 implies (v − 1)/2 > v/3, the system S ′ is orthogonal over
GF(3) to a vector that is not all-0, all-1, or all-2. By Lemma 3.1, the order (v − 1)/2 is
an integer divisible by 3, and we get v ≡ 1 mod 3, a contradiction. N
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