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Coherent control of large entangled graph states en-
ables a wide variety of quantum information process-
ing tasks, including error-corrected quantum computa-
tion. The linear optical approach offers excellent control
and coherence, but today most photon sources and entan-
gling gates—required for the construction of large graph
states—are probabilistic and rely on postselection. In this
work, we provide proofs and heuristics to aid experimen-
tal design using postselection. We derive a fundamental
limitation on the generation of photonic qubit states using
postselected entangling gates: experiments which contain
a cycle of postselected gates cannot be postselected. Fur-
ther, we analyse experiments that use photons from post-
selected photon pair sources, and lower bound the num-
ber of classes of graph state entanglement that are accessi-
ble in the non-degenerate case—graph state entanglement
classes that contain a tree are are always accessible. Nu-
merical investigation up to 9-qubits shows that the pro-
portion of graph states that are accessible using postselec-
tion diminishes rapidly. We provide tables showing which
classes are accessible for a variety of up to nine qubit re-
source states and sources. We also use our methods to eval-
uate near-term multi-photon experiments, and provide our
algorithms for doing so.

1 Introduction

Postselective linear optics has been a testbed for fundamental
quantum phenomena since its inception [1–6] and although it
has been shown that large-scale linear-optical quantum com-
puting is possible in principle, it requires mid-computation
measurement and feed-forward [7–10]. Modern schemes
rely on the generation of large entangled states, on which
measurement-based quantum computation is performed [11].
Integrated quantum photonics [12–14] is one exciting route
to these goals, however it requires the on-chip generation of
many-qubit quantum states.

Photons are notoriously difficult to both produce and inter-
act on-demand. This has led to slow improvements in photon
number [6, 15–19]. Today, the most common way to produce
quantum states of light is to use entangled postselected pair
sources (EPP sources), such those based on parametric down-
conversion or spontaneous four-wave mixing. These processes
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can produce pair-wise entanglement and have been ubiquitous
in quantum photonic information experiments over the last 30
years [5, 20–22].

Large entangled states remain a challenge to produce. Two
popular ways of generating entanglement in linear optics are
the postselected controlled-Z (CZ) gate [23, 24], and the post-
selected fusion gate [25]. So far, up to ten photons have been
entangled in this way [19], though there are proposals for
much larger schemes [26, 27].

Probabilistic gates are provably the only way to generate
entanglement using linear optics [7], and are a central compo-
nent to modern linear-optical quantum computing proposals
[8–10, 28]. Currently, postselected entangling gates (PEGs)
are the only way to test linear optical devices and techniques in
the multi-photon regime. The complexity of generating graph-
states using linear optics has not yet been analysed [29, 30].

In comparison to this work, refs. 31, 32 uses graph theory
to analytically discern which high-dimensional Greenberger-
Horne-Zeilinger state is produced by any assembly of nonlin-
ear pair soureces. To do this, they use graphs where vertices
correspond to optical paths, rather than qubits.

Here, we discuss entangling gates and photon-pair sources
that are postselected, in which all input photons compose the
final quantum state. We analyse connected graph states of
“dual-rail” photonic qubits. We show that postselected gates,
as well as having exponential time complexity, have a funda-
mental restriction on which types of entanglement they can
produce. This limitation, combined with the result of ref. 7,
signals the end of passive linear optics as the universal testbed
for quantum phenomena—most quantum states are not acces-
sible using passive postselection.

2 Graph states from linear optics

We first introduce graph states, and local complementation,
which generates each graph-state entanglement class.

Graph states are n-qubit stabiliser states which have a di-
rect correspondence to undirected n-vertex (order n) graphs.
A graph state, |G〉, corresponding to the graph G = (V,E) with
a set of vertices V , and a set of edges E, is written:

|G〉= ∏
(i, j)∈E

CZi j|+〉⊗|V | (1)

Where |+〉 = (|0〉+ |1〉)/
√

2 and CZ = |00〉〈00|+ |01〉〈01|+
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Figure 1: a) Local complementation of qubit α on a seven qubit
graph state. The subgraph containing only the neighbours of α

is complemented (if present, edges are removed, if not present,
edges are added). b) CZ adds an edge to the graph. Fusion
performs a vertex merge on the two qubits, and adds a vertex
connected to the merged vertex [26]. Dashed edges represent
any edge that might connect to the subgraph to its surroundings.

|10〉〈10| − |11〉〈11|. Graph states are thus real, equal-weight
states.

Graph states may be transformed using local operations into
any stabiliser state [33], for example, star-type graph states are
locally equivalent to GHZ states. Most states, however, are not
locally equivalent to a graph.

2.1 Local complementation

Some graph states are equivalent under local unitary transfor-
mations. In the graph representation, graphs which can be
transformed into one another by successive applications of lo-
cal complementation (LC) are locally equivalent [34, 35]. On
a graph, LCα acts to complement the neighbourhood of some
vertex α (see figure 1a). Specifically, successive application of
the following local unitary, which implements LCα on a graph
G, can produce the entire set of states that are local unitary
(LU) equivalent:

LCα =
√
−iXα

⊗
i∈NG(α)

√
iZi (2)

where
√
−iX = 1√

2

( 1 −i
−i 1

)
and
√

iZ = e
iπ
4
(

1 0
0 i

)
. In optics,

these local operations are implemented experimentally with
local Mach-Zehnder interferometers, (where the neighbour-
hood of qubit α , NG(α), must be known). Here, we write
LCα(|G〉), describing a unitary operation on quantum state
|G〉, and LCα G, the graph operation on graph G, interchange-
ably, |LCα(G)〉= LCα |G〉 .

In graph-theoretic terms, local complementation realises,
LCα(G(V,E)) :→G(V,E ′);E ′ = E ∪KNG(α)−E ∩KNG(α), for
some graph G(V,E). Here, KNG(α) is the set of edges of the
complete graph on the vertex set NG(α). Equally, the subgraph
induced by the vertex set NG(α), G[NG(α)], is complemented
(has its edges toggled), leaving the rest of G unchanged.

Figure 2: The two types of entangling gate discussed here: post-
selected fusion and postselected CZLO, as well as a MZI imple-
menting a single qubit. Local operations can be implemented by
the single qubit MZI (blue). The reconfigurable postselected en-
tangling gate, (R-PEG), introduced here, can perform both gates
as well as LCs, and so is the only gate needed to postselect graph
states in linear optics. Unlabelled beamsplitters are 50:50 with a
realistic (for integrated optics) i phase on reflection, the 1

3 beam-
splitters give a sign change on reflection from the light side.

Any class of locally equivalent graph states can be generated
using a starting member and repeated application of this oper-
ation, which is illustrated in Figure 1a. Refs. 34, 35 describe
these and other useful properties of graph state entanglement.
For a full treatment of single qubit operations on graph states,
see refs. 36, 37.

2.2 Postselected entangling gates (PEGs)

A gate configuration is postselectable if and only if all possible
gate failure combinations can be detected, and ignored—when
the postselected success signal is observed, all gates have per-
formed the desired operation.

We distinguish two types of entangling gate in used linear
optics—postselected gates and heralded gates—both of which
are probabilistic. If a gate is postselected, there are no auxil-
iary photons, and no photons are consumed by the gate. Her-
alded gates, on the other hand, either consume auxiliary pho-
tons as a resource (such as in the Knill-Laflamme-Milburn
scheme [7]), or consume one or more of the input-state pho-
tons (such as the cannonical fusion gate [25]). In both cases,
the measurement outcome “heralds” the result of the gate.

By use of measurement and feed-forward, heralded gates
remove any non-qubit components of the state, whereas PEGs
produce a state which contains terms outside of the qubit sub-
space, until all photons are finally measured. Note that her-
alded gates with feedforward are sufficient for universal quan-
tum computation [7], whilst postselected gates are not. Here,
we only consider postselected gates. To unstand transforma-
tions of Fock states without postselection, refer to ref. 38.

PEGs are interferometers which couple modes between
qubit mode pairs, implementing the desired operation on the
qubit subspace, Q. Components of the state in the “junk” non-
qubit subspace, J, are discarded. Here, J= F−Q, where F is
the space of all Fock states with n or fewer photons, and Q is
the qubit subspace, defined in the next paragraph. These gates
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Figure 3: Source and gate arrangements and postselection. a) A single Fock state vector traverses a cyclic gate arrangement,
getting placed back in the postselected qubit basis, Q, by the final, cycle-inducing gate. We say the experiment does not postselect
in this case, as gate failure is masked. b) Example of an experiment not postselecting that involves concurrent initial gates. Each
initial gate produces photon-rich and photon-poor qubits which travel in opposite directions around the gate cycle, until the state
re-enters Q. c) A source term in Q is shown next to a source term in J. Junk states from degenerate EPP sources can effect
postselectability, however this example does postselect, as there is no path back to Q. d) Junk states from non-degenerate EPP
sources re-entering Q. e) Table summarising postselection rules. The paths rule is specifies a necessary condition, whilst the gates
cycles and sources cycles rules specify sufficient conditions. f) Elemental examples of postselectability from degenerate EPP
sources. g) Elemental examples of postselectability from non-degenerate EPP sources. Note that all cases that do not postselect
in the non-degenerate case do not postselect in the degenerate case. Here, all examples which do not postselect break the paths
rule. Outside of the paths rule, the order of the gates can effect postselectability, but for most of these examples, it does not. For
degenerate sources, there exist n-photon, n/2-gate experiments that postselect. In the non-degenerate case, at most dn/2e− 1
gates can be used, since n/2 gates will produce cycles between the sources.

are probabilistic because some of the state remain outside of Q
We consider the dual-rail encoding, where pairs of opti-

cal Fock modes ( f ) constitute a logical qubit, |0〉i ↔ |01〉 f ,
|1〉i↔ |10〉 f . Then Qi = span({|0〉i, |1〉i}) and Q =

⊗
iQi. To

postselect, we project on to Q with projector PQ.
Here, we use the postselected CZ (success probability 1/9)

[23, 24], which we denote CZLO, and a postselected ver-
sion of the fusion gate, F (success probability 1/2) [25, 26].
These gates can both be implemented by the reconfigurable
postselected entangling gate (R-PEG), shown in Figure 2.
The R-PEG consists of three Mach-Zehnder interferometers
(MZIs) over six modes. This interferometer is a powerful tool
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in the design of experiments—graph state generator experi-
ments can comprise only of R-PEG gates. We return to exper-
iment design in Section 4.5.

Interferometers implement linear mode (Bogoliubov) trans-
formations, which map Fock states to other Fock states unitar-
ily. Here, CZLO and F are interferometers, and by using the
dual-rail mapping between qubits and Fock modes, as well as
postselection PQ, we can evaluate the effect of these interfer-
ometers on qubit states. To enforce that interferometer inputs
be in Q we apply PQ on the right-hand side. CZLO can be re-
alised with the R-PEG by setting φ = arccos( 1

3 ), yielding:

PQCZLOPQ =
1
3

CZ

So PQCZLOPQ = CZ after renormalisation.
The postselected fusion gate, F , swaps |1〉1 and |1〉2 of its

two input qubits, and applies a Hadamard gate to qubit 1 as
shown in Figure 2a [18, 26, 39]. This non-unitary operation
removes any |01〉12 or |10〉12 qubit components of the state by
transforming them to two-photon-per-qubit components in J,
which are discarded by postselection PQ (coincidence detec-
tion). Fusion may be written in the qubit basis as:

PQFPQ =
1√
2
(|+0〉〈00| + |−1〉〈11|)

This is an entangling operation. For example, the action of this
gate on the separable state |++〉 results in the (subnormalised)
entangled two-qubit graph state PQF |++〉= 1

2 (|+0〉+ |−1〉).
See Figure 1b for the gate’s action on a graph state.

3 The limits of postselection

In this section we will demonstrate why certain arrangements
of gates are not postselectable, and derive a criterion for suc-
cess. Further, we examine combinations of PEGs and EPP
sources and develop simple criteria for their postselectability.

3.1 Criterion for gate postselectability

Which gate arrangements are postselectable? Convention
holds that sequential PEGs may lead to gate failure masked
as success (these combinations are not postselectable). Below,
we derive a condition on the arrangement of these gates for
postselectability.

We wish to understand when a given combination of gates is
not postselectable. To do so, we analyse the evolution of junk
states (in J) produced by PEGs. Since coincidence detection
ensures that we only count output states with one photon in
every qubit, we disregard parts of J with fewer than n photons
(for n qubits in 2n modes). Here, we use “qubit” to refer to a
pair of modes, whether they are occupied by photons, or not.

First, we discuss some properties of PEGs. When a gate
fails, it produces an output state in J, resulting in a qubit with
no photons, and another with excess photons—one is photon-
poor, and the other is photon-rich. Gates can also move states
from J back into Q. They can redistribute photons so that dif-
ferent qubits become photon-poor and photon-rich, throughout
the circuit. If an arrangement of gates can move the state out

Figure 4: Logarithmic plot of the number of graph state en-
tanglement classes accessible to different resource states with
n qubits, |LR| , as well as the total number of classes, Sn, and
the number of trees with n vertices T n. Here LEPP is the set
of classes accessible to degenerate entangled postselected pairs,
LSPS is the set of classes accessible to heralded single photon
sources, and LND-EPP is the set of classes accessible to non-
degenerate entangled postselected pairs. Inset: number of posts-
electable classes as a proportion of the number of entanglement
classes. Isomorphic graphs are counted only once. Sequences
from [40, 41].

of the qubit basis, Q, and subsequently return to it, we say the
gate arrangement is not postselectable, as the gate failure is
masked (see Figure 3a-b). Equally, the information of whether
a the gate succeeded or failed is erased.

To re-enter Q, the photon-poor and photon-rich qubits must
meet again—after being generated together—by taking differ-
ent paths through the experiment. Together, their paths form a
loop. If we draw the gate configuration as a graph (with ver-
tices as qubits, and edges as gates), then this loop corresponds
to a cycle in that graph. Such a cycle is the only way the state
can leave and subsequently re-enter Q. Thus, configurations
with cycles are not postselectable.

This holds for any time-ordering of the gates. In a cycle
of gates, each gate’s output is connected to an input of an-
other gate. Junk is produced by all of the first time-step gates,
re-entering Q by the the subsequent gates that link them. An
example is shown in Figure 3b.

Therefore, a sufficient condition for successful gate post-
selection can be stated succinctly as Experiments containing
cycles of PEGs are not postselectable. We will refer to this as
the “gate cycles rule”.

For example, attempting to produce a three qubit “trian-
gle” graph state using three postselected CZLO gates applied
to |+++〉 will not be successful:

|ψ〉= PQCZLO
31 CZLO

23 CZLO
12 |+++〉

=
1

108

(√
2+4

√
3
)
|000〉

+
1

54
√

2
(|001〉+ |010〉− |011〉+ |100〉− |101〉− |110〉)

+
1

324

(
4
√

3−3
√

2
)
|111〉
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Figure 5: An example of one Monte Carlo iteration of FINDACCESSIBLECLASSES. Starting from a given resource state, in this case
three non-degenerate EPPs and a heralded single photon, operations for an entangling strategy are performed in order, interspersed with
LCs on the previously acted upon vertices. If the resulting graph is not isomorphic to any graph found thus far, the entanglement class
of the graph i is saved to a set L′R. After many runs, L′R ≈ LR. An alternate example can be found in supplementary material 1.2.

|ψ〉 differs significantly from the desired state, which has equal
weights of 1/(3

√
2) with signs {+,+,+,−,+,−,−,−}. This

is because junk terms produced by the first gate is placed
back in to the postselected basis by the subsequent gates.
The squared amplitude of this postselected state is well above
the expected success probability: |ψ|2 ≈ 0.00706 > ( 1

9 )
3 ≈

0.00137; the state is dominated by terms which have re-
entered Q, scrambling the state. Cycles of fusion similarly
scramble the state, resulting in states which are dominated by
junk components re-entering Q.

We note that in reference [26] the authors claim that any
graph state can be produced using postselected fusion only
(with a focus on 2d lattice states). We can now see this claim
to be unwarranted, since the scheme violates the gate cycles
rule.

We are unaware of any PEG that does not lead to two-
photon-per-qubit terms, and indeed, such a gate would require
there to be no photonic path between the modes of its input
qubits. Such a gate will be postselectable even when used in
cycles. To our knowledge, LCs, postselected CZ and postse-
lected fusion represent the known capability of postselective
linear optics’ to produce graphs states—all two-qubit Clifford
gates can be decomposed in a CZ with LCs [33].

3.2 Combining degenerate entangled postselected
pair (EPP) sources with postselected gates

Ensembles of m EPP sources produce states mostly contained
in J, even in the 2m-photon subspace (for 2m = n > 2 qubits).
This is because m coherently pumped sources produce a super-
position of all permutations of m pairs produced in m sources
(at the 2m photon level). Only one of these terms is in Q—the
term where one pair is produced in each source—the rest are
in J (see Supplementary Material 1.5). Because of this, gate
arrangements may not be postselectable even in the absence
of cycles, if they take EPPs as input, since the input super-
position already contains junk. Hence this scenario requires
postselectability criteria more strict than the gate cycles rule
alone.

The most numerous form of junk state produced by an en-
semble of m pair sources is one with two photon-rich qubits
(from source i) and and two photon-poor qubits (from source
j 6= i). Gates that disjointly connect the qubits from source i
to the qubits from source j will always mask gate failure be-
cause of such terms. By disjointly, we mean that the two paths
do not share gates (edges), however they may share vertices.
The excess photons from source i can travel via gates to the
qubits from source j and hence re-enter Q, and hence are not
postselectable. This is depicted as “gate arrangement graphs”
in Figure 3d. Unpostselectable examples are shown in Figure
3d,f,g.

Hence Experiments containing a pair of disjoint paths in
the gate arrangement graph that connect the qubits from one
EPP source with the qubits from another, are not postse-
lectable. We will call this the “paths rule”. In this case, be-
cause each gate acts independently—simply moving a photon
toward the photon-poor qubit—the experiment does not post-
select no matter which the order of gates are applied in.

The paths rule only accounts for superposition components
where one EPP source fired twice, and one did not fire at all.
Some gate configurations, however, are not postselectable only
because of junk produced by more than two sources. The
paths rule is a necessary, but not sufficient, condition of post-
selectability in these circumstances: i.e. an experiment which
satisfies the paths rule may still be unpostselectable. Due to the
combinatorial number of gate and source permutations, a suf-
ficient condition for postselectability of combinations of PEGs
and degenerate EPP sources is not forthcoming. In section 4,
we apply numerical methods to evaluate postselectability, de-
termining which graph states are postselectable from combi-
nations of PEGs and EPP sources.

3.3 Non-degenerate nonlinear sources and postse-
lected gates

An interesting and commonly used class of EPP source are
those with non-degenerate photons, that is, photons of dif-
ferent colours, polarisations, etc. Since pairs of input pho-
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tons are distinguishable, an experiment will typically put them
through separate sets of gates. Though all interferometers that
are not postselectable in the non-degenerate are also not post-
selectable in the degenerate case, the total number viable gate
topologies with non-degenerate sources is drastically reduced,

For non-degenerate EPPs, combining this restriction with
the paths rule implies that cycles made between the different
sources sufficiently determines postselectability.

To see this, we examine experiments of m non-degenerate
EPP sources. Take two sources i and j emitting “red” and
“blue” photons. If the red-photon qubits from both sources
are connected via gates, then the only way to form a cycle be-
tween the sources is to connect the corresponding blue-photon
qubits, which would close a second path between i and j and
so would violate the paths rule. Hence, in experiments of non-
degenerate EPP sources, cyclic combinations of sources and
gates are note postselectable. We will call this combined rule
the “source cycles rule”.

What about other terms in the superposition of Fock states
produced by the source, such as when three pairs are produced
in one source and none are produced in two others? We will
show that the source cycles rule is a sufficient condition for
postselectability

In a 2m-photon, m-source experiment, we examine the case
where one of the sources fired m times. Here, to re-enter the
postselected basis,Q, at least 2(m−1) gates must be used (each
photon-poor qubit must be addressed at least once). However,
the sources cycles rule is a more stringent than this—a cycle
is formed between sources with just m− 1 gates (an intrinsic
property of tree graphs). Since any source term where sources
fire p < m times are a subcases of the above, the source cy-
cles rule is sufficient for determining postselectability of non-
degenerate EPP source experiments.

4 Which graph states are postselectable?

Now that we are familiar with the rules of postselecting graph
states, we can establish which states can be accessed, and
which states cannot.

First, we lower bound the number of classes that are acces-
sible from the popular resource state of n non-degenerate pair
sources, with the number of trees (non-cyclic graphs). This
follows from the fact that trees can always be constructed from
this resource (see Supplementary Material 1.1), and that there
is at most one tree in each entanglement class [42]. Figure
4 compares the number of trees to the number of entangle-
ment classes for increasing qubit (vertex) number, and reveals
a super-exponential divergence [40, 41, 43].

Because of the combinatoral number of possible experi-
ments using PEGs and LCs, we turn to numerical methods to
discover exactly which classes of entanglement are accessi-
ble to postselective linear optics given a certain resource state.
Our approach is to sample allowed combinations of entangling
gates and local complementations, and catalogue the graph
states which result. By using the LCs, postselected CZ and
fusion gates, we span the currently known capability of post-
selective linear optics’ to produce graphs states; though gates
can only be applied in trees, the use of LCs allows access to a

wider variety of graph state classes—including those not con-
taining trees. Note that all two-qubit Clifford gates can be
decomposed into a CZ with LCs [33]. We use the canonical
indexing provided by Hein, Cabello, et al. in refs. 30, 34. We
denote the set of graph state class indices that can be accessed
by a given resource state R by LR.

4.1 Numerical Methods

In [30, 40], tables of representative members for each entan-
glement class up to n = 12 are provided. Starting from these
supplied graphs, we take random walks to explore each LU
class (which are of known size). We denote the jth n-vertex
graph of entanglement class i as Sn

i j, where Sn
i is the set of

all graphs in that entanglement class and Sn is the set of all
n-vertex classes, Sn = ∪iSn

i . Note Sn
a∩Sn

b 6= /0 ∀a,b.
We explore which graph states are accessible to linear op-

tics and PEGs with our algorithm FINDACCESSIBLECLASSES
(visually depicted in Figure 5 and provided in Supplementary
Material 1.2). This algorithm enumerates accessible entangle-
ment classes for a given resource state R, and stores the list of
accessible classes as L′R ≈LR. The results of our investigation
using FINDACCESSIBLECLASSES are shown in Table 1. To
aid the classification of any newly found graphs, Sn is stored
in memory. We provide plain-text and Mathematica represen-
tations of Sn, up to n = 9 qubits, as well as a Mathematica
implementation of FINDACCESSIBLECLASSES. These can be
found in the Supplementary Material [44].

Each iteration of FINDACCESSIBLECLASSES starts with a
resource graph state R, and a randomly chosen n-qubit exper-
iment satisfying out postselection rules. This n-vertex gate
arrangement is a graph, t, which corresponds to a linear op-
tical experiment composed of PEGs. t is generated randomly
from a set T , which depends on the resource (see Section 4.2).
Each edge of t is randomly assigned either a CZ or an F gate,
and a random time ordering. Random combinations of rele-
vant LCs are interspersed between gates (see section 4.3), to
increase the variety of accessible graphs. As the quantum op-
erations are compactly represented as operations on graphs,
we can avoid the exponential memory requirement of simulat-
ing quantum states. This Monte-Carlo approach is designed to
fairly sample the graph-state generation experiments available
to postselected linear optics, by using LCs, postselected CZ
and fusion gates.

After all specified entangling operations have been per-
formed, we store the entanglement class that has been reached,
in L′R. We store the gates and local complementations used, in
HR. Thus, HR

i is the recipe for accessing entanglement class
i with resource state R. These recipes are overwritten when a
more efficient one is found. We keep sampling, until no more
novel classes are found, at which point we assume we have
sampled them all: L′R ≈ LR.

4.2 Resource States

To fairly sample from postselectable experiments, the sets
of allowed gate arrangements, T , varies for the different
classes of resource: heralded states, degenerate EPPs and non-
degenerate EPPs. In all cases, relevant LCs are interspersed
between the gates.
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Figure 6: Six photon graph states organised in to their LU classes, cannonically indexed starting from the 2-vertex graph state. See
Supplementary Material 1.3 for a complete list of graph states indexed up to 8 vertices. A resource of non-degenerate postselected
pairs can access all of the graphs shown in blue, whilst a resource of single photons can access all of the states shown in orange
and blue, and a resource of degenerate postselected pairs can access all of the graphs shown in pink, orange and blue. Graphs
shown in red require a heralded entangled resource state to be produced using PEGs.

For a heralded resource (one not involving postselected
sources), our algorithm must sample from all possible ex-
periments that do not contain a cycle of PEGs. Hence T
is the set of all connected trees with n vertices. There are
2n−1nn−2(n−1)! such experiments. This is the number of la-
belled trees [45] multiplied by both the number of possible
edge labellings {CZ,F} and the number of gate orderings. La-
belled trees are fairly sampled by the Pruefer sequence method
[46]. We sample from the set of all isomorphisms (labellings)
of every tree, as to consider only one labelling of the resource
state.

For a heralded resource that has some entanglement, not all
of the gates represented by t ∈ T need be applied to obtain
n-partite entanglement. In FINDACCESSIBLECLASSES, the
number of gates applied are chosen at random, where the min-
imum number of gates could still feasibly output an n-qubit
connected graph. For example starting with 3 heralded en-
tangled pairs, only two gates are needed to produce a 6-qubit
state, however more entanglement classes are accessible by us-
ing up to 5 gates. Hence, we randomise over the different num-
ber of gates. An example member of t ∈ T is shown in Figure
5, with its ordered edge-labelling. The set of trial gate arrange-
ment trees, T , can also be tailored to encode any restriction in
gate topology, for example where only nearest-neighbour gates
are permitted.

Non-degenerate EPPs require m− 1 gates to be globally
entangled—and are not postselectable with m gates, as a cy-
cle will form between sources. In this case, the number of
gates is fixed, and we only sample over the trees of order m.
Since m = n/2, and the number of trees scales exponentially
with n, the search space for non-degenerate pairs is drastically
smaller than for any other input resource.

In the case of a resource state of degenerate EPPs, post-
selectability of a particular gate arrangement must be eval-
uated more directly, since we have no sufficient postselec-
tion rule rely on in this case. We evaluate random (non-
interacting) photon scattering through the gate arrangement,
for each source term in J. If the photons can return to a one-
per-qubit state, in Q, then the gate combination is discarded, as
it is unpostselectable. Although this method is not exhaustive,
a sufficiently large number of iterations can guarantee accu-
racy. Due to the extra cost associated with this subroutine,
FINDACCESSIBLECLASSES evaluates the postselectability of
one experiment, then permutes the choice of gate (CZ or F),
as well as the LCs applied, for 50 experiments which share
the topology. This greatly increases the efficiency of class dis-
covery, and is analogous to finding the classes accessible by
a single linear optics experiment which utilises the reconfig-
urable PEG of Figure 2.
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n Resource state, R Indices of LU classes accessed, L′R |L′R|/|Sn|
4 2 non-degenerate EPPs 3, 4 2/2 = 1

5 2 non-degenerate EPPs & 1 single photon 5 to 8 3/4 = 0.75
5 5 single photons 5 to 8 3/4 = 0.75
5 2 degenerate EPPs & 1 single photon 5 to 9 4/4 = 1

6 3 non-degenerate EPPs 9 to 14 6/11≈ 0.54
6 6 single photons 9 to 16 8/11≈ 0.73
6 3 degenerate EPPs 9 to 18 10/11≈ 0.91
6 2 pairs & 2 single photons 9 to 19 11/11 = 1

7 3 non-degenerate EPPs and 1 single photon 20 to 32, 34, 36 15/26≈ 0.58
7 7 single photons 20 to 32, 34, 36 15/26≈ 0.58
7 1 pair and 5 single photons 20 to 41 22/26≈ 0.85
7 3 degenerate EPPs & one single photon 20 to 41 22/26≈ 0.85
7 2 entangled pairs & 3 single photons 20 to 45 26/26 = 1

8 4 non-degenerate EPPs 46 to 68, 70, 73, 74, 79, 89, 92 29/101≈ 0.29
8 8 single photons 46 to 79, 83, 86 to 87, 89, 92, 94, 104, 107, 121, 143 42/101≈ 0.42
8 1 pair & 6 Single Photons 46 to 108, 114, 115, 117, 121, 123 to 125 73/101≈ 0.72

8 4 degenerate EPPs

46 to 68, 70, 75, 76, 78 to 80, 82, 83, 86 to 89, 92 to
98, 100, 101, 103, 108, 109, 110, 112 to 116, 118 to
121, 123 to 125, 127, 129, 130, 133, 134, 136, 139,

141, 144, 145

72/101 = 0.71

8 4 entangled pairs 46 to 140, 142 to 144, 146 99/101≈ 0.98

Table 1: Which classes of graph state can be generated using PEGs given different resource states R, written L′R. These classes (denoted
Sn

i ) are indexed starting from the 2-vertex graph state. See Supplementary Material 1.3 for a complete list of graph states indexed up
to 8 vertices (from refs. [30, 34, 40]). Results for n = 9 can be found in supplementary material 1.3. This table was generated by
FINDACCESSIBLECLASSES.

4.3 Sampling linear optical graph experiments

Applying local operations between gates can yield a wider va-
riety of accessible graph states. Just a few LC operations are
sufficient. After a CZi j operation, LCs need only be applied to
qubits i and j, since CZ commutes with LC in all other cases.
After a Fi j operation, LCs need only be applied to qubits in
{NG(i)∪NG( j)+{i}+{ j}}, for the same reason, where NG(i)
is the graph neighbourhood of vertex and qubit i. Furthermore,
≤ 5 randomly chosen LC operations are needed after a CZ
gate, since LC around two vertices is periodic with period 6
[47]. Similarly, ≤ 14 LCs are needed after a fusion, as this
is the largest number of LC operations needed to traverse the
widest class for n ≤ 9 qubits (from numerics). Higher qubit
numbers will require concomitantly larger numbers of post-
fusion LCs. Proofs are shown in Supplementary Material 1.1.

The size of the configuration space for a resource of her-
alded single photons is O(2n−1dn−2

n nn−2(n− 1)!), where dn
is the diameter of the orbit of the largest n-qubit entangle-
ment classes (d9 = 14). For n = 8 qubits the size of this
configuration space is ≈ 1.3× 1018; for n = 10 it explodes
to ≈ 2.7×1025. This makes an exhaustive search impossible,
and motivates our use of sampling methods.

Each newly found n-vertex graph, G, is likely to be isomor-
phic, not identical, to the corresponding graph in the stored
database of entanglement classes, Sn. Consequently, GRAPHI-
SOMORPHISM, which is computationally hard, must be com-

puted for a range of graphs so that the candidate graph can be
properly catalogued. For small numbers of vertices, however,
the problem is tractable.

4.4 Which classes are accessible?

We have enumerated the entanglement classes that are acces-
sible using certain resource states and PEGs. The results are
shown in Table 1. Interestingly, those states which are inac-
cessible tend to have higher canonical indices, ordered both
by vertex degree, and by the minimum number of edges on a
graph in the class. This also correlates with known bounds on
the Schmidt rank [30, 34].

Without exploring the entire space, there is no guarantee
that all classes have been found, however FINDACCESSIBLE-
CLASSES appears to converge after sampling a minuscule
fraction of configurations. For the results in Table 1, the al-
gorithm was terminated when no new classes were found in
the last 5/6 of the total number of iterations. For the 8-qubit
graphs, this corresponds to sampling about one in every 105

possible configurations.
Our exploration using n ≤ 9 was performed using the (un-

compiled, single-threaded) Mathematica implementation, on
a standard desktop PC. We anticipate that, by using parallel,
compiled code, up to n = 12 vertex graphs can be investigated.
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4.5 Designing graph state generators

Efficient experimental generation of graph states using pho-
tonics is a challenge. FINDACCESSIBLECLASSES can also be
used for experiment design: to find a recipe which produces
the desired graph state in class i. Repeat FINDACCESSIBLE-
CLASSES with a reasonable resource state input R, maximis-
ing the probability of generation, PR

i , and recording the recipe,
HR

i . Modify R until a satisfactory experiment is found: de-
crease PR

i by using a more practical R or increase it (especially
in the case where no graphs in i are found) by using a more
entangled R. The recipe HR

i yields the experiment which pro-
duces a graph in the target class i. We can use the R-PEG to
realise each PEG (see Figure 2), where the single-qubit inter-
ferometers can perform the necessary local complementations.
The optical depth of such circuits is O(n) for n qubits.

Conversely, FINDACCESSIBLECLASSES can enumerate the
graph states that a given interferometer can access, by fixing
t and searching over different combinations of LC and gate
type. In this way, combining the rules of postselection, and
FINDACCESSIBLECLASSES and the R-PEG allows new graph
generating experiments to rapidly checked for feasibility, and
designed with maximum versatility.

5 Conclusion

Postselection remains the current, go-to tool for generating en-
tanglement between photons in linear optics. We have de-
scribed a severe and previously undocumented limitation of
this technique, in the context of heralded sources, degener-
ate and non-degenerate postselected pairs. We have tabulated
which graph states can be accessed using linear optics and
PEGs for n ≤ 9, and demonstrated that the number of states
available to postselected systems diminishes rapidly with in-
creasing qubit number. We have provided algorithms to calcu-
late which states are accessible for graphs up to n= 12, limited
only by the availability of class catalogue data.

Postselectable graph states that can be produced from EPPs
are of interest, with experiments with up to 12 photons pos-
sible in the near future [19]. Whilst we have not found an
analytic condition on postselectability for the combined post-
selection of degenerate EPPs and PEGs, our numerics show
that a wide variety of states are nonetheless available to this
resource—the majority of classes are accessible for n ≤ 8.
This is encouraging news for near-term demonstrations of en-
tanglement using linear optics. It implies that postselected
sources and gates may still have some mileage before true sin-
gle photon sources become a necessity.

Despite their widespread use, a vanishing fraction of graph
states are accessible using non-degenerate postselected pairs,
and these accessible states tend to have low Schmidt rank.
With heralded single photons, many more LU classes become
accessible, but this too is a diminishing fraction of the total,
as qubit number increases. Degenerate postselected pairs al-
low access to a wider variety of states, but still a diminishing
fraction of the total. The end of the road for postselected quan-
tum optics is now in sight. Heralded or deterministic gates for
photon-photon interactions are not just a route to increased ef-
ficiency, but they are a necessity if we are to access any ap-

preciable fraction of multi-qubit entanglement classes using
optics.

Several questions remain unanswered. Why are certain
states accessible and others are not? Why does interspersed
local complementation allow for the creation of a wider vari-
ety of states? What is the size of the space accessible to hybrid
experiments, part postselected, part heralded? Can this reason-
ing be applied to hyper-entangled, or qudit photonic states?

The limits of postselection are indeed severe, but, with
the tools and understanding developed here, planning quan-
tum information experiments which reach these limits will
be possible. Multi-photon experiments are often phrased in
a measurement-based or state-preparation language, both of
which are enlightened by this work, in the context of postse-
lection. These methods will allow experimenters to produce
states with the minimum resource, and with the most efficient
optical recipe, expediting progress toward large-scale quantum
computation, with optics and otherwise.
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Supplementary Material

1.1 Proofs

Lemma 1. All of the n-vertex graph states that are locally equivalent to a tree can be constructed from d n
2e entangled postselected

pairs (from postselected nonlinear pair sources) using only postselected CZ and fusion gates.

Proof. The two distinct trees with n = 4 vertices (the “star” and “line” graphs) correspond to performing CZLO or fusion on two
pairs respectively, which establishes the base case. The induction step is to show for any order n+ 2 tree, t, one can always
find a feature of the tree that implies it could have been constructed from some order n tree, and the two vertex connected graph
(entangled pair), using an egde-add (CZ) or fusion operation.

These features of t are as follows:

Feature 1: t has two vertices in a line formation, where the second vertex is only adjacent to the first. This corresponds to a
CZ (edge-add) of an order n tree with the complete two-qubit graph.

Feature 2: Two leafs (vertices of degree 1) are adjacent to the same vertex of t (but no others). This corresponds to a fusion
of an order n tree with the complete two-qubit graph.

To show that all trees have one of these Features, we perform another induction. All order n+ 1 trees can be constructed by
adding a vertex (with connecting edge) to some n-vertex tree. We will show that these Features can disappear when adding a
connected vertex, but only by creating the other Feature. Hence all trees have at least one of these features.

Feature 1 will disappear if a new vertex is connected to the degree-two vertex of the Feature. In this case, the new graph has
Feature 2. Similarly, Feature 2 will disappear if a new vertex is connected to one of the vertices of Feature 1. This forms Feature
1. The only tree of three vertices has both of these features. Hence all trees have one of these two features.

Since all n+2 trees have one of these features, it is always possible to find a tree of order n that can be used to construct a tree
of order n+2, down to n = 4 where we know how to make both of the trees.

Since each additional pair of vertices has only one gate acting on it, the postselection rules are not violated.
This completes the proof.

Lemma 2. [CZi j,LCα ] = 0 ∀ α /∈ {i, j}. (CZi j commutes with LC applied to qubit α , LCα when α is not one of the qubits acted
upon by the CZ.)

Proof. If i, j /∈ NG(α) the unitaries (graph operations) act on different qubits (vertices) and therefore commute. We now examine
i, j ∈ NG(α). Note that complementation of a subgraph defined by a fixed set of vertices commutes with a CZ operation, since
both toggle the edges present in the graph (addition modulo 2). This can also be understood by examining the CZ and LC
unitaries. In LCα for i, j ∈ N(α), qubits i and j undergo a

√
iZ operation, which is diagonal. Since CZ is also diagonal, these

operations commute, that is [CZi j,
√

iZk] = 0 for k = i, j. Note that
√

iZk⊗
√

iZl is also diagonal. Since NG(α), is unaffected by
the CZ, LCα and CZ commute if i, j /∈ N(α).

Lemma 3. Repeated LC on i and j on some graph G has just one periodic path through the members of the LC class.

Proof. This is demonstrated independently in terms of edge-local complementation in [47], but we provide an alternate proof.
Since LCα ◦LCα = 1 there are only two ways uniquely apply LCs—alternating LC on i and j, i.e. . . .LCi ◦ ◦LC j and . . .LCi ◦
LCLC j. This defines two paths through the members of the LC class.

We will now show these paths are periodic. In the following we denote the kth LC operation of one of these trajectories as,
LCk,

Since there are a finite number of graphs equivalent under LC, alternating LCs must reproduce the initial graph, or the path will
end after k−1 LCs, i.e. when some graph is reached whereby LC has no effect. In this case, LCk = 1 and the series of LCs can
be written . . .LCk+1

i ◦LCk
j ◦LCk−1

i ◦ . . .◦LC1
j = . . .LCk+1

i ◦LCk−1
i ◦ . . .◦LC1

j . Since LCi ◦LCi = 1, all LCs can be paired around
LCk and cancelled, leaving the identity, i.e. the operation is periodic with period 2k−1.

We will now show that these orbits are the inverse of one another. Take one of the two orbits (say the one that starts with j)
and assume it has period p, then LCp

i ◦LCp−1
j ◦ . . . ◦LC1

j (G) = G. Applying LCi here we find LC1′
i G = LC1′

i ◦LCp
i ◦LCp−1

j ◦
. . .◦LC1

j (G) = LCp−1
j ◦ . . .◦LC1

j (G). Similarly to the above, each operation in the second orbit inverts an operation in the first
orbit until we arrive back at the starting graph G. Hence, the second path, (begininning with LCi is the reverse or the first.

This implies that only one trajectory need be considered in FINDACCESSIBLECLASSES. We henceforth always start the orbit
with LC j, which we will denote LCk for the kth LC of an orbit.

We now prove that such an orbit has period at most 6 for all graphs, independent of of the number of vertices.
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Lemma 4. Repeated application of LC on vertices i and j on some graph G has period at most 6, independent of the number of
vertices.

Proof. This is demonstrated independently in terms of edge-local complementation in [47], but we provide an alternate proof.
Starting with some graph state G = G0 let Gk be the graph state after k LC s. Next, we define three sets of vertices.

Firstly, The set of vertices which are in the neighbourhood of i, but not in the neighbourhood of j and excluding j and i, which
we label

Xk = {NGk(i)−NGk( j)−{ j}−{i}}

Secondly, the intersection of vertices which are in the neighbourhood of i and the neighbourhood of j.

Yk = {NGk(i)∩NGk( j)}

And finally the set of vertices which are in the neighbourhood of j, but not in the neighbourhood of i and excluding i and j.

Zk = {NGk( j)−NGk(i)−{i}−{ j}}

Where for clarity we write X0 = X, Y0 = Y, Z0 = Z. Now we can examine the effect of the LC orbit on a graph G = G0.
Since i and j are always neighbours, the effect of LCi on the kth member of the orbit is to swap the sets Xk and Yk, and the

effect of the LC j is to swap sets Yk and Zk, yielding the following, for k = 1, . . . , p:

• For odd k, LCk complements the subgraph induced by the sets NGk( j) = Yk ∩Zk +{i}, setting Yk+1 = Zk and Zk+1 = Yk.

• For even k, LCk complements the subgraph induced by the sets = NGk(i) =Xk∩Yk +{ j}, setting Xk+1 = Yk and Yk+1 =Xk.

By repeated application of the above rules, we find:

X6 = X Y6 = Y Z6 = Z

We have shown the neighbourhoods of i and j have period at most 6. We have yet to show that the edges not involving i or j,
have undergone one period, which will will do now.

We write the complementation of a graph as an operation on a graph C : G→ Gc. Further, we denote the complementation of
subgraph induced by a set of vertices, A as CA : G→GAc , where GAc is the input graph G but with the subgraph induced by the
vertex set A complemented. We define E[A,B] as the set of all bipartite edges in E that run from a vertex in the set A to a vertex
in the set B, E[A,B] = {(a,b) ∈ E : a ∈A, b ∈B, a 6= b}.

Also, we use CE[A,B] : G→ GE[A,B]c do denote bipartite complementation. That is, GE[A,B]c is the input graph G but with the
bipartite component between A and B complemented.

For odd k, LCk performs the operation CNGk ( j) = CYk∪Zk+{i}, whilst for even k, LCk performs the operation CNGk (i) =

CXk∪Yk+{ j}. To check the effect of the orbit on the edges of Gk we examine the graph operations in terms of fixed sets of
vertices, namely X, Y, Z, using the relations above. Hence the successive LC operations can be written in the following way:

LC1 = CY∪Z∪{i}, LC2 = CX∪Z∪{ j}, . . . , etc.

Continuing to apply the rules, we find LCl = LCl+6. Hence after 12 successive LCs each complementation LCl has cancelled
with LCl+6 (since complementation of a fixed set of vertices commutes) and the graph has undergone one period.

Note CA∪B =CA ◦ CB ◦ CE[A,B]. Using this expansion, the first six operations of the LC orbit can be written

LC1 =CY ◦ CZ ◦ CE[Y,{i}] ◦ CE[Z,{i}] ◦ CE[Y,Z]

LC2 =CX ◦ CZ ◦ CE[X,{ j}] ◦ CE[Z,{ j}] ◦ CE[X,Z]

LC3 =CX ◦ CY ◦ CE[X,{i}] ◦ CE[Y,{i}] ◦ CE[X,Y]

LC4 =CZ ◦ CY ◦ CE[Z,{ j}] ◦ CE[Y,{ j}] ◦ CE[Z,Y]

LC5 =CZ ◦ CX ◦ CE[Z,{i}] ◦ CE[X,{i}] ◦ CE[Z,X]

LC6 =CY ◦ CX ◦ CE[Y,{ j}] ◦ CE[X,{ j}] ◦ CE[Y,X]

Noting CE[B,A] = CE[A,B] (arguments of bipartite edges commute), [CA,CB] = 0 (complementations of a fixed set of vertices
commute with one another) and CA ◦CA = 1 (complementation is self-inverse), we find LC1 ◦LC2 ◦LC3 ◦LC4 ◦LC5 ◦LC6 = 1

since each complementation is performed twice. Hence LC operations on only two vertices have period six.
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1.2 FINDACCESSIBLECLASSES Algorithm

Algorithm 1: FINDACCESSIBLECLASSES

Data: A resource graph G(E,V ) of order n
A function generating graphs of allowed qubit interactions, t ∈ T
The set of sets of entanglement classes of order n, Sn

Convergence criteria, d, the proportion of iterations to be run since the last novel class was found
Result: Outputs the indices of LU classes of that are accessible with a given resource, G(E,V ), using only postselected

fusion and CZLO gates, as well as a recipes for each.
L′R,H

R,PR← /0 // H will be the recipe for each class, indexed by class

j← 0 // L’ are the classes which can be accessed

G← R
while c < d · j do // Stop when convergence ratio is reached

p← 1 // Success probability of this this experiment

j← j+1 // Number of iterations done so far

t(E,V )← RANDMEMBER(T ) // Choose an ordered gate topology from the allowed set T

L← RANDINT(n−1−|E[G]|, |E[t]|) // L is the number of gates to perform from the tree

for i← 1 to L do
r← RANDMEMBER(E[t]) // Choose the next edge from the gate topology

gr← RANDMEMBER({Fr,CZLO
r }) // we will apply either CZ or fusion along the chosen edge

Apply gr to G(E,V ) // Apply the gate

Append “gr” to h // Save what we have done to the recipe index

if g = CZLO then
p← p× (1/9) // Keep track of success probability

m← RANDINT(0,5) // LC periodic with period 6 for two vertices

for k← 1 to m do
α ← r(1+k (mod2)) // Want to apply LC alernatingly to i, j, i, etc.

G(E,V )← LCα(G(E,V )) // Apply LC

Append “LCα ” to h // Save what has been done to the recipe

end
if g = F then

p← p× (1/9) // Keep track of success probability

m← rand(0,14) // the Width of largest LC class is 14

for k← 1 to m do
α ← RANDMEMBER(VG[NG(i)∪NG(i)+{i}+{ j}]) // LC does not commute with F

G(E,V )← LCα(G(E,V )) // Hence need to LC whole union of neighbourhoods of i, j

Append “LCα ” to h // Save what has been done to the recipe

end
end
if G(E,V ) is not equivalent to any graph in classes L′R then // Did we find a new class of graph?

Append i to L′R where Sn
i is the equivalence class of G(E,V ) // Save which class we accessed

HR
j ← h // Save successful recipe

PR
j ← p // Save success probability

c← j // Keep track of convergence criteria

else if p > PR
j and G(E,V ) LR′j

is equivalent to G(E,V ) LR′j
then

Replace HR
j with h // Save imrpoved recipe

Replace PR
j with p // Save imrpoved probability

end
Return {L′R,H}
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Figure 7: An alternate example of one Monte Carlo iteration of FINDACCESSIBLECLASSES. Starting from a given resource state, in
this case 7 single photons, operations for experiment topology are performed in order, interspersed with relevant LCs on the previously
acted upon vertices. Pairs of qubits populated with photons from EPPs are highlighted in pink. If the resulting graph is not isomorphic
to any graph found thus far, the entanglement class of the graph i is saved to a set L′R. After many runs, L′R ≈ LR.

1.3 Enumeration of Graph States

n 9-Photon resource state, R Indices of LU classes accessed, L′R |L′R|/|S9|

9 4 non-degenerate EPP and one single photon

148 to 197, 199, 200, 204 to 208, 212, 214, 218,
219, 221, 222, 225, 227, 233 to 235, 238, 241,

247, 249 to 251, 256, 259 to 260, 263, 272, 274,
275, 297, 328, 392, 410

85/440≈ 0.19

9 Nine single photons

148 to 200, 202, 204 to 208, 211, 212, 214 to 215,
218, 219, 221 to 222, 225, 227 to 229, 233 to 235,
237 to 238, 241, 247, 249 to 251, 256, 259, 260,
262, 263, 271 to 275, 290, 297, 299, 301, 305,

319, 328, 329, 342, 346, 388, 392, 401, 41

104/440≈ 0.24

9 Four pairs and one single photon
148 to 558, 560 to 567, 569 to 572, 575 to 578,

581, 584, 586, 587 431/440≈ 0.98

Table 2: Classes of graph state which can be generated using PEGs given different 9-qubit resource states R, written LR. These classes
(denoted Sn

i ) are indexed starting from the 2-vertex graph state. See Supplementary Material 1.3 for a complete list of graph states
indexed up to 8 vertices (from refs. [30, 34, 40]). This table was generated by FINDACCESSIBLECLASSES.



J.C. Adcock et al. Hard limits on the postselectability of optical graph states 15

Figure 8: Minimal edge count representatives from each of the LU classes up to 8 qubits, canonically numbered as in ref. [30, 34, 40].
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1.4 Example of postselected gate - CZ

The postselected CZLO acting on |++〉 produces the following state:

CZLO|++〉=1
3
|101000〉 f +

1
3
√

2
|100100〉 f −

1
3
√

2
|100010〉 f

+
1
3
|100001〉 f +

1
3
√

2
|011000〉 f +

1
6
|010100〉 f

+
1
6
|010010〉 f +

1
3
√

2
|010001〉 f +

1
6
|001100〉 f

−1
6
|001010〉 f −

1
3
√

2
|001001〉 f −

1
3
√

2
|000110〉 f

+
1
3
|000101〉 f −

1
3
|002000〉 f +

1
3
|000200〉 f

Where the non-qubit terms in

J= span(|101000〉 f , |100100〉 f , |100010〉 f ,

|100001〉 f , |011000〉 f , |010001〉 f ,

|001001〉 f , |000110〉 f , |000101〉 f ,

|002000〉 f , |000200〉 f )

are removed by postselection PQ. Hence

PQCZLO|++〉=1
6
|010100〉 f +

1
6
|010010〉 f

+
1
6
|001100〉 f −

1
6
|001010〉 f

=
1
6
|00〉+ 1

6
|01〉+ 1

6
|10〉− 1

6
|11〉

=
1
3

CZ|++〉

1.5 Postselection of multiple entangled pairs from squeezed vacuum

Pairwise entangled states of n pairs of photons are commonly generated by two postselecting the n-photon subspace of n
2 coher-

ently pumped EPP source. Unfortunately, these states contain junk states affect postselectability. This is because it is not possible
to distinguish the case where there were one pair of photons is generated in each source, and the case where when some sources
produce more than one pair, which is at least as likely (for n photons in total). To see this, take two (unnormalised) fock states
produced by a EPP source.

|ξ〉⊗2 = (|0000〉+ γ|1010〉+ γ|0101〉+
γ

2|2020〉+ γ
2|0202〉+ . . .)⊗2

Where |Φ+〉= |1010〉 f + |0101〉 f for two pairs of two modes comprising two qubits. The O(γ2), four-photon terms:

|ξ〉⊗2 =γ
2|Φ+

Φ
+〉+ γ

2|11110000〉+ γ
2|20200000〉

+γ
2|02020000〉+ γ

2|00001111〉+ γ
2|00002020〉

+γ
2|00000202〉

The postselected state, |Φ+Φ+〉 makes up only a minority of the four photon state, and two-photon-per-qubit terms dominate.
Similarly, for larger ensembles of sources, each permutation of pairs being produced the sources is present in the superposition,
and must be considered. For example, in the six photon subspace of three sources, there are terms where all three pairs were
produced in just one source, as well as terms where just one source produced an extra pair. Postselected sources produce mostly
junk states, and how these traverse and experiment must be considered when evaluating whether an experiment will successfully
postselect.
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