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Abstract
Pólya urns are urns where at each unit of time a ball is drawn and is replaced with some other balls
according to its colour. We introduce a more general model: The replacement rule depends on the
colour of the drawn ball and the value of the time (mod p). We discuss some intriguing properties
of the differential operators associated to the generating functions encoding the evolution of these
urns. The initial partial differential equation indeed leads to ordinary linear differential equations
and we prove that the moment generating functions are D-finite. For a subclass, we exhibit a
closed form for the corresponding generating functions (giving the exact state of the urns at
time n). When the time goes to infinity, we show that these periodic Pólya urns follow a rich
variety of behaviours: their asymptotic fluctuations are described by a family of distributions,
the generalized Gamma distributions, which can also be seen as powers of Gamma distributions.
En passant, we establish some enumerative links with other combinatorial objects, and we give
an application for a new result on the asymptotics of Young tableaux: This approach allows us to
prove that the law of the lower right corner in a triangular Young tableau follows asymptotically
a product of generalized Gamma distributions.
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11:2 Periodic Pólya urns and an application to Young tableaux

1 Periodic Pólya urns

Pólya urns were introduced in a simplified version by George Pólya and his PhD student
Florian Eggenberger in [7, 8, 27], with applications to disease spreading and conflagrations.
They constitute a powerful model, still widely used: see e.g. Rivest’s recent work on auditing
elections [28], or the analysis of deanonymization in Bitcoin’s peer-to-peer network [9]. They
are well-studied objects in combinatorial and probabilistic literature [2, 11, 22], and offer
fascinatingly rich links with numerous objects like random recursive trees, m-ary search trees,
branching random walks (see e.g. [3, 6, 15, 16, 30]). In this paper we introduce a variation
which offers new links with another important combinatorial structure: Young tableaux. We
solve the enumeration problem of this new model, derive the limit law for the evolution of
the urn, and give some applications.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white balls at
time 0. At every discrete time step one ball is drawn uniformly at random. After inspecting
its colour it is returned to the urn. If the ball is black, a black balls and b white balls are
added; if the ball is white, c black balls and d white balls are added (where a, b, c, d ∈ N are
non-negative integers). This process can be described by the so-called replacement matrix:

M =
(
a b

c d

)
, a, b, c, d ∈ N.

We call an urn and its associated replacement matrix balanced if K := a+ b = c+ d. In
other words, in every step the same number K of balls is added to the urn. This results in a
deterministic number of balls after n steps: b0 + w0 +Kn balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic, and
analytic properties.

I Definition 1. A periodic Pólya urn of period p with replacement matrices M1,M2, . . . ,Mp

is a variant of a Pólya urn in which the replacement matrix Mk is used at steps np+ k. Such
a model is called balanced if each of its replacement matrices is balanced.

In this article, we illustrate the aforementioned rich properties on the following model
(the results for other values of the parameters are similar to the case we now handle in detail).

I Definition 2. We call a Young–Pólya urn the periodic Pólya urn of period 2 with re-

placement matrices M1 :=
(

1 0
0 1

)
for every odd step, and M2 :=

(
1 1
0 2

)
for every even

step.

Let us describe the state of the urn after n steps by pairs (number of black balls, number
of white balls), starting with b0 = 1 black ball and w0 = 1 white ball shown in Figure 1.
In the first step the matrix M1 is used and gives the two states (2, 1), and (1, 2). In the
second step, matrix M2 is used, in the third step, matrix M1 is used again, in the fourth
step, matrix M2, etc. Thus, the possible states are (3, 2), (2, 3), and (1, 4), at time 2, and
(4, 2), (3, 3), (2, 4), and (1, 5), at time 3.

In fact, each of these states may be reached in different ways, and such a sequence of
transitions is called a history. Each history comes with weight one. Implicitly, they induce
a probability measure on the states at step n. So, let Bn and Wn be random variables for
the number of black and white balls after n steps, respectively. As our model is balanced,
Bn +Wn is a deterministic process, reflecting the identity Bn +Wn = b0 + w0 + n+

⌊
n
2
⌋
.

So, from now on, we concentrate our analysis on Bn.
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M2
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8 8 8

H0 = xy

H1 = x2y + xy2

H2 = 2x3y2 + 2x2y3 + 2xy4

H3 = 6x4y2 + 8x3y3 + 8x2y4 + 8xy5

Figure 1 The evolution of a Young–Pólya urn with one initial black and one initial white ball.
Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was drawn.
Straight arrows indicate that the replacement matrix M1 was used, curly arrows show that the
replacement matrix M2 was used. The number below each node is the number of possible transitions
to reach such a state. In this article we give a formula for Hn (which encodes all the possible states
of the urn at time n) and their asymptotic behaviour.

For the classical model of a single balanced Pólya urn, the limit law of the random variable
Bn is fully known: The possible limit laws include a rich variety of distributions. To name a
few, let us mention the uniform distribution [10], the normal distribution [3], and the Beta
and Mittag-Leffler distributions [15]. Periodic Pólya urns (which include the classical model)
lead to an even larger variety of distributions involving a product of generalized Gamma
distributions [31].

I Definition 3. The generalized Gamma distribution GenGamma(α, β) with real parameters
α, β > 0 is defined by the density function (having support (0,+∞))

f(x;α, β) := β xα−1 exp(−xβ)
Γ (α/β) ,

where Γ is the classical Gamma function Γ(z) :=
∫∞

0 tz−1 exp(−t) dt.

I Remark. Let Γ(α) be the Gamma distribution1 of parameter α > 0, given by its density

g(x;α) = xα−1 exp(−x)
Γ(α) .

Then, one has Γ(α) L= GenGamma(α, 1) and, for r > 0, the distribution of the r-th power of
a random variable distributed according to Γ(α) is Γ(α)r L= GenGamma(α/r, 1/r).

Our main results are the enumeration result from Theorem 5, the application to Young
tableaux in Theorem 7, and the following result (and its generalization in Theorem 6):

I Theorem 4. The normalized random variable 22/3

3
Bn
n2/3 of the number of black balls in a

Young–Pólya urn converges in law to a generalized Gamma distribution:

22/3

3
Bn
n2/3

L−→ GenGamma (1, 3) .

1 Caveat: It is traditional to use the same letter for both the Γ function and the Γ distribution. Also,
some authors add a second parameter to the distribution Γ, which is set to 1 here.

AofA 2018



11:4 Periodic Pólya urns and an application to Young tableaux

We give a proof of this result in Section 3. Let us first mention some articles where this
distribution has already appeared before:

in Janson [17], for the analysis of the area of the supremum process of the Brownian
motion,
in Peköz, Röllin, and Ross [25], as distributions of processes on walks, trees, urns, and
preferential attachments in graphs (they also consider what they call a Pólya urn with
immigration, which is a special case of a periodic Pólya urn),
in Khodabin and Ahmadabadi [19] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as e.g. the
normal, Rayleigh, and half-normal distribution, as well as the MeijerG function (see also
the addendum of [17], mentioning a dozen of other generalizations of special functions).

In the next section we translate the evolution process into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2 A functional equation for periodic Pólya urns

Let hn,k,` be the number of histories of a periodic Pólya urn after n steps with k black
balls and ` white balls, with an initial state of b0 black balls and w0 white balls, and with
replacement matrices M1 for the odd steps and M2 for the even steps. We define the
polynomials

Hn(x, y) :=
∑
k,`≥0

hn,k,`x
ky`.

Note that these are indeed polynomials as there are just a finite number of histories after n
steps. We collect all these histories in the trivariate exponential generating function

H(x, y, z) :=
∑
n≥0

Hn(x, y)z
n

n! .

In particular, we get for the first 3 terms of H(x, y, z) the expansion (compare Figure 1)

H(x, y, z) = xy +
(
xy2 + x2y

)
z +

(
2xy4 + 2x2y3 + 2x3y2) z2

2 + . . .

Observe that the polynomials Hn(x, y) are homogeneous, as we have a balanced urn model.
Now it is our goal to derive a partial differential equation describing the evolution of the

periodic Pólya urn model. For a comprehensive introduction to the method we refer to [10].
In order to capture the periodic behaviour we split the generating function H(x, y, z) into

odd and even steps. We define

He(x, y, z) :=
∑
n≥0

H2n(x, y) z
2n

(2n)! and Ho(x, y, z) :=
∑
n≥0

H2n+1(x, y) z2n+1

(2n+ 1)! ,

such that H(x, y, z) = He(x, y, z) + Ho(x, y, z). Next, we associate to the replacement
matrices M1 and M2 from Definition 2 the differential operators D1 and D2, respectively.
We get

D1 := x2∂x + y2∂y and D2 := x2y∂x + y3∂y,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x and ∂

∂y , respectively. These model
the evolution of the urn. For example, in the term x2∂x, the derivative ∂x represents drawing
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a black ball and the multiplication by x2 returning the black ball and an additional black
ball into the urn. The other terms have analogous interpretations.

With these operators we are able to link odd and even steps with the following system

∂zHo(x, y, z) = D1He(x, y, z) and ∂zHe(x, y, z) = D2Ho(x, y, z). (1)

Note that the derivative ∂z models the evolution in time. This system of partial differential
equations naturally corresponds to recurrences at the level of coefficients hn,k,`, and vice
versa. This philosophy is well explained in the symbolic method part of [12] and see also [10].

As a next step we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected
due to the fact that we are dealing with balanced urns. First, as observed previously, one has

number of balls after n steps = b0 + w0 + n+
⌊n

2

⌋
. (2)

Therefore, for any xky`zn appearing in H(x, y, z) with b0 = w0 = 1 we have

k + ` = 2 + 3n
2 (if n is even) and k + ` = 2 + 3n

2 −
1
2 (if n is odd).

This translates directly into
x∂xHe(x, y, z) + y∂yHe(x, y, z) = 2He(x, y, z) + 3

2z∂zHe(x, y, z),

x∂xHo(x, y, z) + y∂yHo(x, y, z) = 3
2Ho(x, y, z) + 3

2z∂zHo(x, y, z).
(3)

Finally, combining (1) and (3), we eliminate ∂yHe and ∂yHo. After that it is legitimate to
insert y = 1 as there appears no differentiation with respect to y anymore. As the urns are
balanced, the exponents of y and x in each monomial are bound (see Equation (2)), so we are
losing no information on the trivariate generating functions by setting y = 1. Hence, from
now on we use the notation H(x, z), He(x, z), and Ho(x, z) instead of H(x, 1, z), He(x, 1, z),
and Ho(x, 1, z), respectively. All of this leads to our first main enumeration theorem:

I Theorem 5 (Linear differential equations and hypergeometric expressions for histories). The
generating functions describing the 2-periodic Young–Pólya urn at even and odd time satisfy
the following system of differential equations:

∂zHe(x, z) = x(x− 1)∂xHo(x, z) + 3
2z∂zHo(x, z) + 3

2Ho(x, z),

∂zHo(x, z) = x(x− 1)∂xHe(x, z) + 3
2z∂zHe(x, z) + 2He(x, z).

(4)

Moreover, He and Ho satisfy ordinary linear differential equations (they are D-finite, see
e.g. [12, Appendix B.4] for more on this notion), which in return implies that H = He +Ho

satisfies the equation L.H(x, z) = 0, where L is a differential operator of order 3 in ∂z, and
one has the hypergeometric closed forms for hn := [zn]H(1, z):

hn =

3n Γ(n2 +1)Γ(n2 + 2
3 )

Γ(2/3) if n is even,

3n Γ(n2 +1/2)Γ(n2 +7/6)
Γ(2/3) if n is odd.

(5)

Alternatively, this sequence satisfies h(n+ 2) = 2
3h(n+ 1) + 1

4 (9n2 + 21n+ 12)h(n). This
sequence is not found in the OEIS2, we added it there, it is now A293653, and it starts like
this: 1, 2, 6, 30, 180, 1440, 12960, 142560, 1710720, 23950080, 359251200, . . .

2 On-Line Encyclopedia of Integer Sequences, https://oeis.org.

AofA 2018
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11:6 Periodic Pólya urns and an application to Young tableaux

In the next section we will use Equations (4) to iteratively derive the moments of the
distribution of black balls after n steps.

3 Moments of periodic Pólya urns

In this section, we give a proof via the method of moments of Theorem 4 stated in the
introduction. Let mr(n) be the r-th factorial moment of the distribution of black balls after
n steps, i.e.

mr(n) := E (Bn(Bn − 1) · · · (Bn − r + 1)) .

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xrH(x, z)
∣∣
x=1

[zn]H(1, z) .

Splitting them into odd and even moments, we have access to these quantities via the partial
differential equation (4). As a first step we compute hn := [zn]H(1, z), the total number
of histories after n steps. We substitute x = 1, which makes the equation independent of
the derivative with respect to x. Then, the idea is to transform (4) into two independent
differential equations for He(1, z) and Ho(1, z). This is achieved by differentiating the
equations with respect to z and substituting the other one to eliminate He(1, z) or Ho(1, z),
respectively. This decouples the system, but increases the degree of differentiation by 1. We
get (

9z2 − 4
)
∂2
zHe(1, z) + 39z∂zHe(1, z) + 24He(1, z) = 0,(

9z2 − 4
)
∂2
zHo(1, z) + 39z∂zHo(1, z) + 21Ho(1, z) = 0.

In this case it is easy to extract the underlying recurrence relations and solve them explicitly.
This also leads to the closed forms (5) for hn, from which it is easy to compute the asymptotic
number of histories for n→∞. Interestingly, the first two terms in the asymptotic expansion
are the same for odd and even number of steps, only the third ones differ. We get

hn = n!
√
π

21/6Γ
( 2

3
) (3

2

)n
n1/6

(
1 +O

(
1
n

))
.

As a next step we compute the mean. Therefore, we differentiate (4) once with respect
to x, substitute x = 1, decouple the system, derive the recurrence relations of the coefficients,
and solve them. Note again that the factor (x−1) prevents higher derivatives from appearing
and is therefore crucial for this method. After normalization by hn we get

m1(n) =


33/2Γ( 2

3 )2

2π
Γ(n2 + 4

3 )
Γ(n2 + 2

3 ) if n is even,
33/2Γ( 2

3 )2

4π
(n+1)Γ(n2 + 5

6 )
Γ(n2 + 7

6 ) if n is odd.

For the asymptotic mean we discover again the same phenomenon that the first two terms in
the asymptotic expansion are equal for odd and even n.

Differentiating (4) to higher orders allows to derive higher moments in a mechanical way
(this however requires further details, which will be included in the expanded version of this
article). In general we get the closed form for the r-th factorial moment

mr(n) = 3r

22r/3
Γ
(
r
3 + 1

3
)

Γ
( 1

3
) n2r/3

(
1 +O

(
1
n

))
. (6)
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Therefore we see that the moments E (B∗nr) of the rescaled random variable B∗n := 22/3

3
Bn
n2/3

converge for n to infinity to the limit

mr :=
Γ
(
r
3 + 1

3
)

Γ
( 1

3
) . (7)

Note that one has m−1/(2r)
r =

( 3e
r

)1/6 (1 + o(1)) for large r, so the following sum diverges:∑
r>0

m−1/(2r)
r = +∞ . (8)

Therefore, a result by Carleman (see [5, pp. 189-220] or [33, p. 330])3 implies that there
exists a unique distribution (let us call it D) with such moments mr.

Furthermore, by the asymptotic result from Equation (6) there exist an n0 > 0 and
constants ar and br independent of n such that ar < mr(n) < br, for all n ≥ n0. Thus,
by the limit theorem of Fréchet and Shohat [13]4 there exists a limit distribution (which
therefore has to be D) to which a subsequence of our rescaled random variables B∗n converge
to. And as we know via Carleman’s criterion above that D is uniquely determined by its
moments, it is in fact the full sequence of B∗n which converges to D.

Now it is easy to check that if X ∼ GenGamma(d, p) is a generalized Gamma distributed
random variable (as defined in Definition 3), then it is a distribution determined by its
moments, which are given by E(Xr) = Γ

(
d+r
p

)
/Γ
(
d
p

)
.

In conclusion, the structure of mr in Formula (7) implies that the normalized random
variable B∗n of the number of black balls in a Young–Pólya urn converges to GenGamma (1, 3) .
This completes the proof of Theorem 4. J

The same approach allows us to study the distribution of black balls for the urn with

replacement matrices M1 = M2 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
. We call

this model the Young–Pólya urn of period p and parameter `.

I Theorem 6. The renormalized distribution of black balls in the Young–Pólya urn of period p
and parameter ` is asymptotically a distribution, which we call ProdGenGamma(p, `, b0, w0),
defined as the following product of independent distributions:

pδ

p+ `

Bn
nδ

L−→ Beta(b0, w0)
`−1∏
i=0

GenGamma(b0 + w0 + p+ i, p+ `) (9)

with δ = p/(p+ `), and where Beta(b0, w0) is as usual the law with support [0, 1] and density
Γ(b0+w0)

Γ(b0)Γ(w0)x
b0−1(1− x)w0−1.

Sketch. This follows from the following r-th (factorial) moment computation:

E (Brn) = (p+ `)r

pδr
Γ(b0 + r)Γ(b0 + w0)
Γ(b0)Γ(b0 + w0 + r)

`−1∏
i=0

Γ
(
b0+w0+p+r+i

p+`

)
Γ
(
b0+w0+p+i

p+`

) nδr
(

1 +O

(
1
n

))
,

3 Note that there is no typo in Formula 8: if the support of the density is [0, +∞[ the moments in the
sum have index r and exponent −1/(2r), while they have index 2r and exponent −1/(2r) if the support
is ]−∞, +∞[.

4 As a funny coincidence, Fréchet and Shohat mention in [13] that the generalized Gamma distribution
with parameter p ≥ 1/2 is uniquely characterized by its moments.

AofA 2018



11:8 Periodic Pólya urns and an application to Young tableaux

which in turn characterizes the ProdGenGamma distribution. Indeed, if for some independent
random variables X,Y, Z, one has E(Xr) = E(Y r)E(Zr) (and if Y and Z are determined by
their moments), then X L= Y Z. J

This is consistent with our results on the Young–Pólya urn introduced in Section 1.
Indeed, there one has w0 = b0 = 1, p = 2, ` = 1, and therefore the renormalized distribution
of black balls pδ

p+`Bn/n
δ is asymptotically Unif(0, 1) ·GenGamma(4, 3) = GenGamma (1, 3).

We will now see what are the implications of this result on an apparently unrelated topic:
Young tableaux.

4 Urns, trees, and Young tableaux

As predicted by Anatoly Vershik in [32], the 21st century should see a lot of challenges and
advances on the links of probability theory with (algebraic) combinatorics. A key role is
played here by Young tableaux5, because of their ubiquity in representation theory. Many
results on their asymptotic shape have been collected, but very few results are known on
their asymptotic content when the shape is fixed (see e.g. the works by Pittel and Romik,
Angel et al., Marchal [1, 24, 26, 29], who have studied the distribution of the values of the
cells in random rectangular or staircase Young tableaux, while the case of Young tableaux
with a more general shape seems to be very intricate). It is therefore pleasant that our work
on periodic Pólya urns allows us to get advances on the case of a triangular shape, with any
slope.

For any fixed integers n, `, p ≥ 1, we introduce the quantity N := p`n(n+ 1)/2. We define
a triangular Young tableau of slope −`/p and of size N as a classical Young tableau with N
cells with length n` and height np such that the first p rows (from the bottom) have length
n`, the next p lines have length (n− 1)` and so on (see Figure 2). We now study what is
the typical value of its lower right corner (with the French convention for drawing Young
tableaux, see [21] but take however care that on page 2 therein, Macdonald advises readers
preferring the French convention to “read this book upside down in a mirror”!).

It could be expected (e.g. via the Greene–Nijenhuis–Wilf hook walk algorithm for gener-
ating Young tableaux, see [14]) that the entries near the hypotenuse should be N − o(N).
Can we expect a more precise description of these o(N) fluctuations? Our result on periodic
urns enables us to exhibit the right critical exponent, and the limit law in the corner:

I Theorem 7. Choose a uniform random triangular Young tableau Y of slope −`/p and
size N = p`n(n+ 1)/2 and put δ = p/(p+ `). Let Xn be the entry of the lower right. Then
(N −Xn)/n1+δ converges in law to the same limiting distribution as the number of black balls
in the periodic Young–Pólya urn with initial conditions w0 = `, b0 = p and with replacement

matrices M1 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
, i.e. we have the convergence

in law, as n goes to infinity:

pδ

p+ `

N −Xn

n1+δ
L−→ ProdGenGamma(p, `, b0, w0).

(Recall that ProdGenGamma is defined by Formula 9.)

5 A Young tableau of size n is an array with columns of (weakly) decreasing height, in which each cell is
labelled, and where the labels run from 1 to n and are strictly increasing along rows from left to right
and columns from bottom to top, see Figure 2. We refer to [21] for a thorough discussion on these
objects.
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Remark: The simplest case (` = 1, p = 2) relates to the Young–Pólya urn model which we
analysed in the previous sections.

Sketch of proof. We first establish a link between Young tableaux and linear extensions of
trees. Then we will be able to conclude via a link between these trees and periodic Pólya
urns. Let us start with Figure 2, which describes the main characters of this proof.

The bottom part of Figure 2 presents two trees (the “big” tree T , which contains the
“small” tree S). More precisely, we define the rooted planar tree S as follows:

The left-most branch of S has n`+ 1 vertices, which we call v1, v2, . . . , vn`+1, where v1 is
the root and vn`+1 is the left-most leaf of the tree.
For 2 ≤ k ≤ n− 1, the vertex vk` has p+ 1 children.
The vertex vn` has p− 1 children.
All other vertices vj (for j < n`, j 6= k`) have exactly one child.

Now, define T as the “big” tree obtained from the “small” tree S by adding a vertex v0
as the father of v1 and adding N + 1− n(p+ `) children to v0 (see Figure 2). Remark that
the number of vertices of T is equal to 1 + the number of cells of Y. Moreover, the hook
length of each cell in the first row (from the bottom) of Y is equal to the hook length of the
corresponding vertex in the left-most branch of S.

Let us now introduce a linear extension ET of T , i.e. a bijection from the set of vertices
of T to {0, 1, . . . , N} such that ET (u) < ET (u′) whenever u is an ancestor of u′. A key
result, which will be proved in the expanded version of this abstract, is the following: if ET
is a uniformly random linear extension of T , then Xn (the entry of the lower right corner in
a uniformly random Young tableau with shape Y) has the same law as ET (vn`):

Xn
L= ET (vn`). (10)

What is more, recall that T was obtained from S by adding a root and some children
to this root. Therefore, one can obtain a linear extension of the “big” tree T from a linear
extension of the “small” tree S by a simple insertion procedure. This allows us to construct
a uniformly random linear extension ET of T and a uniformly random linear extension ES
of S such that∣∣∣∣2(p+ `)

n`p
(N − ET (vn`))− (n`+ p− ES(vn`))

∣∣∣∣→ 0 (in probability).

So, to summarize, we have now

ET (vn`)
L= ES(vn`) + deterministic quantity + smaller order error terms. (11)

The last step (which we just state here, see our long version for its full proof) is that

ES(vn`)
L= distribution of periodic Pólya urn + deterministic quantity. (12)

Indeed, more precisely N − ES(vn`) has the same law as the number of black balls in a
periodic urn after (n− 1)p steps (an urn with period p, with adding parameter `, and with
initial conditions w0 = ` and b0 = p). Thus, our results on periodic urns from Section 3 and
the conjunction of Equations (10), (11), and (12) gives the convergence in law for Xn which
we wanted to prove. J
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41 55 61 72

31 44 60 71

22 27 45 58

18 25 32 43 46 57 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 39 51 62

6 8 10 21 28 35 50 53 54 65 67 70

3 5 7 13 15 24 47 48 49 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

` ` `

p

p

p

v0

`

`

`

p− 1

p

p

v1

T
S

vn`

Figure 2 In this section, we see that there is a relation between Young tableaux with a given
periodic shape, some trees, and the periodic Young–Pólya urns. The lower right corner of these
Young tableaux is thus following the same generalized Gamma distribution we proved for urns.
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5 Conclusion and further work

In this article, we introduced Pólya urns with periodic replacements, and showed that they can
be exactly solved with generating function techniques, and that the initial partial differential
equation encoding their dynamics leads to linear (D-finite) moment generating functions,
which we identify as a product of generalized Gamma distributions. Note that [20,23] involve
the asymptotics of a related process (by grouping p units of time at once of our periodic
Pólya urns). This related process is therefore “smoothing” the irregularities created by our
periodic model, and allows us to connect with the usual famous key quantities for urns,
such as the quotient of eigenvalues of the substitution matrix, etc. Our approach has the
advantage to describe each unit of time (and not just what happens after “averaging” p units
of time at once), giving more asymptotic terms, and also exact enumeration.

In the full version of this work we will consider arbitrary periodic balanced urn models,
and their relationship with Young tableaux. It remains a challenge to understand the
asymptotic landscape of Young tableaux, even if it could be globally expected that they
behave like a Gaussian free field, like for many other random surfaces [18]. As a first step,
understanding the fluctuations and the universality of the critical exponent at the corner
could help to get a more global picture. Note that our results on the lower right corner
directly imply similar results on the upper right corner: just use our formulae by exchanging
` and p, i.e. for a slope corresponding to the complementary angle to 90o. Thus the critical
exponent for the upper right corner is 2− δ. In fact, it is a nice surprise that there is even
more structure: there is a duality between the limit laws X and X ′ of these two corners
and we get the factorization as independent random variables (up to renormalization and
slight modifications of the boundary conditions) XX ′ L= Γ(b0). Similar factorizations of
the exponential law, which is a particular case of the Gamma distribution, have appeared
recently in relation with functionals of Lévy processes, following [4].

Acknowledgements: Let us thank Cécile Mailler, Henning Sulzbach and Markus Kuba
for kind exchanges on their work [20,23] and on related questions. We also thank our referees
for their careful reading.
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