An Identity for the Partition Function Involving Parts of k Different Magnitudes ${ }^{\text {Ah }}$

Saud Hussein
Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No.1, Sec.4, Roosevelt
Road, Taipei 10617, Taiwan

Abstract

Using previous work by Merca, we show the partition function involving parts of k different magnitudes, shifted by the triangular numbers $\binom{k+1}{2}$, equals the self convolution of the unrestricted partition function. We also provide a combinatorial proof of this result.

Keywords: Integer partition, Partition identity

1. Introduction

Recall that a partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. The partition function $p(n)$ counts the number of such partitions of n. For example, since the partitions of 4 are

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad \text { and } \quad 1+1+1+1,
$$

$p(4)=5$. We also take $p(0)=1$.
Euler [1] began the mathematical theory of partitions in 1748 and MacMahon [2] in 1921 was the first to study the number of partitions of n that have exactly k different values for the parts. Let $p(k, n)$ denote this function. For example, $p(3,8)=5$ since the five partitions in question are

$$
5+2+1, \quad 4+3+1, \quad 4+2+1+1, \quad 3+2+2+1, \quad 3+2+1+1+1
$$

Let $q(k, n)$ denote the number of partitions of n into exactly k distinct parts. So $q(3,8)=2$ since we have the two partitions

$$
5+2+1, \quad 4+3+1
$$

Clearly $q(k, n) \leq p(k, n)$ and $p(k, n)=0$ when $n<\binom{k+1}{2}$. We also take $q(0,0)=p(0,0)=1$ and $p(0, n)=p(k, 0)=0$ for $k, n>0$.

[^0]Due to Merca [4, Corollary 1.2], we have the following: Let $k, n \geq 0$ be integers. Then

$$
\begin{equation*}
p(k, n)=\sum_{m=\binom{k+1}{2}}^{n} a(k, m) p(n-m) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a(k, m)=\sum_{j=k}^{\infty}(-1)^{j-k}\binom{j}{k} q(j, m) . \tag{2}
\end{equation*}
$$

In this paper, we use this result to prove the following:
Theorem 1. Let $k, n \geq 0$ be integers with $k \geq n$. Then

$$
p\left(k, n+\binom{k+1}{2}\right)=\sum_{m=0}^{n} p(m) p(n-m) .
$$

Remark 2. The sequence of integers, $\left(A_{n}\right)_{n \geq 0}$, given by the self convolution

$$
A_{n}=\sum_{m=0}^{n} p(m) p(n-m)
$$

is listed in [6, sequence number A000712] and may be thought of as the number of partitions of n into parts of two kinds. For example, $A_{3}=10$ since we have

$$
\begin{array}{rll}
3, & \overline{3}, & 2+1, \quad \overline{2}+\overline{1}, \quad \overline{2}+1, \\
1+1+1, & \overline{1}+\overline{1}+\overline{1}, & \overline{1}+1+1, \\
1+\overline{1}+\overline{1}
\end{array}
$$

Let $q(n)$ denote the number of partitions of n into distinct parts. Then by Merca (5), Theorem 5.2],

$$
\sum_{k=0}^{n} p\left(n-\binom{k+1}{2}\right)=\sum_{m=0}^{n} q(m) q(n-m)
$$

a result much like Theorem 1. Also, from Merca [3, equation 12], we have

$$
\begin{equation*}
q(k, n)=p_{k}\left(n-\binom{k+1}{2}\right) \tag{3}
\end{equation*}
$$

where $p_{k}(n)$ denotes the number of partitions of n with no part greater than k. Clearly

$$
q\left(k, n+\binom{k+1}{2}\right)=p_{k}(n)=p(n)
$$

for $k \geq n$. Again, this identity is similar to Theorem 1 .

2. Proof of Theorem 1

Let $k, n \geq 0$ be integers. Applying a change of variables to (11),

$$
\begin{equation*}
p\left(k, n+\binom{k+1}{2}\right)=\sum_{m=\binom{k+1}{2}}^{n+\binom{k+1}{2}} a(k, m) p\left(n+\binom{k+1}{2}-m\right) . \tag{4}
\end{equation*}
$$

Since $q(k+1, m)=0$ for $m<\binom{k+2}{2}=\binom{k+1}{2}+k+1$, then by (2) and (3),

$$
a(k, m)=q(k, m)=p_{k}\left(m-\binom{k+1}{2}\right)=p\left(m-\binom{k+1}{2}\right)
$$

for $m \leq\binom{ k+1}{2}+k$. Thus by (4),

$$
\begin{aligned}
p\left(k, n+\binom{k+1}{2}\right) & =\sum_{m=\binom{k+1}{2}}^{n+\binom{k+1}{2}} p\left(m-\binom{k+1}{2}\right) p\left(n+\binom{k+1}{2}-m\right) \\
& =\sum_{m=0}^{n} p(m) p(n-m)
\end{aligned}
$$

for $k \geq n$ and the proof is complete.

3. Combinatorial proof of Theorem 1

Let $k, n \geq 0$ be integers with $n \leq k$. For $m \in[0, n]$, take a partition $a_{1}+\cdots+a_{r}$ of m with $1 \leq a_{1} \leq \cdots \leq a_{r}$ and a partition $b_{1}+\cdots+b_{s}$ of $n-m$ with $1 \leq b_{1} \leq \cdots \leq b_{s}$. Then

$$
r+s \leq m+s \leq m+(n-m)=n \leq k
$$

so $m \leq k-s$ and

$$
\begin{aligned}
n+\binom{k+1}{2} & =m+(n-m)+1+2+\cdots+k \\
& =a_{1}+\cdots+a_{r}+b_{1}+\cdots+b_{s}+1+2+\cdots+k \\
& =a_{1}+\cdots+a_{r}+c_{1}+\cdots+c_{k}
\end{aligned}
$$

where

$$
c_{j}=\left\{\begin{array}{ll}
j, & 1 \leq j \leq k-s \\
j+b_{j-(k-s)}, & k-s+1 \leq j \leq k
\end{array} .\right.
$$

Clearly, the parts a_{1}, \ldots, a_{r} are contained in $\left\{c_{1}, c_{2}, \ldots, c_{k-s}\right\}$ and $c_{1}<c_{2}<\cdots<c_{k}$, so each pair of partitions of m and $n-m$ uniquely defines a partition

$$
a_{1}+\cdots+a_{r}+c_{1}+\cdots+c_{k}
$$

of $n+\binom{k+1}{2}$ having exactly k different values for the parts. The product $p(m) p(n-m)$ then counts the number of partitions that may be constructed in this fashion for each $m \in[0, n]$, thus completing the proof.

The idea of this proof was suggested by a referee reading a previous version of this paper. We also see that setting $c_{j}=\overline{b_{j}}$ for $1 \leq j \leq s$ would instead give us the partition

$$
a_{1}+\cdots+a_{r}+\overline{b_{1}}+\cdots+\overline{b_{s}}
$$

of n into parts of two kinds. This justifies the earlier remark on sequence $\left(A_{n}\right)_{n \geq 0}$ and provides some motivation for the given combinatorial proof.

The combinatorial proof gives us a simple way of writing down the partitions of $n+\binom{k+1}{2}$ having exactly k different values for the parts for any $k \geq n$. All we require are the partitions of m for each $m \in[0, n]$. For example, Theorem \square implies there are ten partitions of $3+\binom{k+1}{2}$ having exactly k different values for the parts for any $k \geq 3$. The case $k=3$ is shown below.

m	r	s	$a_{1}+\cdots+a_{r}$	$b_{1}+\cdots+b_{s}$	$c_{1}+c_{2}+c_{3}$	partitions
0	0	1	0	3	$1+2+6$	$1+2+6$
	0	2	0	$1+2$	$1+3+5$	$1+3+5$
	0	3	0	$1+1+1$	$2+3+4$	$2+3+4$
1	1	1	1	2	$1+2+5$	$1+1+2+5$
	1	2	1	$1+1$	$1+3+4$	$1+1+3+4$
2	1	1	2	1	$1+2+4$	$1+2+2+4$
	2	1	$1+1$	1	$1+2+4$	$1+1+1+2+4$
3	1	0	3	0	$1+2+3$	$1+2+3+3$
	2	0	$1+2$	0	$1+2+3$	$1+1+2+2+3$
	3	0	$1+1+1$	0	$1+2+3$	$1+1+1+1+2+3$

Acknowledgment

The identity in this paper was discovered using Mathematica 11 and the author thanks the Institute of Mathematics, Academia Sinica for providing this tool.

References

[1] Euler, L., 1988. Introduction to Analysis of the Infinite (translation by J.D.Blanton). Springer-Verlag.
[2] MacMahon, P. A., 1921. Divisors of numbers and their continuations in the theory of partitions. Proc. Lond. Math. Soc. s2-19 1, 75-113.
[3] Merca, M., 2015. A new look on the generating function for the number of divisors. J. Number Theory 149, 57-69.
[4] Merca, M., 2016. A note on the partitions involving parts of k different magnitudes. J. Number Theory 162, 23-34.
[5] Merca, M., 2017. New relations for the number of partitions with distinct even parts. J. Number Theory 176, 1-12.
[6] OEIS, 2018. The On-Line Encyclopedia of Integer Sequences, http://oeis.org

[^0]: ${ }^{\pi}$ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

 Email address: saudhussein@gate.sinica.edu.tw (Saud Hussein)

