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An Experimental Mathematics Approach to the Area Statistic of Parking Functions

Yukun YAO and Doron ZEILBERGER

Abstract. We illustrate the experimental, empirical, approach to mathematics (that contrary to

popular belief, is often rigorous), by using parking functions and their ‘area’ statistic, as a case

study. Our methods are purely finitistic and elementary, taking full advantage, of course, of our

beloved silicon servants.

Accompanying Maple package and input and output files

This article is accompanied by a Maple package ParkingStatistics.txt available from the front

of this article

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/par.html ,

where readers can also find lots of output files, and nice pictures.

Pre-History (and Pre PC)

Once upon a time, way back in the nineteen-sixties, there was a one-way street (with no passing

allowed), with n parking spaces bordering the sidewalk. Entering the street were n cars, each driven

by a loyal husband, and sitting next to him, dozing off, was his capricious (and a little bossy) wife.

At a random time (while still along the street), the wife wakes up and orders her husband, park

here, darling!. If that space is unoccupied, the hubby gladly obliges, and if the parking space is

occupied, he parks, if possible, at the first still-empty parking space. Alas, if all the latter parking

spaces are occupied, he has to go around the block, and drive back to the beginning of this one-way

street, and then look for the first available spot. Due to construction, this wastes half an hour,

making the wife very cranky.

Q: What is the probability that no one has to go around the block?

A: (n+ 1)n−1/nn ≍ e
n+1 .

Both the question and its elegant answer are due to Alan Konheim and Benji Weiss [KW].

Parking Functions

Suppose wife i (1 ≤ i ≤ n) prefers parking-space pi, then the preferences of the wives can be

summarized as an array (p1, . . . , pn), where 1 ≤ pi ≤ n. So altogether there are nn possible

preference-vectors, starting from (1, . . . , 1) where it is clearly possible for everyone to park, and

ending with (n, ..., n) (all n), where every wife prefers the last parking space, and of course it is

impossible. Given a preference vector (p1, . . . , pn), let (p(1), . . . , p(n)) be its sorted version, arranged

in (weakly) increasing order.
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For example if (p1, p2, p3, p4) = (3, 1, 1, 4) then (p(1), p(2), p(3), p(4)) = (1, 1, 3, 4).

We invite our readers to convince themselves that a parking-space preference vector (p1, . . . , pn)

makes it possible for every husband to park without inconveniencing his wife if and only if p(i) ≤ i

for 1 ≤ i ≤ n. This naturally leads to the following definition.

Definition of a Parking Function: A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤ n is

a parking function if its (non-decreasing) sorted version (p(1), . . . , p(n)) (i.e. p(1) ≤ p(2) ≤ . . . ≤
p(n), and the latter is a permutation of the former) satisfies

p(i) ≤ i , (1 ≤ i ≤ n) .

As we have already mentioned above, Alan Konheim and Benji Weiss ([KW]) were the first to

state and prove the following theorem.

The Parking Function Enumeration Theorem: There are (n + 1)n−1 parking functions of

length n.

There are many proofs of this lovely theorem, possibly the slickest is due to the brilliant human

Henry Pollak, (who apparently did not deem it worthy of publication. It is quoted, e.g. in [FR]). It

is nicely described on pp. 4-5 of [St1] (see also [St2]), hence we will not repeat it here. Instead, as

a warm-up to the ‘statistical’ part, and to illustrate the power of experiments, we will give a much

uglier proof, that, however, is motivated.

Before going on to present our (very possibly not new) ‘humble’ proof, we should mention that

one natural way to prove the Konheim-Weiss theorem is by a bijection with labeled trees on n+ 1

vertices, that Arthur Cayley famously proved is also enumerated by (n + 1)n−1. The first such

bijection, as far as we know, was given by the great formal linguist, Marco Schützenberger ([Sc]).

This was followed by an elegant bijection by the classical combinatorial giants Dominique Foata

and John Riordan [FR], and others.

Since we know (at least!) 16 different proofs of Cayley’s formula (see, e.g. [Z3]), and at least

four different bijections between parking functions and labeled trees, there are at least 64 different

proofs (see also [St3], ex. 5.49) of the Parking Enumeration theorem. To these one must add proofs

like Pollak’s, and a few other ones.

Curiously, our ‘new’ proof has some resemblance to the very first one in [KW], since they both use

recurrences (one of the greatest tools in the experimental mathematician’s tool kit!), but our proof

is (i) motivated (ii) experimental (yet fully rigorous).

An Experimental Mathematics Motivated Proof of the Kohnheim-Weiss Parking Enu-

meration Theorem

When encountering a new combinatorial family, the first task is to write a computer program to

enumerate as many terms as possible, and hope to conjecture a nice formula. One can also try and
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”cheat” and use the great OEIS, to see whether anyone came up with this sequence before, and see

whether this new combinatorial family is mentioned there.

A very brute force approach, that will not go very far (but would suffice to get the first five terms

needed for the OEIS) is to list the superset, in this case all the nn vectors in {1 . . . n}n and for each

of them sort it, and see whether the condition p(i) ≤ i holds for all 1 ≤ i ≤ n. Then count the

vectors that pass this test.

But a much better way is to use dynamical programming to express the desired sequence, let’s

call it a(n), in terms of values a(i) for i < n.

Let’s analyze the anatomy of a typical parking function of length n. A natural parameter is the

number of 1’s that show up, let’s call it k (0 ≤ k ≤ n). i.e.

p(1) = 1 , . . . , p(k) = 1 , 2 ≤ p(k+1) ≤ k + 1 , . . . , p(n) ≤ n .

Removing the 1’s yields a shorter weakly-increasing vector

2 ≤ p(k+1) ≤ p(k+2) ≤ . . . ≤ p(n) ,

satisfying

p(k+1) ≤ k + 1 , p(k+2) ≤ k + 2 , . . . , p(n) ≤ n .

Define

(q1, . . . , qn−k) := (p(k+1) − 1, . . . , p(n) − 1) .

The vector (q1, . . . , qn−k) satisfies

1 ≤ q1 ≤ . . . ≤ qn−k ,

and

q1 ≤ k , q2 ≤ k + 1 , . . . , qn−k ≤ n− 1 .

We see that the set of parking functions with exactly k 1’s may be obtained by taking the above

set of vectors of length n − k, adding 1 to each component, scrambling it in everywhich way, and

inserting the k 1’s in everywhich way.

Alas, the ‘scrambling’ of the set of such q-vectors is not of the original form. We are forced to

consider a more general object, namely scramblings of vectors of the form p(1) ≤ . . . ≤ p(n) with

the condition

p(1) ≤ a , p(2) ≤ a+ 1 , . . . , p(n) ≤ a+ n− 1 ,

for a general, positive integer a, not just for a = 1. So in order to get the dynamical programming

recurrence rolling we are forced to introduce a more general object, called an a-parking function.

This leads to the following definition.
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Definition of an a-Parking Function: A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤
n + a − 1 is an a-parking function if its (non-decreasing) sorted version (p(1), . . . , p(n)) (i.e.

p(1) ≤ p(2) ≤ . . . ≤ p(n), and the latter is a permutation of the former) satisfies

p(i) ≤ a+ i− 1 , (1 ≤ i ≤ n) .

Note that the usual parking functions are the special case a = 1. So if we would be able to find

an efficient recurrence for counting a-parking functions, we would be able to answer our original

question.

So let’s redo the above ‘anatomy’ for these more general creatures, and hope that the two parameters

n and a would suffice to establish a recursive scheme, and we won’t need to introduce yet more

general creatures.

Let’s analyze the anatomy of a typical a-parking function of length n. Again, a natural parameter

is the number of 1’s that show up, let’s call it k (0 ≤ k ≤ n). i.e.

p(1) = 1 , . . . , p(k) = 1 , 2 ≤ p(k+1) ≤ a+ k , . . . p(n) ≤ a+ n− 1 .

Removing the 1-s yields a sorted vector

2 ≤ p(k+1) ≤ p(k+2) ≤ . . . ≤ p(n) ,

satisfying

p(k+1) ≤ k + a , p(k+2) ≤ k + a+ 1 , . . . , p(n) ≤ n+ a− 1 .

Define

(q1, . . . , qn−k) := (p(k+1) − 1 , . . . , p(n) − 1) .

The vector (q1, . . . , qn−k) satisfies

q1 ≤ . . . ≤ qn−k

and

q1 ≤ k + a− 1 , q2 ≤ k + a , . . . , qn−k ≤ n+ a− 1 .

We see that the set of a-parking functions with exactly k 1’s may be obtained by taking the above

set of vectors of length n − k, adding 1 to each component, scrambling it in everywhich way, and

inserting the k 1’s in everywhich way.

But now the set of scramblings of the vectors (q1, . . . qn−k) is an old friend!. It is the set of

(a+k−1)-parking functions of length n−k. To get all a-parking functions of length n with exactly

k ones we need to take each and every member of the set of (a+ k− 1)-parking functions of length

n − k, add 1 to each component, and insert k ones in every which way. There are
(

n
k

)

ways of

doing it. Hence the number of a-parking functions of length n with exactly k ones is
(

n
k

)

times the
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number of (a+ k − 1)-parking functions of length n− k. Summing over all k between 0 and n we

get the following recurrence.

Fundamental Recurrence for a-parking functions

Let p(n, a) be the number of a-parking functions of length n. We have the recurrence

p(n, a) =

n
∑

k=0

(

n

k

)

p(n− k, a+ k − 1) , (FundamentalRecurrence)

subject to the boundary conditions p(n, 0) = 0 for n ≥ 1, and p(0, a) = 1 for a ≥ 0.

Note that in the sense of Wilf [W], this already answers the enumeration problem to compute

p(n, a) and hence p(n, 1) = p(n), since this gives us a polynomial time algorithm to compute p(n)

(and p(n, a)).

Moving the term k = 0 from the right to the left, and denoting p(n, a) by pn(a) we have

pn(a)− pn(a− 1) =

n
∑

k=1

(

n

k

)

pn−k(a+ k − 1) .

Hence we can express pn(a) as follows, in terms of pm(a) with m < n.

pn(a) =
a
∑

b=0

(

n
∑

k=1

(

n

k

)

pn−k(b+ k − 1)

)

.

Here is the Maple code that implements it

p:=proc(n,a) local k,b:

if n=0 then

RETURN(1)

else

factor(subs(b=a,sum(expand(add(binomial(n,k)*subs(a=a+k-1,p(n-k,a)),k=1..n)),a=1..b))):

fi:

end:

If you copy-and-paste this onto a Maple session, as well as the line below,

[seq(p(i,a),i=1..10)];
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you would immediately get

[a, a (a+ 2) , a (a+ 3)
2
, a (a+ 4)

3
, a (a+ 5)

4
, a (a+ 6)

5
, a (a+ 7)

6
, a (a+ 8)

7
, a (a+ 9)

8
, a (a+ 10)

9
] .

Note that these are rigorously proved exact expressions, in terms of general a (i.e. symbolic a) for

pn(a), for 1 ≤ n ≤ 10, and we can easily get more. The following guess immediately comes to

mind

p(n, a) = pn(a) = a(a+ n)n−1 .

How to prove this rigorously? If you set q(n, a) := a(a + n)n−1, since q(n, 0) = 0 and q(0, a) = 1,

the fact that p(n, a) = q(n, a) would follow by induction once you prove that q(n, a) also satisfies

the same fundamental recurrence.

q(n, a) =
n
∑

k=0

(

n

k

)

q(n− k, a+ k − 1) . (FundamentalRecurrence′)

In other words, in order to prove that p(n, a) = a(n+ a)n−1, we have to prove the identity

a(a+ n)n−1 =

n
∑

k=0

(

n

k

)

(a+ k − 1)(a+ n− 1)n−k−1 ,

but this is an immediate consequence of the binomial theorem, hence trivial to both humans

and machines.

We have just rigorously reproved, via experimental mathematics, the following well-known theorem.

Theorem: The number of a-parking functions of length n is

p(n, a) = a (a+ n)n−1 .

In particular, by substituting a = 1, we reproved the original Konheim-Weiss theorem that p(n, 1) =

(n+ 1)n−1.

From Enumeration to Statistics in General

Often in enumerative combinatorics, the class of interest has natural ‘statistics’, like height, weight,

and IQ for humans, and one is interested rather than, for a finite set A,

|A| :=
∑

a∈A

1 ,
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called the naive counting, and getting a number (obviously a non-negative integer), by the so-called

weighted counting,

|A|x :=
∑

a∈A

xf(a) ,

where f := A → Z is the statistic in question. To go from the weighted enumeration (a certain

Laurent polynomial) to straight enumeration, one sets x = 1, i.e. |A|1 = |A|.

Since this is mathematics, and not accounting, the usual scenario is not just one specific set A, but

a sequence of sets {An}∞n=0, and then the enumeration problem is to have an efficient description

of the numerical sequence an := |An|, ready to be looked-up (or submitted) to the OEIS, and its

corresponding sequence of polynomials Pn(x) := |An|x.

It often happens that the statistic f , defined on An, has a scaled limiting distribution. In other

words, if you draw a histogram of f on An,, and do the obvious scaling, they get closer and closer

to a certain continuous curve, as n goes to infinity.

The scaling is as follows. Let En(f) and V arn(f) the expectation and variance of the statistic f

defined on An, and define the scaled random variable, for a ∈ An, by

Xn(a) :=
f(a)− En(f)
√

V arn(f)
.

If you draw the histograms of Xn(a) for large n, they look practically the same, and converge to

some continuous limit.

A famous example is coin tossing. If An is {−1, 1}n, and f(v) is the sum of v, then the limiting

distribution is the bell shaped curve aka standard normal distribution aka Gaussian distribution.

As explained in [Z4], a purely finitistic approach to finding, and proving, a limiting scaled distri-

bution, is via the method of moments. Using symbolic computation, the computer can rigorously

prove exact expressions for as many moments as desired, and often (like in the above case, see [Z4])

find a recurrence for the sequence of moments. This enables one to identify the limits of the scaled

moments with the moments of the continuous limit (in the example of coin-tossing [and many other

cases], e−x2/2
√
2π

, whose moments are famously 1, 0, 1 · 3, 0, 1 · 3 · 5, 0, 1 · 3 · 5 · 7, 0, . . .) . Whenever this

is the case the discrete family of random variables is called asymptotically normal. Whenever this

is not the case, it is interesting and surprising.

The Sum and Area Statistics on a-parking functions

Let P(n, a) be the set of a-parking functions of length n.

A natural statistic is the sum

Sum(p1, . . . , pn) := p1 + p2 + . . . + pn =

n
∑

i=1

pi .
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Another, even more natural (see the beautiful article [DH]) happens to be

Area(p) :=
n(2a+ n− 1)

2
− Sum(p) .

Let P (n, a)(x) be the weighted analog of p(n, a), according to Sum, i.e.

P (n, a)(x) :=
∑

p∈P(n,a)

xSum(p) .

Analogously, let Q(n, a)(x) be the weighted analog of p(n, a), according to Area, i.e.

Q(n, a)(x) :=
∑

p∈P(n,a)

xArea(p) .

Clearly, one can easily go from one to the other

Q(n, a)(x) = x(2a+n−1)n/2 P (n, a)(x−1) , P (n, a)(x) = x(2a+n−1)n/2 Q(n, a)(x−1) .

How do we compute P (n, a)(x)?, (or equivalently, Q(n, a)(x)?). It is readily seen that the analog

of (FundamentalRecurrence) for the weighted counting is

P (n, a)(x) = xn
n
∑

k=0

(

n

k

)

P (n− k, a+ k − 1)(x) , (FundamentalRecurrenceX)

subject to the initial conditions P (0, a)(x) = 1 and P (n, 0)(x) = 0.

So it is almost the same, the “only” change is sticking xn in front of the sum on the right hand

side.

Equivalently,

Q(n, a)(x) =

n
∑

k=0

(

n

k

)

xk(k+2a−3)/2 Q(n− k, a+ k − 1)(x) , (FundamentalRecurrenceAreaX)

subject to the initial conditions Q(0, a)(x) = 1 and Q(n, 0)(x) = 0.

Once again, in the sense of Wilf, this is already an answer, but because of the extra variable x, one

can not go as far as we did before for the naive, merely numeric, counting.

It is very unlikely that there is a “closed form” expression for P (n, a)(x) (and hence Q(n, a)(x)),

but for statistical purposes it would be nice to get “closed form” expressions for

• the expectation,
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• the variance,

• as many factorial moments as possible, from which the ‘raw’ moments, and latter the centralized

moments and finally the scaled moments can be gotten. Then we can take the limits as n goes to

infinity, and see if they match the moments of any of the known continuous distributions, and prove

rigorously that, at least for that many moments, the conjectured limiting distribution matches.

In our case, the limiting distribution is the intriguing so-called Airy distribution, that Svante Janson

prefers to call “area under Brownian excursion”. This result was stated and proved in [DH], by

using deep and sophisticated continuous probability theory and continuous martingales. Here we

will “almost” prove this result, in the sense of showing that the limits of the scaled moments of the

area statistic on parking functions coincide with the scaled moments of the Airy distribution up to

the 30-th moment, and we can go much further.

But we can do much more than continuous probabilists. We (or rather our computers, running

Maple) can find exact polynomial expressions in n and the expectation E1(n). We can do it for

any desired number of moments, say 30. Unlike continuous probability theorists, our methods are

entirely elementary, only using high school algebra.

We can also do the same thing for the more general a-parking functions. Now the expressions are

polynomials in n, a, and the expectation E1(n, a).

Finally, we believe that our approach, using the recurrence (FundamentalRecurrenceAreaX), can

be used to give a full proof (for all moments), by doing it asymptotically, and deriving a recurrence

for the leading terms of the asymptotics for the factorial moments that would coincide with the

well-known recurrence for the moments of the Airy distribution given, for example in Eqs. (4) and

(5) of Svante Janson’s article [J]. This is left as a challenge to our readers.

Finding the Expectation

The expectation of the sum statistic, let’s call it Esum(n, a) is given by (the prime denotes, as

usual, differentiation w.r.t. x)

Esum(n, a) =
P ′(n, a)(1)

P (n, a)(1)
=

P ′(n, a)(1)

a(a+ n)n−1
.

Can we get a closed-form expression for P ′(n, a)(1), and hence for Esum(n, a)?

Differentiating (FundamentalRecurrenceX) with respect to x, using the product rule, we get

P (n, a)′(x) = xn
n
∑

k=0

(

n

k

)

P (n− k, a+ k − 1)′(x) + nxn−1
n
∑

k=0

(

n

k

)

P (n− k, a+ k − 1)(x) .

Plugging-in x = 1 we get that P (n, a)′(1), satisfies the recurrence

P (n, a)′(1) −
n
∑

k=0

(

n

k

)

P (n− k, a+ k − 1)′(1) = n
n
∑

k=0

(

n

k

)

P (n− k, a+ k − 1)(1) = n p(n, a) .

(FundamentalRecurrenceX1)
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Using this recurrence, we can, just as we did for p(n, a) above, get expressions, as polynomials in

a, for numeric 1 ≤ n ≤ 10, say, and then conjecture that

P ′(n, a)(1) =
1

2
an (a+ n− 1) (a+ n)n−1 − 1

2

n
∑

j=1

(

n

j

)

j! a (a + n)n−j .

To prove it, one plugs in the left side into (FundamentalRecurrenceX1), changes the order of

summation, and simplifies. This is rather tedious, but since at the end of the day, these are

equivalent to polynomial identities in n and a, checking it for sufficiently many special values of n

and a would be a rigorous proof.

It follows that

Esum(n, a) =
n(a+ n+ 1)

2
− 1

2

n
∑

j=1

n!

(n − j)!(a+ n)j−1
.

This formula first appears in [KY1].

Equivalently,

Earea(n, a) =
n (a− 2)

2
+

1

2

n
∑

j=1

n!

(n− j)!(a + n)j−1
.

In particular, for the primary object of interest, the case a = 1, we get

Earea(n, 1) = −n

2
+

1

2

n
∑

j=1

n!

(n− j)!(n + 1)j−1
.

This rings a bell! It may written as

Earea(n, 1) = −n

2
+

1

2
Wn+1 ,

where Wn is the iconic quantity,

Wn =
n!

nn−1

n−2
∑

k=0

nk

k!
,

proved by Riordan and Sloane ([RS]) to be the expectation of another very important quantity, the

sum of the heights on rooted labeled trees on n vertices. In addition to its considerable mathematical

interest, this quantity, Wn, has great historical significance, it was the first sequence , sequence

A435 of the amazing On-Line Encyclopedia of Integer Sequences (OEIS), now with almost 300000

sequences! See [EZ] for details, and far-reaching extensions, analogous to the present paper.

[The reason it is not sequence A1 is that initially the sequences were arranged in lexicographic order.]

Another fact, that will be of great use later in this paper, is that, as noted in [RS], Ramanujan and

Watson proved that Wn (and hence Wn+1) is asymptotic to
√
2π

2
n3/2 .
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It is very possible that the formula Earea(n, 1) = −n
2 + 1

2Wn+1 may also be deduced from the

Riordan-Sloane result via one of the numerous known bijections between parking functions and

rooted labeled trees. More generally, the results below, for the special case a = 1, might be deduced,

from those of [EZ], but we believe that the present methodology is interesting for its own sake, and

besides in our current approach (that uses recurrences rather than the Lagrange Inversion Formula),

it is much faster to compute higher moments, hence, going in the other direction, would produce

many more moments for the statistic on rooted labeled trees considered in [EZ], provided that

there is indeed such a correspondence that sends the area statistic on parking functions (suitably

tweaked) to the Riordan-Sloane statistic on rooted labeled trees.

The Limiting Distribution

Given a combinatorial family, one can easily get an idea of the limiting distribution by taking a

large enough n, say n = 100, and generating a large enough number of random objects, say 50000,

and drawing a histogram, see Figure 2 in Diaconis and Hicks’ insightful article [DH]. But, one does

not have to resort to simulation. While it is impractical to consider all 10199 parking functions of

length 100, the generating function Q(100, 1)(x) contains the exact count for each conceivable area

from 0 to
(

100
2

)

. See

http://sites.math.rutgers.edu/~zeilberg/tokhniot/picsParking/Ha100.html ,

for the full histogram.

But an even more informative way to investigate the limiting distribution is to draw the histogram

of the probability generating function of the scaled distribution

Xn(p) :=
Area(p)− En√

V arn
,

where En and V arn are the expectation and variance respectively.

See

http://sites.math.rutgers.edu/~zeilberg/tokhniot/picsParking/Da100.html ,

for n = 100 and

http://sites.math.rutgers.edu/~zeilberg/tokhniot/picsParking/Da120.html ,

for n = 120. They look the same!

As proved in [DH] (using deep results in continuous probability due to David Aldous, Svante Janson,

and Chassaing and Marcket) the limiting distribution is the Airy distribution. We will soon “almost”

prove it, but do much more by discovering exact expressions for the first 30 moments, not just their

limiting asymptotics.
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Truly Exact Expressions for the Factorial (and hence Centralized Moments)

In [KY2] there is an “exact” expression for the general moment, that is not very useful for our

purposes. If one traces their proof, one can, conceivably, get explicit expressions for each specific

moment, but they did not bother to implement it, and the asymptotics is not immediate.

We discovered, the following important fact.

Fact. Let E1(a, n) := Earea(a, n) be the expectation of the area statistic on a-parking functions of

length n, given above, and let Ek(n, a) be the k-th factorial moment

Ek(n, a) :=
Q(k)(n, a)(1)

a(a+ n)n−1
,

then there exist polynomials Ak(a, n) and Bk(a, n) such that

Ek(n, a) = Ak(a, n) + Bk(a, n)E1(a, n) .

The beauty of experimental mathematics is that these can be found by cranking out enough data,

using the sequence of probability generating functions Q(n, a)(x), obtained by using the recurrence,

(FundamentalRecurrenceAreaX), getting sufficiently many numerical data for the moments, and

using undetermined coefficients. These can be proved a posteriori by taking these truly exact

formulas and verifying that the implied recurrences for the k-th factorial moment (obtained from

differentiating (FundamentalRecurrenceAreaX) k times, using Leinitz’s rule), in terms of the

previous ones. But this is not necessary. Since, at the end of the day, it all boils down to verifying

polynomial identities, so, once again, verifying them for sufficiently many different values of

(n, a) constitutes a rigorous proof. To be fully rigorous, one needs to prove a priori bounds for the

degrees in n and a, but, in our humble opinion, it is not that important, and could be left to the

obtuse reader.

Our beloved computers, running the Maple package ParkingStatistics.txt, available from the

front of this article

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/par.html ,

produced the following, for the most interesting case of a = 1, i.e. classical parking functions.

Theorem 1. (equivalent to a result in [KY1]): The expectation of the area statistic on parking

functions of length n is

E1(n) := −n

2
+

1

2

(n+ 1)!

(n+ 1)n

n−1
∑

k=0

(n+ 1)k

k!
,

and asymptotically it equals
√
2π
4 · n3/2 +O(n).
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Theorem 2. The second factorial moment of the area statistic on parking functions of length n

is

−7

3
(n + 1)E1(n) +

5

12
n3 − 1

12
n2 − 1

3
n ,

and asymptotically it equals 5
12 · n3 +O(n5/2).

Theorem 3. The third factorial moment of the area statistic on parking functions of length n is

−175

192
n4 − 283

192
n3 +

199

192
n2 +

259

192
n+

(

15

32
n3 +

521

96
n2 +

1219

96
n+

743

96

)

E1(n) ,

and asymptotically it equals 15
128

√
2π · n9/2 +O(n4).

Theorem 4. The fourth factorial moment of the area statistic on parking functions of length n is

221

1008
n6 +

63737

30240
n5 +

101897

15120
n4 +

22217

5040
n3 − 1375

189
n2 − 187463

30240
n

+

(

−35

16
n4 − 449

27
n3 − 130243

2520
n2 − 7409

105
n− 503803

15120

)

E1(n) ,

and asymptotically it equals 221
1008 · n6 +O(n11/2).

Theorem 5. The fifth factorial moment of the area statistic on parking functions of length n is

−105845

110592
n7− 2170159

290304
n6− 99955651

3870720
n5− 30773609

725760
n4− 94846903

11612160
n3+

24676991

483840
n2+

392763901

11612160
n

+

(

565

2048
n6 +

1005

128
n5 +

9832585

165888
n4 +

1111349

5184
n3 +

826358527

1935360
n2 +

159943787

362880
n+

1024580441

5806080

)

E1(n) ,

and asymptotically it equals 565
8192

√
2π · n15/2 +O(n7).

Theorem 6. The sixth factorial moment of the area statistic parking functions of length n is

82825

576576
n9 +

373340075

110702592
n8 +

9401544029

332107776
n7 +

14473244813

127733760
n6 +

414139396709

1660538880
n5

+
88215445651

332107776
n4 − 18783816473

332107776
n3 − 643359542029

1660538880
n2 − 358936540409

1660538880
n

+(−3955

2048
n7 − 186349

6144
n6 − 259283273

1161216
n5 − 119912501

129024
n4 − 149860633081

63866880
n3

−601794266581

166053888
n2 − 864000570107

276756480
n− 921390308389

830269440
)E1(n) ,

and asymptotically it equals 82825
576576 · n9 +O(n17/2).

For Theorems 7-30, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oParkingStatistics7.txt .
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Let {ek}∞k=1 be the sequence of moments of the Airy distribution, defined by the recurrence given

in Equations (4) and (5) in Svante Janson’s interesting survey paper [J]. Our computers, using our

Maple package, proved that

Ek(n) = ekn
3k
2 +O(n

3k−1

2 ) ,

for 1 ≤ k ≤ 30. It follows that the limiting distribution of the area statistic is (most probably)

the Airy distribution, since the first 30 moments match. Of course, this was already known to

continuous probability theorists, and we only proved it for the first 30 moments, but:

• Our methods are purely elementary and finitistic

• We can easily go much farther, i.e. prove it for more moments

• We believe that our approach, using recurrences, can be used to derive a recurrence for the

leading asymptotics of the factorial moments, Ek(n), that would turn out to be the same as the

above mentioned recurrence (Eqs. (4) and (5) in [J]). We leave this as a challenge to the reader.

Exact expressions for the first 10 moments of the Area statistic for general a-parking

To see expressions in a, n, and E1(n, a), for the first 10 moments of a-parking, see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oParkingStatistics8.txt .

Acknowledgment: Many thanks are due to Valentin Féray and Svante Janson for insightful

information and useful references. Also thanks to Benji Weiss for comments on a previous version.
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