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Abstract: In this paper we explain the relation between the free energy of the SYK model

for N Majorana fermions with a random q-body interaction and the moments of its spec-

tral density. The high temperature expansion of the free energy gives the cumulants of the

spectral density. Using that the cumulants are extensive we find the p dependence of the

1/N2 correction of the 2p-th moments obtained in [1]. Conversely, the 1/N2 corrections to

the moments give the 1/q3 correction of the high temperature expansion of the free energy

obtained by Tarnopolsky using a mean field expansion. These considerations also lead to a

more powerful method for solving the moment problem and intersection-graph enumeration

problems. We take advantage of this and push the moment calculation to 1/N3 order and

find surprisingly simple enumeration identities for intersection graphs. The 1/N3 corrections

to the moments, give O(1/q4) corrections to high temperature expansion of the free energy

which have not been calculated before.
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1 Introduction

The statistical fluctuations of nuclear levels have been successfully described by the Gaus-

sian Orthogonal Ensemble (GOE). However, the average spectral density of the GOE is a

semicircle which is very different from the Bethe formula [2]. In agreement with experi-

mental observations [3], this formula predicts an exp(c
√
E − E0) dependence (with E0 the

ground state energy) on the excitation energy E. Moreover, the nuclear interaction is mostly

a two-body interaction while for the GOE all the many-body states interact. To address

these shortcomings, French and co-workers [4–7] introduced the two-body random ensemble

which is now known as the four-body complex SYK model. One of the first results for this

ensemble was that the level density is a Gaussian [6] which is closer to the expectation of

realistic many-body systems than the semicircular behavior. However, in the nuclear physics

community it was not realized that this model actually reproduces the Bethe formula [8].

One of the reasons for missing this opportunity was the custom [9–13] to study this model

as the sum of a two-body and a four-body interaction (in the nuclear physics convention, a

one-body and a two-body interaction). The reason is that the nuclear interaction was seen as

a residual random four-body interaction on top of a mean field which can be represented as a

two-body interaction. Note that the four-body interaction is a irrelevant term with regard to

the two-body interaction [14–16]. It was also understood early on that the two-body random

ensemble still has the level correlations of the Gaussian Orthogonal Ensemble [7]. However,

it was also realized that the model was not ergodic [16–19] in the sense that ensemble average

of a spectral correlator is not equal to the spectral average of a spectral correlator, the latter

given by the result of the Wigner-Dyson ensembles up to much larger distances. For more

discussions of the two-body random ensemble in nuclear and many-body physics we refer to

[9, 18, 20, 21].

In condensed matter, the model was introduced independently as a random quantum

spin model [22] where a mean field is not natural. In this context, Sachdev and co-workers

discovered [23] a remarkable property of this model, namely that its zero temperature entropy

is extensive which then was identified as the black hole entropy [24]. This property is directly

related to its exponentially large level density starting with the ground state region, which

is a non-Fermi liquid. The states are characterized by highly entangled states [25] which are

very different from the particle-hole excitations of a Fermi liquid.

In the past two years the interest in this model was rekindled because it is possibly dual

to 1+1 dimensional gravity [8, 26–46]. The properties that made this model attractive as

a model of a compound nucleus are exactly those which are required for the existence of

a black-hole dual: it is maximally chaotic [47] with spectral correlations given by random

matrix theory [16, 33, 48], it has level density given by the Bethe formula which also implies

that the specific heat is linear in temperature for low temperature, the zero temperature

entropy is extensive showing that the low-lying states of the model are strongly entangled.

What is particularly important in this context is the existence of a conformal limit [26, 27]

where the action of the SYK model reduces to the Schwarzian action [27, 42, 49, 50].
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Much of the recent progress on the SYK model was made possible because of the path

integral formulation [22, 26, 27], from which one can derive an exact result for large N limit

after averaging over the random interaction. This was not possible for a formulation that

started from the generating function for the resolvent [51]. Although it was straightforward

to average over the randomness, it resulted in a complicated theory that was not amenable

to taking a large N limit. The disadvantage of the path integral which at the same time is its

strength is that it provides access to the Green’s function rather than the level density. Since

our main interest has been in the level density and the level correlations [1, 8, 14, 16, 33] of

the SYK model, we have used the moment method [52] which also proved effective in the early

applications to nuclear physics. Two limiting cases for N fermions fermions with a random q

body interaction were easily recognized: q ∼ N and q � N . In the first case [18, 53] the SYK

model is in the universality class of the Wigner-Dyson ensembles with a semicircular spectral

density. In the second case, the spectral density is a Gaussian [6]. This suggests the existence

of a double scaling limit which converges to a spectral density in between a semicircle and

a Gaussian. Indeed this happens when q ∼
√
N for N → ∞ [54]. This scaling limit which

reveals itself in the path integral formulation of the SYK model was not noted before in the

nuclear physics literature either. In the moment method, this limit arises naturally in Wick

contractions when treating all intersections as independent which gives moments that are

exact to order 1/N [8, 33, 38, 54]. Remarkably, these moments turn out to give the spectral

density of the weight function of the Q-Hermite polynomials with a nontrivial double scaling

limit [8, 38, 54, 55].

The 1/N2 corrections to all moments can be calculated analytically as well [1], with a

result that has as a simple geometric interpretation. The p-dependence of the 2p-th moment

also turns out to be relatively simple. One of the main goals of this paper is to explain this

p-dependence of the moments. Since the high temperature expansion of the free energy is

the cumulant expansion of the spectral density, the extensivity of the free energy puts strong

constraints on the moments. In fact, we will show that the p-dependence of the moments

follows almost entirely from this condition, and that it is determined by a few low-order

moments only. Secondly, we study the way large N corrections to the moments contribute to

the free energy. We already know that the Q-Hermite moments give the free energy for all

temperatures to order 1/q2 [8, 56]. In this paper we will show that 1/q3 corrections to the free

energy follow from the 1/N2 corrections to moments. Thirdly, using the inter-relationship

between the free energy and the moments, we obtain the 1/N3 corrections to the moments

which are responsible for the 1/q4 correction to the high temperature expansion of the free

energy. Using these results we find new enumerative identities for intersection graphs. Results

for the supersymmetric SYK model [57–59] which can be derived in a similar way are also

given in this paper.

This paper is organized as follows. In section 2, we give a brief review of the SYK model

including the moment method. The relation between moments and the free energy is discussed

in section 3. In this section we show that at a given order in 1/N the p-dependence of the

moments follows from a few low-order moments . We also show that large N corrections to the
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moments give large q corrections to the free energy. Results are obtained for both even q and

odd q. As a new result we obtain the 1/N3 corrections to the moments and 1/q4 corrections

to the free energy. In section 4, we use the results for the moments to derive new enumerative

identities for intersection graphs. Some technical results are deferred to two appendices. In

appendix A, we evaluate the high temperature expansion to the free energy from the results

of Tarnopolsky [56]. We obtain the high temperature expansion of Tarnopolsky’s result to

all orders and show that it is a convergent series with no singularities on the positive real

axis. Finally, we derive in appendix B the 1/N3 corrections for q = 1 and q = 2 with an

independent method.

2 Review of SYK model and moment method

In this section we introduce the Sachdev-Ye-Kitaev (SYK) model and the moment method.

2.1 The SYK Hamiltonian

The SYK model is a system of N Majorana particles with the q-body interaction represented

by

H =
∑

JαΓα (2.1)

with

Γα = (i)q(q−1)/2γi1γi2 · · · γiq , (2.2)

and γα are the Euclidean gamma matrices with commutation relations:

{γk, γl} = 2δkl. (2.3)

The factors of i in the definition of Γα have been included so that H is Hermitian. The

sum is over all
(
N
q

)
q-particles states denoted by the collective index α = {i1, i2, . . . , iq}, with

1 ≤ i1 < i2 < · · · < iq ≤ N . The couplings Jα are Gaussian distributed:

P (Jα) =

√
2q−1N q−1

(q − 1)!πJ2
exp

(
−2q−1N q−1J2

α

(q − 1)!J2

)
, (2.4)

where the parameter J sets a physical scale.1 For even q the Hamiltonian H of the SYK

model is simply given by

H = H. (2.5)

With the large N scaling of the variance in (2.4) this Hamiltonian has a negative-energy

ground state energy that is proportional to N for large N .

1A factor of 2q has been included in the variance so that our results coincide with the Majorana convention
{γk, γl} = δkl.

– 4 –



For odd q the operator H is still a well-defined Hermitian operator, but because it has

a fermionic grading, it is not a Hamiltonian but rather the supercharge of a supersymmetric

theory with the Hamiltonian [57]:

H = H2. (2.6)

This Hamiltonian is positive definite with a ground state energy approaching zero in the

thermodynamic limit with the scaling of the variance as in (2.4).

2.1.1 Moments and spectral density

One of the reasons for which we are interested in moments is to study the spectral density

ρ(E) of the SYK model:2

ρ(λ) :=

〈
2b
N
2 c∑

k=1

δ(λ− λk)

〉
, (2.7)

where 〈· · · 〉 denotes the Gaussian average using the distribution (2.4). By a Fourier transform,

we can express ρ(λ) as

ρ(λ) =
1

2π

∫ ∞
−∞

dte−iEt
〈
TreiHt

〉
= 2N/2

1

2π

∫ ∞
−∞

dte−iλt
∞∑
k=0

(it)k

(k)!
Mk

= 2N/2
1

2π

∫ ∞
−∞

dte−iλt
∞∑
p=0

(it)2p

(2p)!
M2p,

(2.8)

where we have defined the k-th moment Mk to be

Mk :=
〈

TrHk
〉
/2N/2 = 2−N/2

∫
dλρ(λ)λk. (2.9)

The third equality of eq. (2.8) used the fact that Mk = 0 when k is odd, due to the Jα → −Jα
symmetry of the distribution (2.4). Therefore, we may focus on the calculation of M2p. Notice

that since 〈· · · 〉 is an Gaussian integration over Jα, M2p is given by a sum over all possible

Wick contractions among 2p Γ’s. By convention, we have factored out the Hilbert space

dimensionality 2N/2, but M2p still grows like Np as N → ∞, as can be seen from the N

dependence of M2:

M2 = σ2 =

(
N

q

)
(q − 1)!J2

2qN q−1 . (2.10)

2As we will see, the spectral density will not play an important role in the higher-order free energy calcula-
tion, which is the main subject of this paper. Nevertheless, the spectral density provides a natural introduction
of the moments.
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Hence, to formulate a useful large N expansion for moments, we consider instead the scaled

moments:

M̃2p :=
M2p

Mp
2

∼ O(1). (2.11)

We distinguish the moments of the SYK operator H, which will be denoted by M2p and

the moments of the Hamiltonian H which will be denoted by µp. So we have that

µp = Mp, for even q, (2.12)

µp = M2p, for odd q. (2.13)

3 Free energy, cumulants and high temperature expansions

3.1 Moments and cumulants

The partition function is given by

Z = Tre−βH ≡ e−βF (3.1)

with the free energy denoted by F . In terms of high temperature expansion of the free energy,

we have

− βF − N

2
log 2 =

∞∑
n=1

κn
n!

(−β)n. (3.2)

The quantity κn is called the n-th cumulant. Note that the summation starts from n = 1,

this is because the energy is finite, and at infinite temperature we expect only the entropy to

contribute to βF . Since free energy is extensive, we obtain

κn ∼ O(N) (3.3)

for all n. We will see later that this has important consequences for the N -dependence of the

moments.

Alternatively, the partition function can also be expressed in the moments µn of H,

Z =

∞∑
n=0

µn
n!

(−β)n. (3.4)

One may ask why we do not consider the “free energy” e−βF := 〈Tr(e−βH)〉 also for odd q

so that we can have a uniform treatment of the moments for all values of q, instead of two

separate cases eqs. (2.12) and (2.13). The problem with this “free energy” is that it is not

extensive. Extensivity will turn out to be vital for the application of our method.

The relation between µn and κn is well studied [60]. Consider the following partition of
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an integer n:

n = k1 + · · · k1︸ ︷︷ ︸
m1 times

+ k2 + · · ·+ k2︸ ︷︷ ︸
m2 times

+ · · ·+ kl + · · · kl︸ ︷︷ ︸
ml times

=
l∑

i=1

miki, (3.5)

where by convention we demand the ordering k1 ≥ k2 ≥ · · · ≥ kl,3 then we have

µn =
∑
Pn

 n!∏l
i=1mi!(ki!)mi

l∏
j=1

(κkj )
mj

 , (3.6)

κn =
∑
Pn

(−1)
∑
imi−1

(
l∑

i=1

mi − 1

)
!

n!∏l
i=1mi!(ki!)mi

l∏
j=1

(µkj )
mj

 , (3.7)

where
∑

Pn
denotes sum over all partitions of n. As examples, we list some low-order relations:

µ1 = κ1, µ2 = κ2 + κ21, µ3 = κ3 + 3κ2κ1 + κ31;

κ1 = µ1, κ2 = µ2 − µ21, κ3 = µ3 − 3µ2µ1 + 2µ21.
(3.8)

We remark that since moments are computed by contracting Γ matrices, all the N -dependence

comes from counting the subscripts of those Γ matrices. This implies the µn must be rational

functions of N , and then eq. (3.7) tells us the cumulants κn must also be rational functions of

N . Hence there can be no factors such as logN or
√
N in the large N expansion of moments

or cumulants. For even q all odd cumulants vanish, but they enter in the calculations for odd

q.

3.2 Even q case

3.2.1 N dependence of cumulants and moments

As discussed, for even q we have Mk = µk and hence µk = 0 when k is an odd number. It

follows from eq. (3.7) that κk = 0 when k is odd. We are interested in the scaled moments

M̃2p, so let us also define the scaled cumulants to be

κ̃2k :=
κ2k

κk2
=
κ2k

Mk
2

=
κ2k
σ2k

. (3.9)

According to eq. (2.10), M2 = σ2 =
(
N
q

)J2(q−1)!
2qNq−1 which is ∼ N , together with the free energy

extensivity eq. (3.3), we deduce

κ̃2k ∼ O(N−k+1). (3.10)

3Alternatively we can say, for example, 3 = 2 + 1 and 3 = 1 + 2 are the same partition of 3.
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We also have the trivial identity

κ̃2 = 1. (3.11)

Since κ2 = µ2 it is clear that eq. (3.6) is also valid for the rescaled moments and cumulants.

Because of theN dependence eq. (3.10), the corrections of order 1/Nk−1 to all scaled moments

only receive contributions from cumulants up to κ̃2k, which by themselves are completely

determined by the moments up to order 2k due to eq. (3.7). Hence we conclude:

To order N−k+1, all M̃2p are determined by a finite number of moments up to M̃2l (l ≤ k),

expanded to N−k+1.

For example, the 1/N2 expansion of all moments is completely determined by κ̃4 and

κ̃6 which in turn are determined by M̃4 and M̃6, while at order 1/N3 the moments receive

only contributions from κ̃4, κ̃6 and κ̃8 and are thus determined by M̃4, M̃6 and M̃8. This is

very surprising, because for large p, the Wick contractions contributing to the 2p-th moment

become rather complicated, whereas to calculate up to M̃8 we only need to consider a small

set of contraction diagrams. This will have important implications when it comes to the

enumeration of intersection graphs, which is the subject of section 4.

The scaled cumulant κ̃2k is O(1/Nk−1), but after being rescaled back to κ2k its leading

term contributes to the thermodynamic limit of the free energy. The leading term of κ̃2k is

determined by the 1/Nk−1 corrections of the moments up to order 2k. We thus emphasize:

The leading term of the 2k-th scaled cumulant κ̃2k is determined by the moments M̃2l

(l ≤ k), expanded to order N−k+1.

This in particular implies that even if we want the complete information of only the thermo-

dynamic limit (leading in 1/N) of the free energy, we would still need all-order knowledge of

scaled cumulants and hence of the scaled moments.

We will see below that the q-dependence of the leading term of the sixth cumulant follows

from the 1/N2 corrections to the fourth and sixth moment. The correction factor is simply

given by 1− 1/3q with no other corrections from higher moments. So the large q expansion

of this cumulant terminates at this order.

The discussion in this section is general and also applies to the odd q case, where only

some minor changes of notations are needed.

3.2.2 Explicit results to 1/N3

We will derive the expansion of M̃2p to 1/N3 in this paper. To the relevant order, eq. (3.6)

can be explicitly written as

M̃2p

(2p− 1)!!
= 1+

1

3

(
p

2

)
κ̃4+

1

15

(
p

3

)
κ̃6+

1

3

(
p

4

)
κ̃24+

1

105

(
p

4

)
κ̃8+

2

9

(
p

5

)
κ̃6κ̃4+

5

9

(
p

6

)
κ̃34+O(1/N4).

(3.12)

We emphasize again the fact that only a finite number of terms need to be considered on the

right-hand side of the above equation is due to the extensivity of the free energy, see eqs.
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(3.3) and (3.10). The first eight moments were calculated exactly in [1], and their expansion

up to order 1/N3 thus gives the expansion of all moments to this order.

Using the results of [1] we obtain

M̃4 =3− 2q2

N
+

2q2(q − 1)2

N2
− 2q2(q − 1)2(2q2 − 8q + 5)

3N3
+O

(
1

N4

)
,

M̃6 =15− 30q2

N
+ 2q2

(
27q2 − 34q + 15

) 1

N2

− 2q2(q − 1)2
(
38q2 − 56q + 25

) 1

N3
+O(N−4),

M̃8 =105− 420q2

N
+ 28q2

(
44q2 − 38q + 15

) 1

N2

− 4q2
(
716q4 − 1712q3 + 1743q2 − 854q + 175

) 1

N3
+O(N−4).

(3.13)

This results in the cumulants,

κ̃4 =− 3 + M̃4

=− 2q2

N
+

2q2(q − 1)2

N2
− 2q2(q − 1)2(2q2 − 8q + 5)

3N3
+O

(
N−4

)
,

κ̃6 =30− 15M̃4 + M̃6

=
8q3(3q − 1)

N2
− 8q3(q − 1)2(7q − 4)

N3
+O

(
N−4

)
,

κ̃8 =− 630 + 420M̃4 − 35M̃2
4 − 28M̃6 + M̃8

=−
16q4

(
46q2 − 36q + 7

)
N3

+O
(
N−4

)
,

(3.14)

which have exactly the leading order N dependence of eq. (3.10) required for an extensive

free energy.

Substituting these results for cumulants back to eq. (3.12), we obtain the following large

N expansion for the scaled moments to 1/N3:

M̃2p

(2p− 1)!!
=1− 2

3

(
p

2

)
q2

N
+

[(
p

2

)(
2

3
q2(q − 1)2

)
+

(
p

3

)(
8

15
q3(3q − 1)

)
+

(
p

4

)
4

3
q4
]

1

N2

−
[(
p

2

)(
2

9
q2(q − 1)2(2q2 − 8q + 5)

)
+

(
p

3

)(
8

15
q3(q − 1)2(7q − 4)

)
+

(
p

4

)(
8

105
q4(127q2 − 142q + 49)

)
+

(
p

5

)(
32

9
q5(3q − 1)

)
+

(
p

6

)
40

9
q6
]

1

N3
+O

(
1

N4

)
.

(3.15)

In [1] M̃2p was expanded to 1/N2 by Q-Hermite approximation and triangle counting, and
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Moment expansion

0 1 2 3 4 5 6
0

2

4

6

8

10

(M̃2p) 2p

m (N−m)

Trivially known from σ2

?

Cumulant expansion

0 1 2 3 4 5 6
0

2

4

6

8

10

(κ̃2k) 2k

m (N−m)

Trivially known from σ2

All zero due to
extensivity

?

Figure 1. Relation between two expansions (for even q). The horizontal axes denote orders in 1/N ,
while the vertical axes denote orders in (scaled) moments and cumulants. The red dots are where the
corresponding 1/N coefficients are known, and the gray region is unknown. It is interesting to see that
on the moment side infinitely many coefficients are known, but they are all determined by the finite
number of dots in the dashed triangle. This is ultimately because on cumulant side we easily know an
infinite number of coefficients due to extensivity (the cyan region).

it agrees with (3.15), which we just obtained by a completely independent method. The

discussion above suggests an interesting “map of knowledge” between the moment expansion

and cumulant expansion, as shown in figure 1.

3.2.3 Free energy

We can substitute eq. (3.14) into eq. (3.2) to obtain the high temperature expansion of the

free energy:

− βF = −N
2

log 2 +
1

2!
σ2β2 +

1

4!
κ̃4σ

4β4 +
1

6!
κ̃6σ

6β6 +
1

8!
κ̃8σ

8β8 + · · · (3.16)

Since σ2 ∼ N we obtain in the thermodynamic limit

−βF
N

=
1

2
log 2 +

1

4q2
β2 − 1

2q24!
β4 +

8q3(3q − 1)

8q66!
β6 − 16q4(46q2 − 36q + 7)

16q88!
β8 +O(β10),

(3.17)

where we have set J2 = 2q−1/q. Using the 1/N corrections to the cumulants and the variance,

it is straightforward to calculate 1/N corrections to the free energy. We have sufficient data to

obtain terms up to 1/N3, each expanded to β8, but since they are of limited physical relevance,

we have not written them down. To summarize, we have obtained the high temperature

expansion of the free energy to order β8.

Using a completely different method, a recent publication [56] computes the large q ex-

– 10 –



pansion to order 1/q3 for the free energy at leading order of 1/N .4 In addition to reproducing

the large q expansion calculated by [56] to order 1/q3 (see appendix A), we also obtain the

1/q4 correction to the free energy at order β8 which is given by

−N 7

8!q4
β8. (3.18)

Our results also show that there are no further large q corrections for terms up to order β8.

We also remark that, if all one wants is the high temperature expansion of the free energy

to a certain order in β and 1/N , a general expression for the large N expansion of M̃2p such

as eq. (3.15) is not necessary, as only equations such as (3.14) are used to calculate the

high temperature expansion, where only a finite number of moments are needed. However,

the scope of this paper is wider than just computing the high temperature expansion, and a

general expression for all M̃2p will be needed to solve the enumeration problem for intersection

graphs, which will be discussed in section 4.

3.3 Odd q case

We can repeat the same calculation for supersymmetric SYK models. However in this case

we need to define the scaled cumulants as

κ̃p :=
κp
κp1

=
κp
Mp

2

, (3.19)

because M2 = µ1 = κ1 for the odd q case. This means

κ̃k ∼ O(N−k+1). (3.20)

Repeating the same calculation that led to eq. (3.12) we get

M̃2p =
µp
µp1

= 1 +

(
p

2

)
κ̃2 +

(
p

3

)
κ̃3 + 3

(
p

4

)
κ̃22 +

(
p

4

)
κ̃4 + 10

(
p

5

)
κ̃2κ̃3 + 15

(
p

6

)
κ̃32 +O(N−4).

(3.21)

There is no (2p− 1)!! factor this time. To calculate κ̃2, κ̃3 and κ̃4 we will need M̃4, M̃6 and

M̃8 as we did for the even q case. They can be again calculated from the analytical results in

[1] resulting in

M̃4 =1 +
2q2

N
− 2q2(q − 1)2

1

N2
+

2

3
q2(q − 1)2

(
2q2 − 8q + 5

) 1

N3
+O

(
N−4

)
,

M̃6 =1 +
6q2

N
− 2q2(q − 3)(3q − 1)

1

N2
+ 2q2(q − 1)2

(
6q2 − 24q + 5

) 1

N3
+O

(
N−4

)
,

M̃8 =1 +
12q2

N
+ 4q2(14q − 3)

1

N2
− 4q2

(
4q4 + 32q3 − 93q2 + 50q − 5

) 1

N3
+O

(
N−4

)
.

(3.22)

4Their result, however, is valid for all temperatures.
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Using the relation between cumulants and moments, eq. (3.7), we obtain

κ̃2 = µ̃2 − 1 = M̃4 − 1

=
2q2

N
− 2q2(q − 1)2

1

N2
+

2

3
q2(q − 1)2

(
2q2 − 8q + 5

) 1

N3
+O

(
N−4

)
,

κ̃3 = M̃6 − 3M̃4 + 2

=
8q3

N2
+ 8q3(q − 4)(q − 1)2

1

N3
+O

(
N−4

)
,

κ̃4 = M̃8 − 4M̃6 − 3M̃2
4 + 12M̃4 − 6

= −16q4
(
2q2 − 4q − 1

) 1

N3
+O

(
N−4

)
.

(3.23)

Together with (3.21), we conclude that the p-dependence of the moments is given by

M̃2p =1 +

(
p

2

)
2q2

N
−
[(
p

2

)
2q2(q − 1)2 −

(
p

3

)
8q3 −

(
p

4

)
12q4

]
1

N2

+

[(
p

2

)
2

3
q2(q − 1)2

(
2q2 − 8q + 5

)
+

(
p

3

)
8q3(q − 1)2(q − 4)

−
(
p

4

)
8q4
(
7q2 − 14q + 1

)
+

(
p

5

)
160q5 +

(
p

6

)
120q6

]
1

N3
+O(N−4).

(3.24)

The high temperature expansion of free energy has the form:

− βF = −N
2

log 2− σ2β +
1

2!
σ4κ̃2β

2 − 1

3!
σ6κ̃3β

3 +
1

4!
σ8κ̃4β

4 +O(β5). (3.25)

More explicitly, we have in the thermodynamic limit

−βF
N

=
1

2
log 2− 1

2q2
β +

1

2!(2q2)
β2 − 1

3!q3
β3 +

−(2q2 − 4q − 1)

4!q4
β4 +O(β5), (3.26)

where again we have set J2 = 2q−1/q. We only displayed the coefficient of the leading term

in 1/N , but the 1/N corrections can be calculated in a straightforward way as well.

4 Enumerative identities of intersection graphs

In this section we derive enumerative identities for intersection graph, some of which have

not appeared in the literature. We start with a short review of the graphical calculation of

the moments, and the details can be found in [1].

4.1 Graphical calculation of moments

The moments of the SYK model are given by the expectation value〈
2−N/2Tr(JαΓα)2p

〉
. (4.1)
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α1 α1 α2 α2

(a)

α1 α2

(a′)

α1 α2 α1 α2

(b)

α1 α2

(b′)

α1 α2 α3 α1 α2 α3

(c)

α1 α2

α3

(c′)

Figure 2. Three examples of chord diagrams (a),(b), (c), and the corresponding intersection graphs
(a′), (b′) and (c′). In particular (b) and (b′) represent the value of η in eq. (4.3).

Because the probability is Gaussian, the average is given by the sum over all possible Wick

contractions, which can be represented by rooted chord diagrams, and some examples of such

chord diagrams are given in the first row of figure 2. For large N and finite p, the indices of

the Γα are mostly different, so that they can be commuted to pairs of ΓαΓα = 1 (no implicit

summation over α). Since in this limit all contractions contribute equally for even q, this

results in a Gaussian spectral density. For odd q, when two Γα and Γβ with no common

indices anti-commute, the contractions are alternately positive and negative, leaving only one

net contraction for all moments which results in the moments of two delta functions in this

limit. We always consider the scaled moments M̃2p := M2p/M
p
2 , so that the variance cancels

in the ratio, and the values of chord diagrams always refer to the values of Wick contractions

normalized by Mp
2 .

To calculate 1/N corrections, we have to take into account that Γα and Γβ commute or

anti-commute depending on how many indices they have in common,

ΓαΓβ + (−1)q+1+kΓβΓα = 0, (4.2)

where k is the number of common indices in α and β. Taking this into account, we obtain

the value of two intersecting contraction lines:

η = (−1)q
(
N

q

)−1 q∑
k=1

(−1)k
(
N − q
q − k

)(
q

k

)
. (4.3)

We can further translate chord diagrams into intersection graphs, which are obtained by

representing each chord by a vertex, and connecting two vertices if and only if the two

chords they represent intersect each other in the chord diagram. We give some examples of

intersection graphs in the second row of figure 2. We will denote a generic intersection graph
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by G. An important approximation to the moments is when all intersecting contraction lines

are treated as being independent. In the language of intersection graphs, if an intersection

graph G has E edges, its value ηG is approximated by

ηG ≈ ηE . (4.4)

This approximation gives moments that are correct up to order 1/N . The corresponding

moments are the moments of the weight function of the Q-Hermite polynomials. That is why

this approximation is known as the Q-Hermite approximation. The Q-Hermite approximation

to moments is thus the sum of ηE over all the (2p− 1)!! intersection graphs.

For more details of the graphical calculations including the graph-theoretic identities

needed to sum all graphs we refer to [1]. To conclude this review, we remark that the method

of [1] relies on a back-and-forth interplay between the moment expansion and intersection

graphs: intersection graphs inform us on how to calculate moments, and moment calculations

for the exactly solvable q = 1 and q = 2 SYK model prove enumerative identities about

intersection graphs, which in turn feed back to the moment calculation for general q. In the

current paper the relation is more one-way: we have obtained results for general moments in

previous sections without relying on the enumeration of intersection graphs, and the graphs

at best could play a minor role as a book keeping device. However, now we can use the results

for the moment expansion to prove identities for intersection graphs, which will be discussed

in this section.

4.2 Structure of contributions

In section 3, we have calculated the large N expansions of M̃2p to order 1/N3. We did not

use any enumerative identities like the ones in [1]. Nevertheless, we see that various binomial

factors arise in eqs. (3.12) and (3.21) simply from the relations between the moments and the

cumulants. This suggests we can turn around and use the calculations we just presented to

generate enumerative identities for intersection graphs. To see what type of graph-theoretic

objects are to be enumerated, we first state the main result of the next two sections:

ηG − ηE = (−1)Eq
−8q3

N2
T (4.5)

+(−1)Eq[16ETq5 + (−72T − 80f6 − 16f5 + 16f4)q
4 + 32Tq3]

1

N3
+O(N−4),

where E is the numbers of edges, T is the number of triangles, and f6, f5, f4 are the number

of the four-point structures depicted in figure 3, in an intersection graph G. We can check

this formula for a few nontrivial graphs that contribute to moments up to M̃8 denoted by

η, T6, T44, T66 and T8 in tables 1 and 2. Expanding the results for these graphs obtained in
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Figure 3. The four-point structures appearing in a general intersection graph G. Their numbers are
denoted by f6, f5 and f4 from the left to the right, respectively.

Intersection graph

Value 1 η η2 T6
Multiplicity 5 6 3 1

Table 1. All the intersection graphs contributing to the sixth moment.

Intersection graph

Value 1 η η2 η2 η3 η3 T6 ηT6 T44 T66 T8
Multiplicity 14 28 4 24 4 8 8 8 2 4 1

Table 2. All the intersection graphs contributing to the eighth moment.

[1] to order 1/N3 we obtain,

(−1)qη = 1− 2q2

N
+

2q2(q − 1)2

N2
− 2q2(q − 1)2(2q2 − 8q + 5)

3N3
+O

(
1

N4

)
(−1)3qT6 = (−1)3qη3 − 8q3

N2
+ (48q5 − 72q4 + 32q3)

1

N3
+O

(
1

N4

)
,

(−1)4qT44 = (−1)4qη4 +
16q4

N3
+O

(
1

N4

)
,

(−1)5qT66 = (−1)5qη5 − 16q3

N2
+ (160q5 − 160q4 + 64q3)

1

N3
+O

(
1

N4

)
,

(−1)6qT8 = (−1)6qη6 − 32q3

N2
+ (384q5 − 368q4 + 128q3)

1

N3
+O

(
1

N4

)
.

(4.6)

Using the graphs in tables 1 and 2 one can easily verify that the above results satisfy

eq. (4.5). Note that triangles (whose value is T6) made their first appearance as a complete

intersection graph for the sixth moment (table 1), and in the eighth moment, they become

substructures of various graphs. The same is true for the four-point structures whose values

are T44, T66 and T8: they first appear as complete graphs for the eighth moment (table 2),

and will become substructures for higher moments. Some examples are given in figure 4.

How do we proceed to prove eq. (4.5) in its full generality? A rigorous proof of eq. (4.5)

to order 1/N2 was given in [1], which is essentially a very tedious brute-force calculation. The
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(a) (b) (c)

Figure 4. Some examples of four-point structure counting in intersection graphs with five vertices:
(a) has E = 8, T = 4 and f6 = 0, f5 = 4, f4 = 1; (b) has E = 8, T = 5 and f6 = 1, f5 = 2, f4 = 0;
(c) has E = 9, T = 7 and f6 = 2, f5 = 3, f4 = 0.

1/N3 term can be obtained rigorously by the same method, but the calculation turns out to

be extremely tedious and uninstructive. So instead, in the next two sections, we will present

a less rigorous but more instructive method to obtain the result (4.5). As a warm-up we will

start with the 1/N2 term in the next section, and then continue with the 1/N3 corrections.

4.3 Graphical calculation of the 1/N2 term

We first take note of a rather trivial fact that if an intersection graph G is disconnected with

two components G1 and G2, then ηG = ηG1ηG2 . Moreover, this factorization property also

holds in a less trivial situation, where an intersection graph can be made disconnected by

cutting a vertex, which was proved in [1].5 To be concrete, let us first look at the 1/N2 order

corrections. We have argued that the 1/N2 coefficient for M̃2p is completely determined by

M̃4 and M̃6, which only depend on the values of edges and triangles (η and T6) according to

table 1 and factorization. However, this fact appears rather mysterious if one thinks about

the moments in terms of the Wick contractions

M̃2p =

(2p−1)!!∑
i=1

ηGi , (4.7)

where Gi denotes the i-th intersection graph and all the intersection graphs have p vertices.

An intersection graph can get quite complicated when p is large, for example imagine a

complete graph with p vertices, which has
(
p
2

)
edges. On top of that one then needs to sum

over all these complicated graphs. How can one tame such a complex beast by only using

M̃4 and M̃6? The only plausible way to reconcile these two seemingly conflicting view points

is that the 1/N2 coefficient of each ηGi ought to be a function of only the number of edges

and triangles in that intersection graph, not something more global or any other property

of the graph. So the fact that we are only looking at a fixed order in 1/N allows a huge

5In a nutshell, the cut-vertex factorization property holds because the subscripts α (vertices in intersection
graphs) for the Γα live in a “isotropic” space, so that if one first sums over all vertices on one side of the
cut-vertex, the result no longer depends on the cut-vertex. A graph that cannot be made disconnected by
cutting a single vertex is called “2-connected” in mathematics literature, here we just call it “irreducible”.

– 16 –



simplification to happen. We may summarize this plausible result as

ηG − ηE =
1

N2
A(E, T ) +O(1/N3), (4.8)

where A(E, T ) is some function of E and T .6 Note that since ηE is a function of E, the

plausibility argument loses no generality by considering ηG − ηE instead of ηG on the left-

hand side of eq. (4.8), and this is motivated by the Q-Hermite approximation eq. (4.4). Let

us pause here and summarize the reasons for the necessity for such simplicity:

• The cut-vertex factorization property of ηG, which together with table 1 implies M̃4 and

M̃6 depend only on the values of edges and triangles (η and T6).

• The extensivity of the free energy/cumulants, which forces the 1/N2 coefficient of M̃2p

to depend on only M̃4 and M̃6, for any value of p.

Now the task is to fix the explicit form of A(E, T ). It is sufficient to consider those

special graphs G with only disconnected irreducible structures, so that there is a complete

factorization. Since the relevant irreducible structures can only be edges or triangles, let us

take G to be an intersection graph with E edges and T triangles where all the triangles are

disconnected, and the edges other than the ones that make up triangles are also disconnected,

which means there are E − 3T of them. This implies

ηG = T T6 η
E−3T , (4.9)

where T6 is the value of the Wick contraction represented by a triangle. We now have

ηG − ηE = ηE

([
T6
η3

]T
− 1

)
. (4.10)

We define

δT6 :=
T6
η3
− 1. (4.11)

By the expansion of T6 in eq. (4.6), we have δT6 ∼ O(1/N2) so that

ηG − ηE = TηEδT6 +O(1/N3). (4.12)

6Eq. (4.8) takes for granted that ηG − ηE is 1/N -exact. It will be clear that the 1/N -exactness can be
proved by the method we are unfolding, but since 1/N -exactness of ηG − ηE was extensively discussed in
[1, 8, 33], we choose not to prove it in this discussion.
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Using that

η = (−1)q +O(1/N), (4.13)

δT6 =
−8q3

N2
+O(1/N3), (4.14)

we finally obtain

ηG − ηE = (−1)Eq
(
−8q3

N2

)
T +O(1/N3). (4.15)

Hence by considering special graphs we have fixed the form of A(E, T ) to be A(E, T ) =

(−1)Eq(−8q3)T , which must also be true for a general graph. This proves eq. (4.5) to order

1/N2.

4.4 Graphical calculation of the 1/N3 term

We may continue with this strategy to order 1/N3. Since M̃2p to this order is completely

determined by M̃4, M̃6 and M̃8, by the same argument as in previous subsection, we conclude

for any intersection graph G we have

ηG − ηE = (−1)Eq
(
−8q3

N2

)
T +

1

N3
B(E, T, f6, f5, f4) +O(1/N4), (4.16)

because E, T, f6, f5 and f4 count all the irreducible structures that appear for moments up

to M̃8. Again consider an intersection graph G with E edges, T triangles, and the four-point

structures counted by f6, f5 and f4 (see figure 3), where all the irreducible structures are

disconnected, so we have T − 4f6 − 2f5 disconnected triangles and E − 3(T − 4f6 − 2f5) −
6f6 − 5f5 − 4f4 = E − 3T + 6f6 + f5 − 4f4 disconnected edges. Thus

ηG =ηE−3T+6f6+f5−4f4T6
T−4f6−2f5T8

f6T66
f5T44

f4

=ηE
[
T6
η3

]T−4f6−2f5 [T8
η6

]f6 [T66
η5

]f5 [T44
η4

]f4
,

(4.17)

where T8, T66 and T44 are the values of the intersection graphs counted by f6, f5 and f4, see

table 2. We have that

η =(−1)q(1 + δη) +O(1/N2),

T6
η3

=1 + δT6,

T8
η6

=1 + 4δT6 + δT8,

T66
η5

=1 + 2δT6 + δT66,

T44
η4

=1 + δT44.

(4.18)
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The above equations should be understood as definitions of the symbols δη, δT6, δT8 δT66
and δT44 from the left-hand sides. From eq. (4.6) we see δT8, δT66 and δT44 are of order 1/N3

and δT6 contains both 1/N2 and 1/N3 terms. To order 1/N3 the only mixed contribution is

of the form δηδT6, while the other corrections only contribute by their leading orders. We

thus obtain

ηG − ηE = (−1)qE(1 + Eδη)(TδT6 + f6δT8 + f5δT66 + f4δT44)

= (−1)qE(1 + ETδηδT6 + f6δT8 + f5δT66 + f4δT44) +O(1/N4). (4.19)

If we use the explicit expressions for the irreducible structures given in eq. (4.6), we finally

find

ηG − ηE = (−1)Eq
(
−8q3

N2

)
T + (−1)Eq

[
16ETq5

+(−72T − 80f6 − 16f5 + 16f4)q
4 + 32Tq3

] 1

N3
+O(N−4). (4.20)

This fixes the form of B(E, T, f6, f5, f4) and proves eq. (4.5).

To calculate the correction to the Q-Hermite moments we sum over all intersection graphs:

M̃2p − M̃QH
2p =

(2p−1)!!∑
i=1

(
ηGi − ηEi

)
. (4.21)

It is now clear that the new objects to be enumerated at order 1/N3 are (−1)EqET and

(−1)Eq(5f6 + f5− f4). We will discuss their enumerations for the even q and the odd q cases

in the following sections.

4.4.1 Even q case

In the same way that M̃2p to order 1/N3 is determined by M̃4, M̃6 and M̃8, the Q-Hermite

moment M̃QH
2p to order 1/N3 is determined by M̃QH

4 , M̃QH
6 and M̃QH

8 . These Q-Hermite

moments can be calculated most easily calculated from the definition

M̃QH
2p =

(2p−1)!!∑
i=1

ηEi , (4.22)
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the large N expansion of η in eq. (4.6), and tables 1 and 2. Alternatively, the sum in (4.22)

may be evaluated by the Riordan-Touchard formula [1]. We find the moments,

M̃QH
4 =3− 2q2

N
+

2q2(q − 1)2

N2
− 2q2(q − 1)2(2q2 − 8q + 5)

3N3
+O

(
1

N4

)
,

M̃QH
6 =15− 30q2

N
+

6q2
(
9q2 − 10q + 5

)
N2

−
2q2
(
38q4 − 108q3 + 139q2 − 90q + 25

)
N3

+O(N−4),

M̃QH
8 =105− 420q2

N
+

28q2
(
44q2 − 30q + 15

)
N2

−
4q2
(
716q4 − 1232q3 + 1211q2 − 630q + 175

)
N3

+O(N−4).

(4.23)

In the same manner as in eq. (3.14), we get the following Q-Hermite cumulants:

κ̃QH
4 =− 3 + M̃QH

4

=− 2q2

N
+

2q2(q − 1)2

N2
− 2q2(q − 1)2(2q2 − 8q + 5)

3N3
+O

(
N−4

)
,

κ̃QH
6 =30− 15M̃QH

4 + M̃QH
6

=
24q4

N2
−

8q4
(
7q2 − 12q + 6

)
N3

+O
(
N−4

)
,

κ̃QH
8 =− 630 + 420M̃QH

4 − 35
(
M̃QH

4

)2
− 28M̃QH

6 + M̃QH
8

=− 736q6

N3
+O

(
N−4

)
.

(4.24)

The p-dependence of the moments is then obtained from eq. (3.12):

M̃QH
2p

(2p− 1)!!
= 1− 2

3

(
p

2

)
q2

N
+

[(
p

2

)(
2

3
q2(q − 1)2

)
+

(
p

3

)
8

5
q4 +

(
p

4

)
4

3
q4
]

1

N2

−
[(
p

2

)(
2

9
q2(q − 1)2(2q2 − 8q + 5)

)
+

(
p

3

)(
8

15
q4
(
7q2 − 12q + 6

))
+

(
p

4

)(
8

105
q4
(
127q2 − 70q + 35

))
+

(
p

5

)
32

3
q6

+

(
p

6

)
40

9
q6
]

1

N3
+O

(
1

N4

)
. (4.25)
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In fact, using the definition of the Q-Hermite moments (4.22) and

(−1)qEηE =1− 2Eq2

N
+

2E2q4 − 4Eq3 + 2Eq2

N2

− 4E3q6 − 24E2q5 + 12E2q4 + 34Eq4 − 36Eq3 + 10Eq2

3N3
+O

(
1

N4

)
,

(4.26)

we can match the coefficients of powers of q and 1/N in eqs. (4.25) and (4.26), and this

already gives several enumerative identities for E:

(2p−1)!!∑
i=1

Ei =
(2p− 1)!!

3

(
p

2

)
, (4.27)

(2p−1)!!∑
i=1

E2
i =

(2p− 1)!!

90

(
p

2

)
(5p2 − p+ 12), (4.28)

(2p−1)!!∑
i=1

E3
i =

(2p− 1)!!

3780

(
p

2

)(
35p4 + 14p3 + 235p2 − 188p+ 24

)
. (4.29)

In fact the above three identities are already known in mathematics literature [61]. However

the proof therein is based on an analytical-combinatorial method quite distinct from ours.

Now we proceed to calculate M̃2p − M̃QH
2p for even q from eqs. (3.15) and (4.25):

M̃2p − M̃QH
2p

(2p− 1)!!
= − 8

15

(
p

3

)
q3

1

N2
+

[
8

315

(
p

3

)
(7p2 + 5p+ 48)q5

+

(
−24

5

(
p

3

)
− 16

15

(
p

4

))
q4 +

32

15

(
p

3

)
q3
]

1

N3
+O(N−4). (4.30)

Matching the coefficients of the expansion in 1/N and q with graph-theoretic result eq. (4.5),

we obtain the following enumerative identities:

(2p−1)!!∑
i=1

Ti =
(2p− 1)!!

15

(
p

3

)
, (4.31)

∑
i

EiTi =
(2p− 1)!!

630

(
p

3

)
(7p2 + 5p+ 48), (4.32)

(2p−1)!!∑
i=1

(5f6i + f5i − f4i) =
(2p− 1)!!

15

(
p

4

)
, (4.33)

where f6i, f5i, f4i are the numbers of the three four-point structures in the intersection graph

Gi. These are the truly new identities that could not have been obtained by the analytical-

combinatorial method of [61], since our identities involve higher structures such as triangles

and four-point structures.
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4.4.2 Odd q case

We repeat the same calculation for odd q case. The Q-Hermite moments up to eighth order

are

M̃QH
4 =1 +

2q2

N
− 2q2(q − 1)2

1

N2
+

2

3
q2(q − 1)2

(
2q2 − 8q + 5

) 1

N3
+O

(
N−4

)
,

M̃QH
6 =1 +

6q2

N
− 6(q − 1)2q2

N2
+

2q2
(
6q4 − 12q3 + 23q2 − 18q + 5

)
N3

+O(N−4),

M̃QH
8 =1 +

12q2

N
+

12q2(2q − 1)

N2
− 4q2(q − 1)2(2q − 1)(2q + 5)

N3
+O(N−4).

(4.34)

Together with eq. (3.23) this gives the Q-Hermite cumulants

κ̃QH
2 = M̃QH

4 − 1 =
2q2

N
− 2q2(q − 1)2

1

N2
+

2

3
q2(q − 1)2

(
2q2 − 8q + 5

) 1

N3
+O

(
N−4

)
,

κ̃QH
3 = M̃QH

6 − 3M̃QH
4 + 2 =

8q6

N3
+O

(
N−4

)
, (4.35)

κ̃QH
4 = M̃QH

8 − 4M̃QH
6 − 3

(
M̃QH

4

)2
+ 12M̃QH

4 − 6 = −32q6

N3
+O

(
N−4

)
.

Substituting this into eq. (3.21) and we find

M̃QH
2p = 1 + 2q2

(
p

2

)
1

N
+

[(
p

4

)
12q4 −

(
p

2

)
2(q − 1)2q2

]
1

N2

+

[(
p

2

)
2

3
q2(q − 1)2

(
2q2 − 8q + 5

)
+

(
p

3

)
8q6 −

(
p

4

)
8q4
(
7q2 − 6q + 3

)
+

(
p

6

)
120q6

]
1

N3

+O

(
1

N4

)
. (4.36)

Again, given M̃QH
2p =

∑
i η
Ei and the form of η in eq. (4.26), we have the following enumerative

identities by matching the coefficients of the expansion in 1/N and q :

(2p−1)!!∑
i=1

(−1)EiEi = −
(
p

2

)
, (4.37)

(2p−1)!!∑
i=1

(−1)EiE2
i =

1

2

(
p

2

)
(p− 1)(p− 4), (4.38)

(2p−1)!!∑
i=1

(−1)EiE3
i = −1

4

(
p

2

)(
p4 − 14p3 + 57p2 − 76p+ 24

)
. (4.39)
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These edge identities could also have been obtained by the analytical-combinatorial approach

used in [61]. Now we calculate the difference between M̃2p and M̃QH
2p :

M̃2p − M̃QH
2p =8q3

(
p

3

)
1

N2
+

[
8

(
p

3

)
p(p− 5)q5 +

(
72

(
p

3

)
+ 16

(
p

4

))
q4 − 32

(
p

3

)
q3
]

1

N3

+O

(
1

N4

)
.

(4.40)

By matching with eq. (4.5), we obtain the following graded identities:

(2p−1)!!∑
i=1

(−1)EiTi = −
(
p

3

)
, (4.41)

(2p−1)!!∑
i=1

(−1)EiEiTi =
1

2

(
p

3

)
p(p− 5), (4.42)

(2p−1)!!∑
i=1

(−1)Ei(5f6i + f5i − f4i) = −
(
p

4

)
. (4.43)

These identities could not have been obtained by using the method in [61].

Finally we discuss in what sense the method presented in this paper is more powerful

than the method developed in [1] to compute moments of the SYK model. The idea there

is to solve for M̃2p − M̃QH
2p for q = 1 and q = 2 models, where moments can be evaluated

exactly, and then do a matching with
∑

(ηGi − ηEi) expressed in terms of graph-theoretic

objects. One can get a flavor of this method from appendix B. The old method works very

well to order 1/N2, however it becomes problematic starting from order 1/N3. If we look at

eq. (4.5), we see that at order 1/N3, on top of triangles, there are two new types of structures

that need to be enumerated: (−1)EqET for the q5 term and (−1)Eq(5f6 + f5 − f4) for the

q4 term. If we compute the moments for q = 1 and q = 2 models, at best we can obtain

the enumeration of a linear combination of the two above-mentioned new structures, that is,

(−1)E(ET −5f6−f5+f4) for q = 1 and 2ET −5f6−f5+f4 for q = 2. However to recover the

full q dependence, we need separate enumerations of (−1)EqET and (−1)Eq(5f6+f5−f4). The

method presented in this paper faces no such difficulty since the full q dependence is retained

at every stage of the calculation, and thus is capable of enumerating the two new structures

separately. Nevertheless, the old method provides an independent consistency check of the

results obtained in the present paper, which will be demonstrated in appendix B.

5 Conclusions and outlook

We have established the relation between the 1/N expansion of SYK moments and the 1/N

expansion of the high temperature expansion coefficients of the free energy. It turns out that
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Non-SUSY SUSY

1/N
∑
Ei = (2p−1)!!

3

(
p
2

) ∑
(−1)EiEi = −

(
p
2

)
1/N2

∑
Ti = (2p−1)!!

15

(
p
3

) ∑
(−1)EiTi = −

(
p
3

)
1/N3

∑
(5f6i + f5i − f4i) = (2p−1)!!

15

(
p
4

) ∑
(−1)Ei(5f6i + f5i − f4i) = −

(
p
4

)
Table 3. Some of the enumerative identities for intersection graphs generated at each order of 1/N .
All summation symbols run from i = 1 to i = (2p− 1)!!.

to compute the high temperature expansion of the free energy to a certain order in β and

1/N , we only need to compute a finite number of moments to an appropriate order in 1/N .

In particular, we have found in the thermodynamic limit the 1/q3 correction to the coefficient

of β6 (there are no other large q corrections) and both the 1/q3 and 1/q4 corrections to the

coefficients of β8 (these are the only large q corrections). The leading order 1/q2 results

as well as the 1/q3 results are in agreement with a large N calculation of the path integral

formulation of the SYK model, while the 1/q4 correction was not calculated before.

This relation also allows for calculations of moments to higher order in 1/N , and we have

pushed the calculation to order 1/N3. More surprisingly, we found that to a given order in

1/N , all moments are determined by a finite number of moments. This also explains the p-

dependence of the moments M̃2p obtained in a previous work [1]. One important consequence

of this is that the SYK model generates elegant enumeration identities, at each consecutive

order in 1/N , as discussed in section 4. We tabulate some of them in table 3. To the best

of our knowledge, it seems that only the identities at order 1/N are present in mathematical

literature [61], and our study of the SYK model suggests they are only the first layer of a

hierarchy of identities.

It is clear that the procedure we presented can be extended to even higher orders in

1/N , and the most computationally burdensome part is to calculate and expand ηG for the

irreducible structures, for which we have a general and practical formula [1]. For the large

N expansions of generic systems, there is often no powerful simplifying principle that allows

the calculation to be pushed to higher and higher order easily. For SYK model, although

the large N coefficients of the moments are still somewhat complicated, the enumeration

identities generated at each order of 1/N (table 3) are incredibly simple. Does this simplicity

of enumeration persist to higher and higher orders? If it does, does it imply there is something

we can say about the moments to all orders in 1/N instead of calculating them order by

order? We hope to clarify these questions in future studies. Another issue is that we are

in a somewhat awkward situation that on the one hand we have the Q-Hermite expression

for the spectral density [1], which is a resummed approximation that is very accurate and

gives the leading order free energy for all temperatures, but Q-Hermite moments are only
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1/N -exact; on the other hand, we have expressions for the moments that are exact to order

1/N3, but they only give the high temperature information of the free energy. It would be

desirable to find an improved resummed expression for the spectral density that goes beyond

the Q-Hermite approximation, which gives a free energy that is both 1/N3-exact and accurate

at all temperatures.
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A High temperature expansion of free energy from [56]

In section 3.2.3 we claimed that our result for the free energy for even q reproduces an

independent calculation [56] to order 1/q3, and in this appendix we justify this claim.

In [56] the large q expansion for the extensive (leading in 1/N) part of the free energy is

given:

−βF
N

=
1

2
log 2 +

1

q2
πu
(

tan
πu

2
− πu

4

)
+

1

q3
πu

[
πu− 2 tan

πu

2

(
1− π2u2

12

)]
, (A.1)

where
πu

cos πu2
= βJ221−qq. (A.2)

If we set J2 = 2q−1/q as we did in section 3.2.3, we have simply

πu

cos πu2
= β. (A.3)

Then by iterating eq. (A.3) we obtain

u =
1

π

(
β − 1

3!

3

4
β3 +

1

5!

65

16
β5 − 1

7!

3787

64
β7
)

+O(β9). (A.4)

Using this high temperature expansion of u, we obtain for the free energy, eq. (A.1),

−βF
N

=
log 2

2
+

1

2!

β2

2q2
− 1

4!

β4

2q2
+

1

6!

β6(3q − 1)

q3
+

1

8!

β8(36− 46q)

q3
+O

(
β10
)
. (A.5)

This is consistent with our result eq. (3.26) to order 1/q3 at leading order in 1/N .
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The advantage of the result of [56] is that it is valid at all temperatures, however our

result, albeit only valid at high temperatures, gives the expansion to even higher orders in

1/q and 1/N .

As a side remark, the coefficients of the high temperature expansion of u are known

analytically. If we write

u =
1

π

∞∑
n=0

(−1)n

(2n+ 1)!22n
anβ

2n+1, (A.6)

then an are given by

an =
1

22n+1

2n+1∑
k=0

(
2n+ 1

k

)
(2k − 2n− 1)2n. (A.7)

This is a convergent series with a convergence radius of βc ≈ 1.33. The numbers an are also

the number of labeled rooted trees on 2n+ 1 nodes with each node having an even number of

children [63]. Since there is no singularity on the positive real axis, we do not expect a phase

transition as β varies.

B Consistency check by computing the q = 1 and q = 2 SYK models

In the main text we showed that the 1/N3 coefficient of ηG − ηE is

ηG − ηE ∼=
[
16ETq5 + (−72T − 80f6 − 16f5 + 16f4)q

4 + 32Tq3
] 1

N3
, (B.1)

where the notation “∼=” means everything but the 1/N3 term is omitted. We will calculate

this quantity summed over all intersection graphs for q = 1 and q = 2. By Wick’s theorem,

we need to compute M̃2p − M̃QH
2p .

B.1 q = 1 case

As discussed in detail in [1], for q = 1, H2p =
(∑N

α=1 J
2
α

)p
1, and because Jα is Gaussian

distributed,
(∑N

α=1 J
2
α

)p
follows a χ2 distribution. Hence for the q = 1 SYK model we have

M̃2p =
Γ
(
N
2 + p

)(
N
2

)p
Γ
(
N
2

) ∼= (p− 1)2p2
(
p2 − 5p+ 6

)
6N3

, (B.2)

where again we have only kept the 1/N3 term.

To evaluate M̃QH, we first expand ηE to 1/N3. For q = 1 the first equation of (4.6)

simplifies to

(−1)qη = 1− 2

N
(B.3)
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and the binomial expansion gives the 1/N3 correction

ηE ∼= −(−1)E
4E(E − 1)(E − 2)

3N3
. (B.4)

The enumeration of E(E− 1)(E− 2) for odd q was worked out by our method in eqs. (4.37),

(4.38) and (4.39), but as mentioned it can also be obtained by a completely independent

method. Using eq. (4.39), we obtain

M̃QH
2p
∼=
(
p

3

)
(p3 − 12p2 + 39p− 28)

1

N3
(B.5)

Hence we find

M̃2p − M̃QH
2p
∼=

2

3
p(p− 1)2

(
2p2 − 11p+ 14

) 1

N3
. (B.6)

This result is consistent with eqs. (4.41), (4.42), (4.43) and (B.1).

B.2 q = 2 case

As explained in detail in [1], for q = 2 we have

M̃2p =

〈N/2∑
k=1

xk

2p〉/(
N

2
〈x21〉

)p
(B.7)

where the brackets 〈· · · 〉 on the right-hand side denote the ensemble average with the proba-

bility distribution [43, 64],

P (x1, . . . , xN/2)

N/2∏
l=1

dxl = ce−
∑
k x

2
k

∏
i<j

(x2i − x2j )2
N/2∏
l=1

dxl, (B.8)

and the constant c normalizes the total probability to one. We can do a multinomial expansion

for the right-hand side of eq. (B.7):

〈N/2∑
k=1

xk

2p〉
=

∑
m1+···+mN/2=p

(2p)!

(2m1)!(2m2)! · · · (2mN/2)!

〈
x2m1
1 x2m2

2 · · ·x2mN/2N/2

〉
. (B.9)

– 27 –



Following the argument laid out in [1], we conclude only the following terms contribute to

M̃2p to 1/N3 order:

M̃2p =

(
N

2

)−p(N/2
p

)
(2p)!

2p
W1

W p
0

+

(
N

2

)−p(N/2
p− 1

)(
p− 1

1

)
(2p)!

2p−24!

W2

W p
0

+

(
N

2

)−p(N/2
p− 2

)[(
p− 2

2

)
(2p)!

2p−44!4!

W3

W p
0

+

(
p− 2

1

)
(2p)!

2p−36!

W4

W p
0

]
+

(
N

2

)−p(N/2
p− 3

)[(
p− 3

3

)
(2p)!

2p−6(4!)3
W5

W p
0

+ 2

(
p− 3

2

)
(2p)!

2p−56!4!

W6

W p
0

+(
p− 3

1

)
(2p)!

2p−48!

W7

W p
0

]
+O(1/N4),

(B.10)

where

W0 := 〈x21〉,
W1 :=

〈
x21x

2
2 · · ·x2p

〉
,

W2 :=
〈
x41x

2
2 · · ·x2p−1

〉
,

W3 :=
〈
x41x

4
2x

2
3 · · ·x2p−2

〉
,

W4 :=
〈
x61x

2
2 · · ·x2p−2

〉
,

W5 :=
〈
x41x

4
2x

4
3x

2
4 · · ·x2p−3

〉
,

W6 :=
〈
x61x

4
2x

2
3 · · ·x2p−3

〉
,

W7 :=
〈
x81x

2
2 · · ·x2p−3

〉
.

(B.11)

Note that all Wi are of the form of a Selberg-like integral. Before evaluating Wi, we first

expand the prefactors to 1/N3:

M̃2p =(2p− 1)!!

{[
1− 2

(
p

2

)
1

N
+ (3p− 1)

(
p

3

)
1

N2
− 8

(
p

4

)(
p

2

)
1

N3

]
W1

W p
0

+

[
2

3

(
p

2

)
1

N
− 2(p− 1)

(
p

3

)
1

N2
+

4

3
(p− 1)(3p− 4)

(
p

4

)
1

N3

]
W2

W p
0

+

[
4

3

(
p

4

)
1

N2
− 8

3

(
p

4

)(
p− 2

2

)
1

N3

]
W3

W p
0

+

[
4

15

(
p

3

)
1

N2
− 16

15
(p− 2)

(
p

4

)
1

N3

]
W4

W p
0

+
40

9

(
p

6

)
1

N3

W5

W p
0

+
16

9

(
p

5

)
1

N3

W6

W p
0

+
8

105

(
p

4

)
1

N3

W7

W p
0

}
+O

(
1/N4

)
.

(B.12)
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We can work out the values of the Wi’s by employing a set of recursion relations for Selberg

integrals developed in [65] resulting in

W0 =
N − 1

2
,

W1 =

p−1∏
k=0

(
N

2
− p+ k +

1

2

)
,

W2 =

(
N − p+

3

2

) p−2∏
k=0

(
N

2
− p+ k +

3

2

)
,

W3 =

(
N − p+

3

2

)(
N − p+

5

2

) p−3∏
k=0

(
N

2
− p+ k +

5

2

)
,

W4 =

(
N +

1

2

)(
N − p+

5

2

) p−3∏
k=0

(
N

2
− p+ k +

5

2

)

+

(
N

2
− p+ 2

) p−2∏
k=0

(
N

2
− p+ k +

3

2

)
,

W5 =
2∏

k=0

(
N − p+

3

2
+ k

) p−4∏
l=0

(
N

2
− p+ l +

7

2

)
,

W6 =

(
N − 1

2

) 1∏
k=0

(
N − p+

5

2
+ k

) p−4∏
l=0

(
N

2
− p+ l +

7

2

)

+

(
N

2
− p+ 3

)(
N − p+

5

2

) p−3∏
k=0

(
N

2
− p+ k +

5

2

)
,

W7 =

(
N +

3

2

)(
N +

1

2

)(
N − p+

7

2

) p−4∏
l=0

(
N

2
− p+ l +

7

2

)

+

(
N +

3

2

)(
N

2
− p+ 3

) p−3∏
k=0

(
N

2
− p+ k +

5

2

)

+ (p− 4)

1∏
k=0

(
N − p+

5

2
+ k

) p−4∏
l=0

(
N

2
− p+ l +

7

2

)

+ (N − 2p+ 6)

(
N − p+

5

2

) p−3∏
l=0

(
N

2
− p+ l +

5

2

)
.

(B.13)
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To relevant order, we have

W1

W p
0

= 1− 2

(
p

2

)
1

N
+

1

3

(
p

2

)
(3p2 − 7p− 4)

1

N2
+

1

3

(
p

2

)
(p2 − 4p− 2)(p2 − 2p− 1)

1

N3
,

W2

W p
0

= 2− (2p2 − 4p− 1)
1

N
+

1

3
(3p4 − 16p3 + 18p2 + 7p− 3)

1

N2
,

W3

W p
0

= 4− 4(p2 − 3p)
1

N
,

W4

W p
0

= 5− (5p2 − 17p+ 1)
1

N
,

W5

W p
0

= 8,

W6

W p
0

= 10,

W7

W p
0

= 14.

(B.14)

For q = 2 we finally arrive at

M̃2p
∼= (2p− 1)!!

(
−32p6

81
+

32p5

27
− 16p4

405
− 128p3

135
− 436p2

405
+

172p

135

)
1

N3
, (B.15)

where we have omitted all but the 1/N3 term. The results up to order 1/N2 can be found

in [1]. To evaluate M̃QH
2p , the 1/N expansion of η in the first equation of (4.6) simplifies for

q = 2 to

η = 1− 8

N
+

8

N2
+

8

N3
+O(1/N4), (B.16)

and hence

ηE ∼= −
256E3 − 576E2 + 296E

3N3
(B.17)

for q = 2. Using eqs. (4.27), (4.28) and (4.29), we obtain

M̃QH
2p
∼= (2p− 1)!!

(
−32p6

81
+

32p5

135
+

8048p4

2835
− 512p3

315
− 14092p2

2835
+

740p

189

)
1

N3
. (B.18)

Finally,

M̃2p − M̃QH
2p
∼= (2p− 1)!!

(
128p5

135
− 544p4

189
+

128p3

189
+

736p2

189
− 832p

315

)
1

N3
(B.19)

which agrees with eqs. (4.31), (4.32), (4.33) and (B.1).
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