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Abstract. We study a family of symmetric polynomials that we refer to as the

Boolean product polynomials. The motivation for studying these polynomials stems

from the computation of the characteristic polynomial of the real matroid spanned by

the nonzero vectors in Rn all of whose coordinates are either 0 or 1. To this end, one

approach is to compute the zeros of the Boolean product polynomials over finite fields.

The zero loci of these polynomials cut out hyperplane arrangements known as reso-

nance arrangements, which show up in the context of double Hurwitz polynomials.

By relating the Boolean product polynomials to certain total Chern classes of vector

bundles, we establish their Schur-positivity by appealing to a result of Pragacz relying

on earlier work on numerical positivity by Fulton-Lazarsfeld. Subsequently, we study

a two-alphabet version of these polynomials from the viewpoint of Schur-positivity.

As a special case of these polynomials, we recover symmetric functions first studied

by Désarménien and Wachs in the context of descents in derangements.

Keywords: Resonance hyperplane arrangement, minimal balanced collections, vector

bundle methods, Schur-positivity, symmetric functions

1 Introduction

Consider the polynomial ring C[x1, . . . , xn] in n commuting indeterminates x1, . . . , xn.

Let X = {x1, . . . , xn} and [n] = {1, . . . , n}. For a nonempty subset S of [n], define the

linear form XS in C[x1, . . . , xn] by the sum

XS := ∑
i∈S

xi.

For integers k, n satisfying 1 ≤ k ≤ n, define homogeneous polynomials Bn,k(X) of

degree (n
k) and Bn(X) of degree 2n − 1 by the products

Bn,k(X) := ∏
S⊆[n],|S|=k

XS and Bn(X) :=
n

∏
k=1

Bn,k(X). (1.1)
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For brevity, let Bn,k := Bn,k(X) and Bn := Bn(X) when the alphabet is understood. We

refer to Bn,k as the (n, k)-th Boolean product polynomial and to Bn as the n-th total Boolean

product polynomial.

Observe that the polynomials Bn(X) and Bn,k(X) are symmetric under permutations

of the variables. In fact, one might consider the Boolean product polynomials to be

among the most “natural symmetric polynomials” along with elementary, homogeneous,

and monomial symmetric polynomials, and Stanley’s chromatic symmetric polynomials.

The main focus of this article is the Schur-positivity of all Boolean product polynomials.

Theorem 1. For any positive integers k ≤ n, the (n, k)-th Boolean product polynomial Bn,k(X)

is Schur-positive. That is, there exist nonnegative integers κ
(n,k)
λ such that

Bn,k(X) = ∑
λ

κ
(n,k)
λ sλ(X).

Furthermore, the n-th total Boolean product polynomial is Schur-positive.

Our motivation for studying the Boolean product polynomials stems from three long-

standing open problems. One comes from matroid theory/hyperplane arrangements,

one comes from economics/game theory/physics, and one comes from Hadamard’s

maximal determinant problem (see Section 4).

The first interesting open problem is to find the characteristic polynomial χn(t) for

the real matroid Mn spanned by 0–1 vectors in Rn. The same polynomial χn(t) is the

characteristic polynomial of the hyperplane arrangement corresponding to hyperplanes

given by the vanishing of XS for all nonempty S ⊆ [n]. This arrangement has also

appeared in the work of [5], where it is called the resonance arrangement. One of the main

results in [5] is that the regions of the resonance arrangement are in fact the chambers

of polynomiality of the genus g double Hurwitz numbers. One approach to computing

χn(t) is the finite field method due to Athanasiadis [2], which asserts that, for large enough

primes p, χn(p) is the number of points in Fn
p in the complement of the resonance

arrangement. The finite field method is also described nicely in [22] and [23, Section

3.11.4]. This approach was used in [13, Lemma 5.3] to compute χn for small n.

As a variety, the resonance arrangement is the zero locus of the total Boolean product

polynomial Bn(X) as defined in (1.1). In addition, the zero locus of Bn,k(X) in Rn is a

central hyperplane arrangement in Rn. Klivans and Reiner [14] study the zonotope dual

to this subarrangement of the resonance arrangement in the context of degree sequences

of hypergraphs. This zonotope, called the polytope of degree sequences in [14] is the

Minkowski sum of the line segments [0, eS] where S ranges over all k-subsets of [n],
eS := ∑i∈S ei, and ei is the ith unit vector in Rn.

Our second motivating problem has roots in the work of Shapley [21] in his study of

economic equilibria, i.e. the core of an n-person cooperative game. We start by considering

collections of subsets of the finite set [n] as sets of vertices of the n-cube [0, 1]n. Let 2[n]
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denote the set of all subsets of [n], and let 22[n] denote the Boolean algebra on 2[n]. A

collection C ⊆ 2[n] is balanced if the convex hull of the set {eS : S ∈ C} meets the main

diagonal in [0, 1]n, i.e., the line between e∅ and e[n]. A collection is unbalanced otherwise.

The set of unbalanced collections is an order ideal in 22[n] , while the complementary

set of balanced collections is an order filter. Thus, it makes sense to consider minimal

balanced collections and maximal unbalanced collections. The former were first considered

by Shapley, while the latter have arisen more recently in two independent studies by

Billera-Moore-Moraites-Wang-Williams [3] and Björner [4].

We are interested in the enumerative problem of counting the maximal unbalanced

collections for a given n. These collections of subsets of [n + 1] are in bijection with the

regions in the resonance arrangement [3]. In addition, the regions of the resonance ar-

rangement are said to count so-called “generalized retarded functions” of quantum field

theory [7], while in [13], where the arrangement is called the all-subsets arrangement, its

regions are shown to correspond to certain preference rankings of interest in psychology

and economics. From work of Zuev [26], it is known that the number of maximal unbal-

anced collections for a given n is asymptotically on the order of 2n2
, while specific upper

and lower bounds were derived in [3]. One way of obtaining the number exactly is to

compute the characteristic polynomial χn(t) of the resonance arrangement as described

above and to apply the theorem of Zaslavsky relating regions of hyperplane arrange-

ments to the characteristic polynomial [25], see also [23, Thm 3.11.7]. See [17, A034997]

for additional known results on this integer sequence.

The outline of this extended abstract is as follows. In Section 2, we review our

notation and key theorems by Lascoux and Pragacz. In Section 3, we prove our main

results. As a consequence, we consider the special case of Bn,n−1(X) where we can

give the explicit Schur expansion using work of Désarménien and Wachs on descent

sets of derangements. We also generalize the Boolean product polynomials to multiple

alphabets, and give additional positivity results. In Section 4, we state some additional

open problems related to Boolean product polynomials.

Acknowledgments. We thank Patricia Hersh, Steve Mitchell, and Jair Taylor for help-

ful discussions. We thank BIRS for the opportunity to begin this collaboration at the

Algebraic Combinatorics Workshop in August 2015.

2 Notation and Background

Throughout this extended abstract, we fix a positive integer n and an alphabet X =
{x1, . . . , xn}. Denote the symmetric group on n letters by Sn. We refer the reader to

Fulton-Harris [9], Macdonald [16] or Stanley [24, Chapter 7] for a detailed treatment of

the combinatorics of symmetric polynomials and its relation to the representation theory

of both the symmetric group and the general linear group.
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2.1 Partitions, tableaux and symmetric polynomials

A partition λ of a positive integer m is a finite ordered list of positive integers (λ1, . . . , λk)
such that ∑

k
i=1 λi = m. We call the λi the parts of λ and denote the number of parts by

ℓ(λ). We denote the sum of the parts of λ by |λ|. If λ is a partition of m, we denote this

by λ ⊢ m. Pictorially we depict λ = (λ1, · · · , λk) ⊢ m via its Young diagram drawn in

French notation, which is a left-justified array of m boxes with λi boxes in row i from the

bottom. Finally, we denote the unique partition of 0 by ∅.

A semistandard Young tableau T of shape λ is a filling of the boxes of its Young diagram

with positive integers such that the entries in each row increase weakly when read from

left to right, whereas the entries in each column increase strictly when read from bottom

to top. For any positive integer m and partition λ, we denote by SSYT(λ, m) the set

of semistandard Young tableaux T of shape λ satisfying the condition that their entries

do not exceed m. A semistandard Young tableau T of shape λ with distinct entries

drawn from the set [|λ|] is said to be standard. An entry i in a standard Young tableau

(abbreviated SYT) T is a descent if i + 1 belongs to a row strictly above that occupied by

i. Otherwise, it is an ascent.

The symmetric group Sn acts on C[x1, . . . , xn] by permuting variables. The resulting

ring of invariants, denoted by Λn, is the well-known ring of symmetric polynomials in n

variables. It is a polynomial algebra generated by the ep(X) for 1 ≤ p ≤ n defined by

ep(X) = ∑
1≤j1<···<jp≤n

xj1 · · · xjp
. (2.1)

We refer to ep(X) as the p-th elementary symmetric polynomial. Given a partition λ =
(λ1, . . . , λk), define eλ(X) multiplicatively by setting eλ(X) = eλ1

(X) · · · eλk
(X). Further-

more, set e∅(X) = 1. The ring of symmetric polynomials is a graded ring with the

grading given by setting deg(ep(X)) = p. The d-th degree graded piece, denote by Λd
n,

is the C-linear span of the eλ(X) where λ ⊢ d and ℓ(λ) ≤ n. The ring of symmetric poly-

nomials is endowed with a distinguished involution ω that maps eλ(X) to the complete

homogeneous symmetric polynomial hλ(X).
From (2.1), it is clear how to define ep(Y) for any finite alphabet Y. Note further

that ep(Y) is 0 if p > |Y|. Given a positive integer 1 ≤ k ≤ n, define the following new

alphabet

X(k) :=

{

XS = ∑
i∈S

xi : S ⊆ [n], |S| = k

}

.

The (n, k)-th Boolean product polynomial can alternatively be written as e(n
k)
(X(k)).

The most important linear basis of Λn is given by the Schur functions sλ(X) for all

partitions λ. Consider T ∈ SSYT(λ, n) and let cont(T) = (α1, . . . , αn) be the ordered

sequence of nonnegative integers where αi is the number of instances of i in T, for
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1 ≤ i ≤ n. Let Xcont(T) := ∏
n
i=1 x

αi
i . The Schur function sλ(X) is defined as follows.

sλ(X) = ∑
T∈SSYT(λ,n)

Xcont(T). (2.2)

Since we also work with alphabets other than X, we remark here that to define sλ(Y) for

any finite alphabet Y, the sole change required, other than changing X to Y, is to replace

n by the cardinality of Y throughout.

Example 2. If n = 3 and k = 2, the alphabet X(2) = {x1 + x2, x1 + x3, x2 + x3}. We have

e1(X
(2)) =(x1 + x2) + (x1 + x3) + (x2 + x3) = 2s(1)(x1, x2, x3),

e2(X
(2)) =(x1 + x2)(x1 + x3) + (x1 + x2)(x2 + x3) + (x1 + x3)(x2 + x3)

=2s(11)(x1, x2, x3) + s(2)(x1, x2, x3),

e3(X
(2)) =(x1 + x2)(x1 + x3)(x2 + x3) = s(21)(x1, x2, x3).

As a more involved example, consider n = 5, k = 3 and X = {x1, . . . , x5}. The reader may verify

that e10(X
(3)) equals the expression below, where the commas and parenthesis in our notation for

partitions and the alphabet X have all been omitted:

6s32221 + 9s33211 + 3s3322 + 3s3331 + 9s42211 + 3s4222 + 6s43111 + 9s4321 + 3s433 + 3s4411

+ 3s442 + 4s52111 + 4s5221 + 4s5311 + 4s532 + 2s541 + s61111 + s6211 + s622 + s631.

Example 2 suggests that the ep(X(k)) expand positively in terms of Schur functions.

This is indeed true and to establish this fact, we need a geometric perspective on obtain-

ing the alphabet X(k) starting from X.

2.2 Schur functors and Chern classes of vector bundles

We briefly discuss some representation theory of the general linear group GLn(C) and

the symmetric group Sn. The reader is referred to [9, Lecture 6] for more details. Con-

sider a vector space V of dimension n over C. We denote the irreducible polynomial

representation of GLn(C) corresponding to λ ⊢ m by Sλ(V), obtained by acting with

the Young symmetrizer cλ on V⊗m. We assume here that ℓ(λ) ≤ n. The association

V 7→ Sλ(V) is a functor in the category of finite dimensional vector spaces and is called

the Schur functor. In particular, S(1k)(V) corresponds to the exterior power
∧kV, whereas

S(k)(V) corresponds to the symmetric power SymkV. The connection to the ring of sym-

metric polynomials is made explicit by the character map Ch defined by

Ch(Sλ(V)) = sλ(X).
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Just as partitions index the irreducible polynomial representations of GLn(C), they index

the irreducible representations of Sn. The link to Schur polynomials is made manifest

by the map Frob, referred to as the Frobenius characteristic, that sends the irreducible

representation of Sn indexed by λ ⊢ n to sλ(X).
We turn our attention to Chern classes of vector bundles over a smooth projective

variety V. The reader is referred to [8] for further details. We merely collect facts that

allow us to cast the question of the Schur-positivity of the Boolean product polynomials

as one involving Chern roots. Let E be a vector bundle of rank r over V. The total Chern

class c(E) is the sum of the individual Chern classes

c(E) = 1 + c1(E) + · · ·+ cr(E).

Note that ci(E) = 0 for all i > r [8, Theorem 3.2a]. If one assumes temporarily that E is

the direct sum of line bundles L1, . . . ,Lr, then the Whitney-sum property [8, Theorem

3.2e] implies that

c(E) =
r

∏
i=1

(1 + c1(Li)).

If E is not a direct sum, the splitting principle [8, Remark 3.2.3] says that by constructing

an appropriate filtration of E where the successive quotients are line bundles, one may

still factor the total Chern class of E formally as c(E) = ∏
r
i=1(1+ αi). The αi for 1 ≤ i ≤ r

are said to be the Chern roots of E . We treat Chern roots as formal variables. The

observation [8, Remark 3.2.3c] that is key for us is that the Chern roots of S(1k)(E) =
∧kE

for any positive integer 1 ≤ k ≤ r are given by

{

∑
i∈S

αi : S ⊆ [r], |S| = k

}

.

This should remind the reader of the construction of the alphabet X(k) from X.

From this point onwards, fix a complex vector bundle E of rank n. Given a positive

integer k, let δk be the partition of staircase shape (k, k − 1, . . . , 1). We have the following

influential theorem due to Lascoux.

Theorem 3. [15] The total Chern class of
∧2E and Sym2E is Schur-positive in terms of the

Chern roots x1, . . . , xn of E . Specifically, there exist integers dλ,µ ≥ 0 for µ ⊆ λ such that

c(
∧2E) = ∏

1≤i<j≤n

(1 + xi + xj) = 2−(n
2) ∑

µ⊆δn−1

dδn−1,µ2|µ|sµ(X),

c(Sym2E) = ∏
1≤i≤j≤n

(1 + xi + xj) = 2−(n
2) ∑

µ⊆δn

dδn ,µ2|µ|sµ(X).
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The dλ,µ appearing in Theorem 3 are defined as follows: pad λ and µ with 0s so that

the resulting sequences have length n each. Say we obtain (λ1, . . . , λn) and (µ1, . . . , µn)
from λ and µ respectively. Then, assuming µ ⊆ λ,

dλ,µ = det

(

(

λi + n − i

µj + n − j

)

)

1≤i,j≤n

.

Determinants such as the one above are called binomial determinants. It is not immediate

that these determinants are positive. Lascoux [15] appeals to geometric considerations to

establish positivity. Establishing the positivity combinatorially is the primary motivation

of the seminal work of Gessel-Viennot [11] who identify dλ,µ as counting certain non-

intersecting lattice paths in the plane. This combinatorial interpretation implies that

the coefficients in the expansion in Theorem 3 are positive rational numbers. To prove

integrality, observe that the products yielding c(
∧2E) and c(Sym2E) expand integrally

in the basis of monomial symmetric polynomials. The inverse of the Kostka matrix,

whose entries are integral, allows us to obtain an integral expansion in terms of Schur

polynomials. To the best of our knowledge, there is no known combinatorial proof

establishing that 2(
n
2) divides dδn−1,µ2|µ|.

Given partitions λ and µ not necessarily comparable by containment, denote by

sλ(S
µ(E)) the Schur polynomial sλ evaluated at the alphabet comprising the Chern roots

of S
µ(E).

Example 4. Let n = 3 and X = {x1, x2, x3} consist of the Chern roots of some vector bundle E
of rank 3. Then we have

s(21)(S
(12)(E)) = s(21)(x1 + x2, x1 + x3, x2 + x3) = 2s(3)(X) + 5s(21)(X) + 4s(111)(X).

Remark 5. The reader should not confuse the earlier operation of substituting the alphabet cor-

responding to the Chern roots of Sµ(E) into sλ for plethysm, which corresponds to taking the

character of Sλ(Sµ(E)).

We recall a theorem due to Pragacz which generalizes Lascoux’s result above. The

gist of the statement is also present in [18, Page 34].

Theorem 6. [19, Corollary 7.2] Let E1, . . . , Ek be vector bundles, and let Y1, . . . , Yk be the al-

phabets consisting of their Chern roots respectively. For partitions λ, µ(1), . . . , µ(k), there exists

nonnegative integers c
λ,(µ(1),...,µ(k))

(ν(1),...,ν(k))
such that

sλ(S
µ(1)

(E1)⊗ · · · ⊗ S
µ(k)

(Ek)) = ∑
ν1,...,νk

c
λ,(µ(1),...,µ(k))

(ν(1),...,ν(k))
sν1

(Y1) · · · sνk
(Yk).

Pragacz’s proof of Theorem 6 relies on deep work of Fulton-Lazarsfeld [10] in the con-

text of numerical positivity. The Hard Lefschetz theorem is a key component in the

aforementioned work.
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3 Schur-positivity using Chern roots

In this section, we establish the Schur-positivity of Bn,k(X) and Bn(X). Additional con-

sequences are then described below.

Proof of Theorem 1. Let E be a complex vector bundle of rank n. Observe that c(
∧2E) =

∑p ep(X
(2)) provided X is the alphabet of Chern roots of E . On comparing homogeneous

summands on the right hand side of the preceding equality with those in Theorem 3,

we see that Lascoux’s result yields the Schur-positivity of ep(X(2)) for each p ≥ 0. In

particular, Bn,2(X) is Schur-positive. To establish positivity in the general case, we follow

the route laid out by Lascoux.

For a positive integer k, recall from Section 2 that the Chern roots of S(1k)(E) =
∧kE

are given by the elements in the alphabet X(k). We have

c(
∧kE) = ∏

S⊆[n],|S|=k

(

1 + ∑
i∈S

xi

)

= ∑
p≥0

ep(X
(k)).

We will show that each ep(X(k)) is Schur-positive in terms of the Chern roots of E .

From Theorem 6, we infer that the structure coefficients c
λ,µ
ν in the following expan-

sion are all nonnegative,

sλ(S
µ(E)) = ∑

ν

c
λ,µ
ν sν(X). (3.1)

In the case where µ = (1k) for some positive integer k and λ = (1p) for some nonnegative

integer 0 ≤ p ≤ (n
k), the left hand side of (3.1) equals ep(X(k)). This establishes the Schur-

positivity of ep(X(k)). The Schur-positivity of Bn,k(X) is the special case p = (n
k). Finally,

the Schur-positivity of Bn(X) = ∏
n
k=1 Bn,k(X) follows from the Littlewood-Richardson

rule, which is an explicit positive combinatorial rule to multiply Schur polynomials.

Remark 7. One can show Bn,2(X) = e(n
2)
(X(2)) = sδn−1

(X) as in [16, §3, Example 7]. However,

we do not know a combinatorial proof for the positivity of ep(X
(2)) for 1 < p < (n

2), or of ep(X
(k))

for higher k in general.

3.1 The (n, n − 1)-Boolean product polynomial: A special case

Let q be an indeterminate and consider the q-deformation of Bn,n−1(X) defined as

Bn,n−1(X; q) :=
n

∏
i=1

(h1(X) + qxi). (3.2)
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To motivate the above deformation, we consider the special cases q = 0 and q = −1.

Observe that Bn,n−1(X; 0) = h(1n)(X). Let V be an n-dimensional vector space over C.

If ρ is the polynomial representation of GLn(C) obtained by its action on V⊗n, then

its character Ch(ρ) is equal to h(1n)(X). Furthermore, recall that h(1n)(X) is also the

Frobenius characteristic of the regular representation of Sn. Thus, in the q = 0 case, we

recover well-known representations.

The case q = −1 is more interesting. Clearly, Bn,n−1(X;−1) equals Bn,n−1(X). On

expanding the product in (3.2), we obtain

Bn,n−1(X) =
n

∑
j=0

(−1)jej(X)h(1n−j)(X). (3.3)

Comparing the expression on the right hand side with the equality in [12, Theorem 8.1],

we conclude that Bn,n−1(X) equals the symmetric function denoted by Dn therein. The

symmetric function Dn was introduced by Desarmenien and Wachs [6] in the context of

descents sets of derangements. Given the expansion of Dn in the basis of fundamental

quasisymmetric functions, we obtain the following result.

Theorem 8. For n ≥ 2, we have the Schur-positive expansion Bn,n−1(X) = ∑
λ⊢n

aλsλ(X) where

aλ is the number of T ∈ SYT(λ) with smallest ascent given by an even number.

Now consider the case where q is a positive integer. We have

Bn,n−1(X; q) =
n

∑
j=0

qjej(X)h(1n−j)(X). (3.4)

From (3.4) it is clear, for instance by the Pieri rule, that Bn,n−1(X; q) is Schur-positive. We

briefly remark on how to construct (ungraded) Sn-modules whose Frobenius character-

istic is Bn,n−1(X; q). Let 1 denote the trivial character of the Young subgroup S
j
1 ×Sn−j

of Sn. Then the Frobenius characteristic of the induced character 1↑Sn

S
j
1×Sn−j

is equal

to hn−j(X)h(1j )(X). On taking a direct sum of qj copies of this induced character for

0 ≤ j ≤ n and subsequently tensoring with the sign representation of Sn, we obtain a

character with Frobenius characteristic Bn,n−1(X; q). This construction is mildly unsat-

isfactory and one would ideally want a more ‘natural’ graded representation where q

records the grading.

We conclude with a curious observation when q = 1. In this case, the dimension

of a CSn-module with Frobenius characteristic Bn,n−1(X; 1) is equal to
n

∑
k=0

n!

k!
. By [1,

Theorem 10.4], this is also the number of positroids on [n]. In ongoing work, we are

investigating a natural Sn-action on the distinguished indexing set for positroids given

by decorated permutations. See [17, A000522] for many further interpretations of this

sequence of dimensions.
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3.2 The case of two alphabets

We investigate the case where we have two different alphabets. The result that follows

allows for further generalization to the case of multiple alphabets.

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two distinct alphabets. Note that the

cardinalities of X and Y can be distinct. Assume further that X and Y consist of Chern

roots of vector bundles E and F of ranks n and m respectively. Given nonempty subsets

S ⊆ [n] and T ⊆ [m], define the subset sums

XS := ∑
i∈S

xi and YT := ∑
i∈T

yi.

Fix positive integers j and k. Consider the following product that naturally generalizes

the (n, k)-th Boolean product polynomial.

Pj,k(X, Y) := ∏
S⊆[n]
|S|=j

∏
T⊆[m]
|T|=k

(XS + YT).

This expression is clearly symmetric in the X variables and Y variables. Note further

that Pj,k(X, Y) is equal to ep(
∧ jE ⊗

∧kF ) where p = (n
j)(

m
k ). Therefore, by invoking

Theorem 6 again, we obtain the following extension.

Theorem 9. The bivariate polynomial Pj,k(X, Y) is Schur-positive. That is, there exist nonneg-

ative integers aλµ such that

Pj,k(X, Y) = ∑
λ,µ

aλµsλ(X)sµ(Y).

Observe that the Schur-positivity in Theorem 9 subsumes that in the statement of Theo-

rem 1 if we pick exactly one of j or k to equal 0.

4 Further remarks

1. Recall that part of motivation for studying Boolean product polynomials was to

understand the matroid Mn spanned by nonzero n-vectors with components 0 or

1. We should note here that understanding the real linear algebra of these vectors

can go much deeper than knowledge of the matroid Mn, which effectively only

needs to know for each n × n matrix A of 0′s and 1′s whether det A is zero or not.

For example, to “know” the arithmetic matroid of all 0-1 vectors, one needs to know,

in addition, the absolute value |det A| of each such matrix. Now to really know the

possible determinants of all 0-1 matrices would include the solution of the problem

of Hadamard, i.e., whether there is an n × n Hadamard matrix whenever n = 4k.

The reason for this is that for each 0-1 n × n matrix A, det A ≤ (n + 1)(n+1)/2/2n

with equality if and only if there is a Hadamard matrix of order n + 1.
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2. From the work of Gessel-Reutenauer [12, Theorem 3.6], it follows that Bn,n−1(X) is

also related to representations of the free Lie algebra. Let V be an n-dimensional

vector space over C. Then we have

Bn,n−1(X) = ∑
λ⊢n

λ does not have parts equaling 1

Ch(Lieλ(V)),

where Lieλ(V) are certain GL(V)-modules known as higher Lie modules [20]. This

suggests that there might be a link between Boolean product polynomials and

representations of the free Lie algebras, and we intend to explore this in the future.

3. Observe that P1,1(X, Y) = ∏
n
i=1 ∏

m
j=1(xi + yj) and by the dual Cauchy identity, this

product is well-known to have a nice Schur function expansion. Thus, a natural

question is to find an appropriate analogue to the Robinson-Schensted insertion

algorithm that allows us to establish the Schur-positivity in Corollary 9 combina-

torially.
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