On property of least common multiple to be a D-magic number

V.L. Gavrikov
Institute of Ecology and Geography
Siberian Federal University
600041 Krasnoyarsk, pr. Svobodnyi 79
Russian Federation
vgavrikov@sfu-kras.ru

Abstract

Least common multiple (lcm) has been shown to posses the property of D-magic number, that is, its least significant digit 0 does not change when the number is transferred into all other numbering systems with smaller bases. The number $l c m+1$ preserves this property as well.

Keywords: D-magic number, numbering systems, least common multiple, least significant digit

1 Introduction

Least common multiple (lcm) is a function which was often referred to as having two arguments, i.e. $l c m\left[x_{1}, x_{2}\right]$ but can be easily reformulated to any number of arguments, $\operatorname{lcm}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

The function has been widely known for being used at formulating of encryption algorithms, both in classical works [1] and in later research on encryption keys [2]. Because of its important applications properties of $l c m$ [] are of interest. An identity has been proven [3] that relates lcm[] of binomial coefficients to lcm[] of the sequence of indices of the coefficients. A typical behavior of lcm[] of random subsets $\{1, \ldots, n\}$ [4] has also been studied.

In this work, some properties of divisibility of $l \mathrm{~cm}[]$ function are explored that lead to a sort of invariance of the least significant digit of a number when the number is transferred to a different numbering system.

As usual, when a multidigit integer is transferred to a numbering system its least significant digit (as well as other digits) changes, e.g., $64_{10}=100_{8}, 100_{10}=244_{6}$. Sometimes however the transfer to another numbering sysytem does not lead to the change in the least significant digit, e.g., $126_{10}=176_{8}, 101_{10}=401_{5}$.

From these observations let us put a more general question: how can one get the the number that does not change its least significant digit when being transferred to another numbering system?

2 Formulation

Definition 2.1. For an arbitrary base- L numbering system, D-magic number M is such a numberthat does not change its least significant digit when being transferred to any other base-l numbering system, with $l<L$.

An integer number M in base- L system may be represented in decimal form:

$$
\begin{equation*}
M_{L}=L \cdot n+j, \tag{1}
\end{equation*}
$$

where n is the number of tens in M_{L} and j is the least significant digit of M_{L}, with $j<L$.
If l is the base of numbering system then the transfer from M_{L} to M_{l} will include calculations of remainders from division by l both $L \cdot n$ and j. Provided these remainders are known a new value for j is received.

If $L \cdot n$ in Eq. (1) is divisible without a remainder by all $l, 2 \leq l<L$, and $j<l$ then j will not change when M_{L} is transferred to any base- l system. There is an infinite quantity of numbers divisible by all $2 \leq l<L$ but the minimal of them is ony one. And this number is least common multiple. In other words, $l c m[\forall l, 2 \leq l<L]$ is a D-magic number in base- L system (as well as in all systems with bases smaller than L). Therefore, calculation of lcm[] is the very algorithm to get D-magic numbers.

3 Illustrations

It is easy to find, e.g., in base-ten system , such a number that wil be divisible without a remainder by $10,9,8,7,6,5,4,3,2$. As well known, lcm $[10,9,8,7,6,5,4,3,2]$ $=2520$ (see sequence A003418 in On-line Encyclopedia of Integer Sequences OEIS http://oeis.org/A003418).

A transfer of decimal number 2520 to any numbering system with bases $l<10$ does not change the least significant digit (in this particular case $j=0$):

l	M_{l}
10	2520
9	3410
8	4730
7	10230
6	15400
5	40040
4	213120
3	10110100
2	100111011000

Moreover, in case $j=1$ (see Eq. (1) this least significant digit will not change as well:

l	M_{l}
10	2521
9	3411
8	4731
7	10231
6	15401
5	40041
4	213121
3	10110101
2	100111011001

If $j \in\{2,3,4,5,6,7,8\}$ such a property (constance of least significant digit) holds only at $j<l$.
Remark 3.1. Thus l cm $[10,9,8,7,6,5,4,3,2]$ equal to 2520 not only is D-magic number itself for base-ten numbering system but also produces a set of D-magic numbers-by adding of least significant digit $j<10$.

Let us now look at how this approach works at $L \neq 10$.
For base-eight system, $\operatorname{lcm}[8,7,6,5,4,3,2]=840_{10}=1510_{8}$. It can be seen that base-eight number 1510 does not change least significant digit when being transferred into numbering systems with bases $7,6,5,4,3,2$:

l	M_{l}
8	1510
7	2310
6	3520
5	11330
4	31020
3	1011010
2	1101001000

Correspondingly, the base-eight number 1511_{8} will also not change least significant digit when transferred into system with bases smaller than 8 .

Another example, base-16 numbering system. lcm $[16,15,14,13,12,11,10,9,8,7,6,5,4$, $3,2]=720720_{10}=\operatorname{aff} f 50_{16}$. The transfer of number af $f 50_{16}$ into systems with bases smaller than 16 gives:

l	M_{l}
16	aff 50
15	e 3830
14	14 a 920
13	1 c 3080
12	2 a 9100
11	452540
10	720720
9	1317570
8	2577520
7	6061140
6	23240400
5	141030340
4	2233331100
3	1100121122100
2	10101111111101010000

Therefore least common multiple of $2,3,4,5 \ldots L$ is a D-magic number for the numbering system with the base L (maximum of this sequence). A convenient algorithm could be as follows: 1) first, one gets $l c m[2,3,4,5 \ldots L]$ for base-ten system and then 2) transfers it into system with the base L. This procedure leads to the number having 0 as least significant digit.

Adding of unity 1 to the list significant digit 0 brings about another D-magic number. Adding of a digit $j \in\{2,3,4,5 \ldots L-1\}$ to the least significant digit produces a set of set number that are partly D-magic; when being transferred into base-l systems the least significant digit j of them will not change only when $j<l$.

References

[1] Shannon C.E. 1949. Communication theory of secrecy systems. Bell Labs Technical Journal 28(4): 656-715.
[2] Rivest R.L., Shamir A., Adleman L. 1978. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2): 120-126.
[3] Farhi, B. 2009. An identity involving the least common multiple of binomial coefficients and its application. The American Mathematical Monthly, 116(9): 836-839.
[4] Cilleruelo J., Rué J., Šarka P., Zumalacárregui A. 2014. The least common multiple of random sets of positive integers. Journal of Number Theory, 144: 92-104.

