A SIMPLE BIJECTION FOR CLASSICAL AND ENHANCED k-NONCROSSING PARTITIONS

JUAN B. GIL AND JORDAN O. TIRRELL

Abstract

In this short note, we give a simple bijection from partitions of subsets of [n] to partitions of $[n+1]$, in which enhanced k-crossings correspond to classical k-crossings. This resolves a recent conjecture of Zhicong Lin involving the binomial transform of the sequence that enumerates enhanced k-noncrossing partitions.

Given a set partition π of a totally ordered set, an enhanced k-crossing is a sequence

$$
a_{1}<a_{2}<\cdots<a_{k} \leq b_{1}<b_{2}<\cdots<b_{k}
$$

such that each pair $a_{i}<b_{i}$ appears consecutively in a block (that is, there are no elements x in the block with $\left.a_{i}<x<b_{i}\right)$. A classical k-crossing additionally requires that $a_{k}<b_{1}$.

Let $C_{k}(n)$ (resp. $\left.E_{k}(n)\right)$ denote the number of set partitions of $[n]=\{1, \ldots, n\}$ which avoid classical (resp. enhanced) k-crossings. For $k=2, C_{2}(n)$ are the Catalan numbers (A000108 in the OEIS [2]) and $E_{2}(n)$ are the Motzkin numbers A001006, It is known that $C_{2}(n+1)=\sum_{i=0}^{n}\binom{n}{i} E_{2}(i)$. In [1], Zhicong Lin showed that $C_{3}(n+1)=\sum_{i=0}^{n}\binom{n}{i} E_{3}(i)$ (see sequences A108304 and A108307) and conjectured the following.
Theorem 1. For integers $n \geq 0$ and $k \geq 1$,

$$
C_{k}(n+1)=\sum_{i=0}^{n}\binom{n}{i} E_{k}(i) .
$$

Proof. For fixed $n \geq 0$ and any partition π of a subset of [n], we define a partition $\hat{\pi}$ of $[n+1]$ as follows. For each pair of vertices $v<w$ appearing consecutively in the same block of π, place v and $w+1$ in the same block of $\hat{\pi}$. For each singleton u of π, place u and $u+1$ in the same block of $\hat{\pi}$. Any remaining vertices in $[n+1]$ appear as singletons of $\hat{\pi}$.

It is now straightforward to confirm this is a bijection and that enhanced k-crossings of π correspond to classical k-crossings of $\hat{\pi}$. To reverse this map, let $\hat{\pi}$ be a partition of $[n+1]$. For any consecutive vertices $x<y$ in the same block of $\hat{\pi}$, if $y=x+1$, include the singleton x in π, otherwise place the pair $x<y-1$ in the same block of π. With the map $\pi \rightarrow \hat{\pi}$, an enhanced k-crossing $a_{1}<\cdots<a_{k} \leq b_{1}<\cdots<b_{k}$ of π gives a classical k-crossing $a_{1}<\cdots<a_{k}<b_{1}+1<\cdots<b_{k}+1$ of $\hat{\pi}$. Similarly, with the reverse map, a classical k-crossing $a_{1}<\cdots<a_{k}<b_{1}<\cdots<b_{k}$ of $\hat{\pi}$ gives an enhanced k-crossing $a_{1}<\cdots<a_{k} \leq b_{1}-1<\cdots<b_{k}-1$ of π.

Finally, interpreting the right-hand side as the number of partitions of subsets of $[n]$ with no enhanced k-crossing, these are in bijection with partitions of $[n+1]$ with no classical k-crossing.

[^0]Key words and phrases. k-noncrossing partition, enhanced k-noncrossing partition.

For example, given the partition $\pi=\{1479,25,3,6\}$ of the set $[9] \backslash\{8\}$, our bijection returns the partition $\hat{\pi}=\{15,267 \mathrm{~T}, 348,9\}$. A beautiful geometric description of this bijection can be obtained by extending the lines in the arc diagram of π to arrive at $\hat{\pi}$. Here the singletons are interpreted as having trivial arcs, see Fig. [1.

Figure 1. The diagram for $\pi=\{1479,25,3,6\}$ and $\hat{\pi}=\{15,267 \mathrm{~T}, 348,9\}$.
This bijection allows us to prove a significant refinement of Theorem 1. The distances of the arcs in π (including trivial arcs) are one less than those of $\hat{\pi}$. The enhanced k-crossings of π correspond precisely to classical k-crossings of $\hat{\pi}$. This includes the case $k=1$, where a classical 1-crossing is a (nontrivial) arc, and an enhanced 1-crossing is a (possibly trivial) arc. It is not hard to see that it also gives a correspondence between enhanced k-nestings in π, which are sequences

$$
a_{1}<a_{2}<\cdots<a_{k} \leq b_{k}<\cdots<b_{2}<b_{1}
$$

such that each pair $a_{i}<b_{i}$ appears consecutively in a block, and classical k-nestings in $\hat{\pi}$, which additionally require that $a_{k}<b_{k}$.

Remark 2. This bijection provides an alternative combinatorial proof that the sequence $\left(B_{n}\right)$ of Bell numbers A000110, which counts the number of partitions of $[n]$, is an eigensequence of the binomial transform. That is, $B_{n+1}=\sum_{i=0}^{n}\binom{n}{i} B_{i}$. The usual combinatorial proof of this fact simply removes the part containing $n+1$ from a partition of $[n+1]$ to obtain a partition of a subset of $[n]$.

References

[1] Zhicong Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, preprint arXiv:1706.07213, 2017.
[2] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2018.
Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA
E-mail address: jgil@psu.edu
Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA 01075, USA

E-mail address: jtirrell@mtholyoke.edu

[^0]: 2010 Mathematics Subject Classification. 05A19 (Primary); 05A18 (Secondary).

