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Abstract
We show that every adhesive category gives rise to an associative algebra of rewriting rules
induced by the notion of double-pushout (DPO) rewriting and the associated notion of concurrent
production. In contrast to the original formulation of rule algebras in terms of relations between
(a concrete notion of) graphs, here we work in an abstract categorical setting. Doing this, we
extend the classical concurrency theorem of DPO rewriting and show that the composition of
DPO rules along abstract dependency relations is, in a natural sense, an associative operation.
If in addition the adhesive category possesses a strict initial object, the resulting rule algebra is
also unital. We demonstrate that in this setting the canonical representation of the rule algebras
is obtainable, which opens the possibility of applying the concept to define and compute the
evolution of statistical moments of observables in stochastic DPO rewriting systems.
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1 Introduction

Double pushout graph (DPO) rewriting [9] is the most well-known approach to algebraic
graph transformation. The underlying rewriting mechanics are specified in terms of the
universal properties of pushouts — for this reason, the approach is domain-independent
and instantiates across a number of concrete notions of graphs and graph-like structures.
Moreover, the introduction of adhesive and quasi-adhesive categories [11, 10] (which, roughly
speaking, ensure that the pushouts involved are “well-behaved”, i.e. they satisfy similar
exactness properties as pushouts in the category of sets and functions) entailed that a
standard corpus of theorems [14] that ensures the “good behavior” of DPO rewriting holds if
the underlying ambient category is (quasi-)adhesive.

An important classical theorem of DPO rewriting is the concurrency theorem, which
involves an analysis of two DPO productions applied in series. Given a dependency relation
(which, intuitively, determines how the right-hand side of the first rule overlaps with the
left-hand side of the second), a purely category-theoretic construction results in a composite
rule which applies the two rules simultaneously. The concurrency theorem then states that
in any graph, the two rules can be applied in series in a way consistent with the relevant
dependency relation if and only if the composite rule can be applied, yielding the same result.

The operation that takes two rules together with a dependency relation and produces a
composite rule can be considered as an algebraic operation on the set of DPO productions

1 Corresponding author email: nicolas.behr@irif.fr; supported by a Marie Skłodowska-Curie Individual
Fellowship (Grant Agreement No. 753750 – RaSiR).
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2 Rule Algebras for Adhesive Categories

for a given category. From this viewpoint, it is natural to ask whether this operation is
associative. It is remarkable that this appears to have been open until now. Our main
contribution is an elementary proof of associativity of this type of composition.

Associativity is advantageous for a number of reasons. In [3, 4], the first author and his
team developed the rule algebra framework for a concrete notion of multigraphs. Inspired by
a standard construction in mathematical physics, the operation of rule composition along a
common interface yields an associative algebra: given a free vector space with basis the set
of DPO rules, the product of the associative algebra takes two basis elements to a formal
sum, over all possible dependency relations, of their compositions. This associative algebra
is useful in applications, being the formal carrier of combinatorial information that underlies
stochastic interpretations of rewriting. The most famous example in mathematical physics
is the Heisenberg-Weyl algebra [6, 7], which served as the starting point for [3]. Indeed,
[3, 4] generalized the Heisenberg-Weyl construction from mere set rewriting to multigraph
rewriting. Our work, since it is expressed abstractly in terms of adhesive categories, entails
that the Heisenberg-Weyl and the DPO graph rewriting rule algebra can both be seen as two
instances of the same construction, expressed in abstract categorical terms.

Structure of the paper. Following the preliminaries in Section 2, we prove our main
result in Section 3. Next, in Section 4 we give the abstract definition of rule algebra, and
demonstrate that it captures the well-known Heisenberg-Weyl algebra in Section 5. We
conclude with applications to combinatorics and stochastic mechanics in Sections 6 and 7.

2 Adhesive categories and Double-Pushout rewriting

We briefly review standard material, following mostly [11] (see [8, 14] for further references).

I Definition 2.1 ([11], Def. 3.1). A category C is said to be adhesive if
(i) C has pushouts along monomorphisms,
(ii) C has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK)squares.

Examples include Set (the category of sets and set functions), Graph (the category of
directed multigraphs and graph homomorphisms), any presheaf topos, and any elementary
topos [12]. One might further generalize by considering quasi-adhesive categories (see [11, 10]).
We now recall Double-Pushout (DPO) rewriting in an adhesive category.

I Definition 2.2 ([11], Def. 7.1). A span p of morphisms

L
l←− K r−→ R (1)

is called a production. p is said to be left linear if l is a monomorphism, and linear if both l
and r are monomorphisms. We denote the set of linear productions by Lin(C). We will also
frequently make use of the alternative notation L p−⇀ R where p = (L l←− K r−→ R) ∈ Lin(C).

A homomorphism of productions p→ p′ consists of arrows, L→ L′, K → K ′ and R→ R′,
such that the obvious diagram commutes. A homomorphism is an isomorphism when all of
its components are isomorphisms. We do not distinguish between isomorphic productions.

I Definition 2.3 ([11], Def. 7.2). Given a production p as in (1), a match of p in an object
C ∈ ob(C) is a morphism m : L→ C. A match is said to satisfy the gluing condition if there
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exists an object E and morphisms g : K → E and v : E → C such that (2) is a pushout.

L K

C E

l

m g

q v

(2)

More concisely, the gluing condition holds if there is a pushout complement of C m←− L l←− K.

To proceed, we need to recall a number of properties of pushouts and pushout complements
in adhesive categories. We start with some basic pasting properties that hold in any category.

I Lemma 2.4. Given a commutative diagram as below,

A B E

C D F

(pullback version) if the right square is a pullback then the left square is a pullback if and
only if the entire exterior rectangle is a pullback.
(pushout version) If the left square is a pushout then the right square is a pushout if and
only if the entire exterior rectangle is a pushout.

I Lemma 2.5 ([11], Lemmas 4.2, 4.3 and 4.5). In any adhesive category:
(i) Monomorphisms are stable under pushout.
(ii) Pushouts along monomorphisms are also pullbacks.
(iii) Pushout complements of monomorphisms (if they exist) are unique up to isomorphism.

From here on, we will focus solely on linear productions, which entails due to the above
statements a number of practical simplifications.

I Definition 2.6 (compare [11], Def. 7.3). Let C be an adhesive category, and denote by
Lin(C) the set of linear productions on C. Given an object C ∈ C and a linear production
p ∈ Lin(C), we denote the set of admissible matches Mp(C) as the set of monomorphisms
m : L ↪→ C for which m satisfies the gluing condition. As a consequence, there exists objects
and morphisms such that in the diagram below both squares are pushouts:

L K R

C K ′ D

l

m k

r

m′

l′ r′ (3)

We write pm(C) := D for the object “produced” by the above diagram. The process is called
derivation of C along production p and admissible match m, and denoted C ==⇒

p,m
pm(C).

Note that by virtue of Lemma 2.5, the object pm(C) produced via a given derivation of an
object C along a linear production p and an admissible match m is unique up to isomorphism.
From here on, we will refer to linear productions as linear (rewriting) rules. Next, we recall
the concept of (concurrent) composition of linear rules.
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3 Concurrent composition and associativity

Convention: unless mentioned otherwise, all arrows are assumed to be monomorphisms.
For rules p1, p2 ∈ Lin(C), a dependency relation consists of an object X12 and a span of

monomorphisms m : R1
x1←− X12

x2−→ L2, s.t. K12, K21 and morphisms illustrated below exist,
where the cospan R1 → Y12 ← L2 is the pushout of m, and the two indicated regions are also
pushouts; i.e. there exist pushouts complements of K1

r1−→ R1 → Y12 and K2
l2−→ L2 → Y12.

K21 Y12 K12

K1 R1 X12 L2 K2

r′1 l′2

r1

p

x1 x2

p

l2

p

(4)

Intuitively, the existence of the left and right pushout diagrams amounts to the two rules
agreeing on the overlap specified by X12, and amenable to being executed concurrently. We
refer to such m as an admissible match of p2 in p1 and denote the set of these by p2 
 p1.

Algebraically speaking, given p1, p2 and m ∈ p2 
 p1, we can consider “concurrent
execution” to be an operation that composes p1 and p2 “along” m to obtain a rule p2

m
J p1.

To obtain p2
m
J p1, we extend (4) by taking two further pushouts (marked with dotted arrows)

and take a pullback (marked with dashed arrows):

Z12

L12 K21 Y12 K12 R12

L1 K1 R1 X12 L2 K2 R2

y1 y2

r′1l′1

p

l′2 r′2

r1l1

pp
x1 x2

p

l2 r2
p

p (5)

Now we define the composite of p1 with p2 along m as

p2
m
J p1 := (L12

z1←−↩ Z12
z2
↪−→ R12) , z1 := l′1 ◦ y1 , z2 := r′2 ◦ y2 . (6)

The following well-known result shows that composition is compatible with application.

I Theorem 3.1 (Concurrency Theorem; [11], Thm. 7.11). Let p, q ∈ Lin(C) be two linear
rules and C ∈ ob(C) an object.

Given a two-step sequence of derivations C ==⇒
p,m

pm(C) ==⇒
q,n

qn(pm(C)), there exists

a composite rule r = p2
d
J p1 for unique d ∈ q 
 p, and a unique admissible match

e ∈Mr(C), such that C =⇒
r,e

re(C) and re(C) ∼= qn(pm(C)).

Given a dependency relation d ∈ q 
 p, r = p2
d
J p1 and an admissible match e ∈Mr(C),

there exists a unique pair of admissible matches m ∈Mp(C) and n ∈Mq(pm(C)) such
that C ==⇒

p,m
pm(C) ==⇒

q,n
qn(pm(C)) with qn(pm(C)) ∼= re(C).

The following technical lemma will be of use when proving our main result.

I Lemma 3.2 (Admissibility is compatible with composition). Suppose that p1, p2 ∈ Lin(C)
and suppose that m(12)3 ∈ p3 


(
p2

m12J p1

)
. Let p2

m12J p1 be as shown in (6), computed as

in (5). Let p′2 = Y12
l′2←− K12

r′
2−→ R12. Then m(12)3 ∈ p′2 
 p3.
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Proof. By the assumption m(12)3 ∈ p3 

(
p2

m12J p1

)
, there exists the pushout below left.

Z ′
12 Y(12)3

Z12 R12

p

Z ′
12 K ′

12 Y(12)3

Z12 K12 R12

By construction (see (5)), the arrow Z12 → R12 factors through K12. Taking the pushout
of the span Z ′12 ← Z12 → K12 results in the diagram drawn above right. Since the whole
region and the left square are pushouts, the right square is a pushout (Lemma 2.4). J

We now show that concurrent composition of linear rules is, in a natural sense, associative.

I Theorem 3.3 (Associativity Theorem). The composition operation .
.
J . is associative in the

following sense: given linear rules p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence
between pairs of admissible matches m21 ∈ p2 
 p1 and m3(21) ∈ p3 


(
p2

m12J p1

)
, and

pairs of admissible matches m32 ∈ p3 
 p2 and m(32)1 ∈
(
p3

m23J p2

)

 p1 such that

p3
m3(21)
J

(
p2

m21J p1

)
=
(
p3

m32J p2

) m(32)1
J p1 . (7)

Proof. Since DPO derivations are symmetric, it suffices to show one side of the correspon-
dence. Our proof is constructive, demonstrating how, given a pair of admissible matches

(m21 ∈ p2 
 p1 and m3(21) ∈ p3 

(
p2

m12J p1

)
) ,

one obtains m32 ∈ p3 
 p2 and m(32)1 ∈ (p3
m32J p2) 
 p1 satisfying (7). We begin with

p2
m21J p1, p3 and the dependency relation m3(21), illustrated below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3

By Lemma 3.2, since the match m3(21) is by assumption admissible, we can find a pushout
complement and pushout to extend the above diagram as follows,

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)

and again as below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)
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In the next step, we compute X23 as the evident pullback. Then we further extend the
diagram via repeating the components of rule p3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Now we push out R2 and L3 along X23, obtaining Y23 → Y(12)3 from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23

Next, we compute K32 by pulling back Y23 and K1(23) along Y(12)3. We obtain K3 → K32
from the universal property. To obtain the other morphisms, push out K32 and R3 along K3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23

We need to establish that the newly constructed front face on the left is a pushout. To do so,
let us consider the cube on the left in isolation.

Y(12)3 K(12)3

Y23 K32

L3 K3

L3 K3

The rear face is a pushout, and therefore also a pullback. The bottom face is trivially both a
pushout and a pullback. Pasting these two pushouts together yields a pushout, and since the
top face—by construction—is a pullback, the front face is a pushout by Lemma 2.4: hence
all faces of the cube, apart from the left and the right, are both pushouts and pullbacks.

We take advantage of the symmetry involved, and obtain two further pushouts as front
faces in the following. Moreover, the two new upper faces are pushouts also.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23
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The next step is a trivial repetition of rule p1: the new upper faces are both pushouts since
they both arise as two pushouts pasted together.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1

We now obtain X(12)3 by pulling back R1 and L23 along Y1(23), the remaining monomorphism
X12 → X(12)3 follows from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

The final step consists in proving that the cospan R1 → Y1(23) ← L23 is the pushout of the
span R1 ← X1(23) → L23. Since the proof requires a somewhat lengthy diagram chase, we
relegate this part of the proof to Appendix A.1. To conclude, the associativity property
manifests itself in the following form, whereby the data provided along the path highlighted
in orange below permits to uniquely compute the data provided along the path highlighted
in blue (with both sets of overlaps computing the same “triple composite” production):

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3

J

4 From associativity of concurrent derivations to rule algebras

In DPO rewriting, each linear rewriting rule has a non-deterministic effect when acting on a
given object, in the sense that there generically exist multiple possible choices of admissible
match of the rule into the object. One interesting way of incorporating this non-determinism
into a mathematical rewriting framework is motivated by the physics literature:

Each linear rule is lifted to an element of an abstract vector space.
Concurrent composition of linear rules is lifted to a bilinear multiplication operation on
this abstract vector space, endowing it with the structure of an algebra.
The action of rules on objects is implemented by mapping each linear rule (seen as an
element of the abstract algebra) to an endomorphism on an abstract vector space whose
basis vectors are in bijection with the objects of the adhesive category.

While this recipe might seem somewhat ad hoc, we will demonstrate in Section 5 that it recov-
ers in fact one of the key constructions of quantum physics and enumerative combinatorics,
namely we recover the well-known Heisenberg-Weyl algebra and its canonical representation.
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I Definition 4.1. Let δ : Lin(C)→ RC be defined as a morphism which maps each linear
rule p = (I r−⇀ O) ∈ Lin(C) to a basis vector δ(p) of a free R-vector space RC ≡ (RC,+, ·).
In order to distinguish between elements of Lin(C) and RC, we introduce the notation

(O r⇐ I) := δ
(
I
r−⇀ O

)
. (8)

We will later refer to RC as the R-vector space of rule algebra elements.

I Definition 4.2. Define the rule algebra product ∗RC as the binary operation

∗RC : RC ×RC → RC : (R1, R2) 7→ R1 ∗RC R2 , (9)

where for two basis vectors Ri = δ(pi) encoding the linear rules pi ∈ Lin(C) (i = 1, 2),

R1 ∗RC R2 :=
∑

m12∈p1
p2

δ
(
p1

m12J p2

)
. (10)

The definition is extended to arbitrary (finite) linear combinations of basis vectors by
bilinearity, whence for pi, pj ∈ Lin(C) and αi, βj ∈ R,(∑

i

αi · δ(pi)
)
∗RC

∑
j

βj · δ(pj)

 :=
∑
i,j

(αi · βj) · (δ(pi) ∗RC δ(pj)) . (11)

We refer to RC ≡ (RC, ∗RC) as the rule algebra (of linear DPO-type rewriting rules over
the adhesive category C).

I Theorem 4.3. For every adhesive category C, the associated rule algebra RC ≡ (RC, ∗RC)
is an associative algebra. If C in addition possesses a strict initial object c∅ ∈ ob(C), RC is
in addition a unital algebra, with unit element R∅ := (c∅

∅⇐ c∅).

Proof. Associativity follows immediately from the associativity of the operation .
.
J . proved

in Theorem 3.3. The claim that R∅ is the unit element of the rule algebra RC of an
adhesive category C with strict initial object follows directly from the definition of the rule
algebra product for R∅ ∗RC R and R ∗RC R∅ for R ∈ RC. For clarity, we present below the
category-theoretic composition calculation that underlies the equation R∅ ∗RC R = R:

K

L L L K R

∅ ∅ ∅ ∅ L K R

l p

l r

p

p p

l r

p p (12)

J

The property of a rule algebra being unital and associative has the important consequence
that one can provide representations for it. The following definition, given at the level of
adhesive categories with strict initial objects, captures several of the concrete notions of
canonical representations in the physics literature; in particular, it generalizes the concept of
canonical representation of the Heisenberg-Weyl algebra as explained in Section 5.



N. Behr and P. Sobocinski 9

I Definition 4.4. Let C be an adhesive category with a strict initial object c∅ ∈ ob(C), and
let RC be its associated rule algebra of DPO type. Denote by Ĉ the R-vector space of objects
of C, whence (with |C〉 denoting the basis vector of Ĉ associated to an element C ∈ ob(C))

Ĉ := spanR ({ |C〉|C ∈ ob(C)}) ≡ (Ĉ,+, ·) . (13)

Then the canonical representation ρC of RC is defined as the algebra homomorphism
ρC : RC → End(Ĉ), with

ρC(p) |C〉 :=
{∑

m∈Mp(C) |pm(C)〉 ifMp(C) 6= ∅
0Ĉ otherwise,

(14)

extended to arbitrary elements of RC and of Ĉ by linearity.

The fact that ρC as given in Definition 4.4 is a homomorphism is shown below.

I Theorem 4.5 (Canonical Representation). For C adhesive with strict initial object, ρC :
RC → End(Ĉ) of Definition 4.4 is a homomorphism of unital associative algebras.

Proof. See Appendix A.2. J

5 Recovering the blueprint: the Heisenberg-Weyl algebra

As a first consistency check and interesting special (and arguably simplest) case of rule
algebras, consider the adhesive category F of equivalence classes of finite sets, and functions.
This category might alternatively be interpreted as the category of isomorphism classes
of discrete graphs, whose monomorphisms are precisely the injective partial morphisms of
discrete graphs. Specializing to a subclass or morphisms, namely to trivial monomorphisms,

I
∅−⇀ O ≡ (I ← ∅ → O) ,

we recover the famous Heisenberg-Weyl algebra and its canonical representation:

I Definition 5.1. Let R0 denote the rule algebra of DPO type rewriting for discrete graphs.
Then the subalgebra H of R0 is defined as the algebra whose elementary generators are

x† := (• ∅⇐ ∅) , x := (∅ ∅⇐ •) , (15)

and whose elements are (finite) linear combinations of words in x† and x (with concatenation
given by the rule algebra multiplication ∗R0) and of the unit element R∅ = (∅ ∅⇐ ∅). The
canonical representation of H is the restriction of the canonical representation of R0 to H.
The following theorem demonstrates how well-known properties of the Heisenberg-Weyl
algebra (see e.g. [7, 4, 5] and references therein) follow directly from the previously introduced
constructions of the rule algebra and its canonical representation. This justifies our claim
that the Heisenberg-Weyl construction is a special case of our general framework.

I Theorem 5.2 (Heisenberg-Weyl algebra from discrete graph rewriting rule algebra).
(i) For integers m,n > 0,

x† ∗R0 . . . ∗R0 x
†︸ ︷︷ ︸

m times

= x† ] . . . ] x†︸ ︷︷ ︸
m times

, x ∗R0 . . . ∗R0 x︸ ︷︷ ︸
n times

= x ] . . . ] x︸ ︷︷ ︸
n times

, (16)

where we define for linear rules p1, p2 ∈ Lin(C)

δ(p1) ] δ(p2) := δ(p1
∅
J p2) . (17)
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(ii) The generators x, x† ∈ H fulfill the canonical commutation relation

[x, x†] ≡ x ∗R0 x
† − x† ∗R0 x = R∅ , R∅ = (∅ ∅⇐ ∅) . (18)

(iii) Every element of H may be expressed as a (finite) linear combination of so-called
normal-ordered expressions x† ∗r ∗ x∗s (with r, s ∈ Z≥0).

(iv) Denoting by |n〉 ≡ |•] n〉 (n ∈ Z≥0) the basis vector associated to the discrete graph with
n vertices in the vector space Ĝ0 of isomorphism classes discrete graphs, the canonical
representation of H according to Definition 4.4 reads explicitly

a† |n〉 = |n+ 1〉 , a |n〉 =
{
n · |n− 1〉 if n > 0
0Ĝ0

else
, (19)

with a† := ρR0(x†) (the creation operator) and a := ρR0(x) (the annihilation operator).

Proof. See Appendix A.3. J

6 Applications of rule algebras to combinatorics

In this section we consider an example application, working with undirected multigraphs.
Given a set X, let P2X be the set of subsets of X of cardinality 2. Note that, unlike

the ordinary powerset construction, P2 fails to be a covariant functor on the category of
sets, since it is undefined on non-injective functions. An undirected multigraph is a triple
U = (V, E, t : E → P2V ) where V is a set of vertices, E a set of edges, and t assigns two
distinct vertices to each edge. A homomorphism f : U → U ′ of undirected multigraphs
consists of two functions, fE : E → E′ and fV : V → V ′, such that fV is

non-edge collapsing, i.e. for all e ∈ E with t(e) = {v, v′}, we have fV (v) 6= fV (v′), and
edge preserving, i.e. for all e ∈ E with t(e) = {v, v′}, we have t′fE(e) = {fV (v), fV (v′)}.

Let uGraph the the category of undirected multigraphs and their morphisms. It is easy to
see that the empty multigraph (V = E = ∅) is a strict initial object. Moreover, it is not
difficult to show that pullbacks and pushouts exist and are calculated point-wise for vertices
and edges in the category of sets. It follows that uGraph is adhesive for similar reasons to
why the usual category of directed multigraphs—which is a presheaf category—is adhesive.

For convenience, we adopt a notation in which we consider a rule algebra basis element
(O f⇐ I) ∈ RuGraph as the graph of its induced injective partial morphism (I f−⇀ O) ∈
Inj(I,O) of graphs I and O, with the input graph I drawn at the bottom, O at the top,
where the structure of the morphism f is indicated with dotted lines. See the example below:

I Definition 6.1. We define the algebra A as the one generated2 by the rule algebra elements

e+ := 1
2 ·
( )

, e− := 1
2 ·
( )

, d := 1
2 ·
( )

. (20)

The algebra thus defined may be characterized via its commutation relations, which read
(with [x, y] := x ∗R y − y ∗R x for R ≡ RuGraph)

[e−, e+] = d , [e+, d] = [e−, d] = 0 . (21)

2 As in the case of the Heisenberg-Weyl algebra, by “generated” we understand that a generic element of
A is a finite linear combination of (finite) words in the generators and of the identity element R∅, with
concatenation given by the rule algebra composition.
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Here, the only nontrivial contribution (i.e. the one that renders the first commutator non-zero)
may be computed from the DPO-type composition diagram3 below (compare (5) and (6))
and its variant for the admissible match 1 2 ← 12′ 21′ → 1′ 2′ :

1 2 11′ 22′ 1′ 2′

= =

p

pp p p

p (22)

We find an interesting structure for the representation of A:

I Lemma 6.2. Let E± := ρ(e±) and D := ρ(d), and for an arbitrary basis vector |G〉 ∈ Ĝ
(with G denoting the set of isomorphism classes of finite undirected multigraphs), we find that
the linear endomorphisms ρ(X) for X ∈ {E+, E−, D} admit a decomposition into invariant
subspaces Ĝn, with n ∈ Z≥0 denoting the number of vertices of the graphs in a given subspace:

ρ(X) =
⊕
n≥0

(ρ(X))|Ĝn
. (23)

Proof. The three rules that define the algebra A do not modify the number of vertices when
applied to a given graph (via the canonical representation). J

One may easily verify that the operator D = ρ(d) may be equivalently expressed as

D = 1
2 · ρ

( )
= 1

2 (O•O• −O•) , O• := ρ

( )
. (24)

Since the diagonal operator O• when applied to an arbitrary graph state |G〉 for G ∈ G
effectively counts the number nV (G) of vertices of G,

O• |G〉 = nV (G) |G〉 , (25)

one finds that

D |G〉 = 1
2O•(O• − 1) |G〉 = 1

2nV (G)(nV (G)− 1) |G〉 . (26)

One may thus alternatively analyze the canonical representation of A split into invariant
subspaces ofD. The lowest non-trivial such subspace is the space Ĝ2 of undirected multigraphs
on two vertices. It in fact furnishes a representation of the Heisenberg-Weyl algebra, with E+
and E− taking the roles of the creation and of the annihilation operator, respectively, and with
the number vectors |n〉 ≡ |•] n〉 implemented as follows (with (m)n := Θ(m−n)m!/(m−n)!):

En+ | 〉 =
∣∣∣∣ ...

n times

〉
, E−

∣∣∣∣ ...
n times

〉
= (n)1

∣∣∣∣ ...
(n − 1) times

〉
. (27)

3 Note that the number indices are used solely to specify the precise structure of the match, and are not
to be understood as actual vertex labels or types.
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But already the invariant subspace based on the initial vector | 〉 ∈ Ĝ3 has a very
interesting combinatorial structure:

E+ | 〉 = 3 | 〉 ≡ 3 |{1, 0, 0}〉
E2

+ | 〉 = 3 (| 〉+ 2 | 〉) ≡ 3 (|{2, 0, 0}〉+ 2 |{1, 1, 0}〉)
E3

+ | 〉 = 3 (| 〉+ 6 | 〉+ 2 | 〉)
≡ 3 (|{3, 0, 0}〉+ 6 |{2, 1, 0}〉+ 2 |{1, 1, 1}〉)
...

En+ | 〉 ≡ En+ |{0, 0, 0}〉 = 3
n∑
k=0

T (n, k) |S(n, k)〉

(28)

Here, the state |{f, g, h}〉 with f ≥ g ≥ h ≥ 0 and f + g + h = n is the graph state on
three vertices with (in one of the possible presentations of the isomorphism class) f edges
between the first two, g edges between the second two and h edges between the third and the
first vertex. Furthermore, T (n, k) and S(n, k) are given by the entry A286030 of the OEIS
database [1]. The interpretation of S(n, k) and T (n, k) is that each triple S(n, k) encodes
the outcome of a game of three players, counting (without regarding the order of players) the
number of wins per player for a total of n games. Then T (n, k)/3(n−1) gives the probability
that a particular pattern S(n, k) occurs in a random sample.

It thus appears to be an interesting avenue of future research to investigate the apparently
quite intricate interrelations between representation theory and combinatorics.

7 Applications of rule algebras to stochastic mechanics

One of the main motivations that underpinned the development of the rule algebra framework
prior to this paper [3, 4] has been the link between associative unital algebras of transitions
and continuous-time Markov chains (CTMCs). Famous examples of such particular types of
CTMCs include chemical reaction systems (see e.g. [5] for a recent review) and stochastic
graph rewriting systems (see [3] for a rule-algebraic implementation). With our novel
formulation of unital associative rule algebras and their canonical representation for generic
strict initial adhesive categories, it is possible to specify a general stochastic mechanics
framework. While we postpone a detailed presentation of this result to future work, suffice
it here to define the basic framework and to indicate the potential of the idea with a short
worked example. We begin by specializing the general definition of continuous-time Markov
chains (see e.g. [13]) to the setting of rewriting systems (compare [3, 5]):

I Definition 7.1. Consider an adhesive category C with strict initial object o∅ ∈ ob(C), and
let Ĉ denote the free R-vector space of objects of C according to Definition 4.4. Then we
define the space Prob(C) as the space of sub-probability distributions in the following sense:

Prob(C) :=

|Ψ〉 =
∑

o∈ob(C)

ψo |o〉

∣∣∣∣∣∣ ∀o ∈ ob(C) : ψo ∈ R≥0 ∧
∑

o∈ob(C)

ψo ≤ 1

 . (29)

In particular, this identifies the sequences {ψo}o∈ob(C) ∈ `1R(ob(C)) as special types of `1R-
summable sequences indexed by objects of C. Let Stoch(C) := End(Prob(C)) be the
space of sub-stochastic operators. Then a continuous-time Markov chain (CTMC) is
specified in terms of a tuple of data (|Ψ(0)〉 , H), where |Ψ(0)〉 ∈ Prob(C) is the initial state,

https://oeis.org/A286030
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and where H ∈ EndR(SC) is the infinitesimal generator or Hamiltonian of the CTMC (with
SC the Fréchet space of real-valued sequences f ≡ (fo)o∈ob(C) with semi-norms ‖f‖o := |fo|).
H is required to be an infinitesimal (sub-)stochastic operator, whence to fulfill the constraints

H ≡ (ho,o′)o,o′∈ob(C) ∀o, o′ ∈ ob(C) :

(i) ho,o ≤ 0 , (ii)∀o 6= o′ : ho,o′ ≥ 0 , (iii)
∑
o′

ho,o′ = 0 . (30)

Then this data encodes the evolution semi-group E : R≥0 → Stoch(C) as the (point-wise
minimal non-negative) solution of the Kolmogorov backwards or master equation:

d
dtE(t) = HE(t) , E(0) = 1EndR(SC) ⇒ ∀t, t′ ∈ R≥0 : E(t)E(t′) = E(t+ t′) . (31)

Consequently, the time-dependent state |Ψ(t)〉 of the system is given by

∀t ∈ R≥0 : |Ψ(t)〉 = E(t) |Ψ(0)〉 . (32)

Typically, our interest in analyzing a given CTMC will consist in studying the dynamical
statistical behavior of so-called observables:

I Definition 7.2. Let OC ⊂ EndR(SC) denote the space of observables, defined as the space
of diagonal operators,

OC := {O ∈ EndR(SC) | ∀o ∈ ob(C) : O |o〉 = ωO(o) |o〉 , ωO(o) ∈ R} . (33)

We furthermore define the so-called projection operation 〈| : SC → R via extending by
linearity the definition of 〈| acting on basis vectors of Ĉ,

∀o ∈ ob(C) : 〈 | o〉 := 1R . (34)

These definitions induce a notion of correlators of observables, defined for O1, . . . , On ∈ OC
and |Ψ〉 ∈ Prob(C) as

〈O1, . . . , On〉|Ψ〉 := 〈|O1, . . . , On |Ψ〉 =
∑

o∈ob(C)

ψo · ωO1(o) · · ·ωOn
(o) . (35)

The precise relationship between the notions of CTMCs and DPO rewriting rules as encoded
in the rule algebra formalism is established in the form of the following theorem (compare [3]):

I Theorem 7.3 (Stochastic mechanics framework). Let C be an adhesive category with strict
initial object, let {(Oj

rj⇐ Ij) ∈ RC}j∈J be a (finite) set of rule algebra elements and
{κj ∈ R≥0}j∈J a collection of non-zero parameters (called base rates). Then one may
construct a Hamiltonian H from this data according to

H := Ĥ + H̄ , Ĥ :=
∑
j∈J

κj · ρ
(
Oj

rj⇐ Ij

)
, H̄ := −

∑
j∈J

κj · ρ
(
Ij

iddom(rj )⇐ Ij

)
. (36)

Here, for arbitrary (I r−⇀ O) ≡ (I i←− K o−→ O) ∈ Lin(C), we define

(I
iddom(r)−−−−−⇀ I) := (I i←− K i−→ I) . (37)

The observables for the resulting CTMC are operators of the form

OtM = ρ
(
M

t⇐M
)
. (38)

We furthermore have the jump-closure property, whereby for all (O r⇐ I) ∈ RC

〈| ρ(O r⇐ I) = 〈|Oiddom(r)
I . (39)
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Proof. See Appendix A.4. J

We illustrate the framework with an example for C = uGraph (the category of (isomor-
phism classes of) undirected multigraphs and morphisms thereof), where we pick the two
rule algebra elements e+ and e− specified in (20) to define the transitions of the system.
Together with two non-negative real parameters κ+, κ− ∈ R≥0, the resulting Hamiltonian
H = Ĥ + H̄ reads (with E± := ρ(e±) and O• as in (24))

Ĥ = κ+E+ + κ−E− , H̄ = − 1
2κ+O•(O• − 1)− κ−OE , OE := 1

2ρ

( )
. (40)

Using the general fact that a Hamiltonian as constructed according to Theorem 7.3 verifies

〈|H = 0 , (41)

we may for example compute the time evolution of the expectation values of observables for
this CTMC. Intuitively, the CTMC describes a stochastic system where edges are added
and removed at random. Since these transitions do not modify the number of vertices, we
immediately conclude that if the initial state |Ψ(0)〉 ∈ Prob(uGraph) is a pure state, i.e. if
|Ψ(0)〉 = |G0〉 for some G0 ∈ ob(uGraph), one finds4

∀t ≥ 0 : 〈|O• |Ψ(t)〉 = 〈|O• |G0〉 = NV , (42)

with NV the number of vertices of G0. Let us analogously denote by NE the number of
edges of G0, determined according to

NE = 〈|OE |G0〉 . (43)

The time evolution of the moments of the edge-counting observable OE may be computed by
means of algebraic methods. Referring to [3, 5] for more extensive computations, suffice it here
to demonstrate the derivation of the evolution of the average edge-count for |Ψ(0)〉 = |G0〉:

d
dt 〈|OE |Ψ(t)〉 = 〈|OEH |Ψ(t)〉 = 〈| (HOE + [OE , H]) |Ψ(t)〉

(41)= κ+ 〈|E+ |Ψ(t)〉 − κ− 〈|E− |Ψ(t)〉
(39)= 1

2κ+ 〈|O•(O• − 1) |Ψ(t)〉 − κ− 〈|OE |Ψ(t)〉
(42)= 1

2κ+NV (NV − 1)− κ− 〈|OE |Ψ(t)〉 .

(44)

Together with the initial value 〈|OE |Ψ(0)〉 = NE , this ODE is solved (for κM 6= 0 and with
the convention

(
x
y

)
:= 0 for x < y) by

〈OE〉(t) ≡ 〈|OE |Ψ(t)〉 = e−tκM

(
NE − κP

κM

(
NV
2

))
+ κP

κM

(
NV
2

)
−−−→
t→∞

κP

κM

(
NV
2

)
. (45)

Interestingly, the coefficient
(
NV

2
)
is precisely the number of edges of a complete graph on

NV vertices, Moreover, if κP = κM and NE∗ =
(
NV

2
)
, 〈OE〉(t) = NE∗ = const for all t ≥ 0.

4 More precisely, one may verify that [O•, H] = 0, whence the claim follows from 〈| O• |Ψ(0)〉 = NV and
d
dt 〈| O• |Ψ(t)〉 = 〈| O•H |Ψ(t)〉 = 〈| (HO• + [O•, H]) |Ψ(t)〉 = 0 .
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Figure 1 Time-evolution of 〈OE〉(t) for |Ψ(0)〉 = |G0〉 with NV = 100.
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We present in Figure 1 the time-evolution of 〈OE〉(t) for three different choices of parameters
κ+ and κ−, and for four different choices each of initial number of edges NE .

As an outlook and reference to ongoing and future work, techniques such as the ones
developed in [3] and [2] in favorable cases even permit to derive the full time-dependent
probability distribution of observables – in fact, in the present example, one may demonstrate
that the distribution of the edge-counting observable OE stabilizes for t→∞ onto a Poisson
distribution of parameter κP

κM

(
NV

2
)
. This result might be somewhat anticipated, in that for

the special case NV = 2 we found in the previous section that E+ and E− acting on the
states with two vertices effectively yield a representation of the Heisenberg-Weyl algebra,
whence in this case the process reduces to a birth-death process on edges with rates κ+ and
κ− (see [5] for further details on chemical reaction systems).

8 Conclusion and Outlook

Based on our novel theorem on the associativity of the operation of forming DPO-type
concurrent compositions of linear rewriting rules, we introduced the concept of rule algebras:
each linear rule is mapped to an element of an abstract vector space of linear rules, on which
the concurrent composition operation is implemented as a binary, bilinear multiplication
operation. For every adhesive category C, the associated rule algebra is associative, and if
the category possesses a strict initial object (i.e. if C is an extensive category), this algebra is
in addition unital. We hinted at the potential of our approach in the realm of combinatorics,
and, as a first major application of our framework, we presented a universal construction of
continuous-time Markov chains based on linear rules of extensive categories C. It appears
reasonable in light of the deep insights gained into such CTMC theories for the special
cases of discrete rewriting rules [5] and multigraph rewriting rules [2, 3] to expect that our
approach will lead to progress in the understanding and analysis of stochastic rewriting
systems in both theory and practice.
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A Proofs

A.1 Proof of associativity of rule compositions
I Lemma A.1. Let C be an adhesive category, and consider the following commutative
diagram, in which all arrows are monomorphisms, and where

X1 Z12

A1 P12

B X12

Y12 A2

• the bottom and left faces are pushout squares, and

• the front and back faces are pullback squares.

Then the right and top faces are pushout squares.

Proof. Composition of the back square and the bottom square yields a pullback square,
whence according to Lemma 2.4 the top face is also a pullback square. Since thus all faces
but the right one are pullbacks and the left face is a pushout square due to the VK property
of C. Analogously, since the bottom square is a pushout square and all vertical faces are
pullback squares, the top face is a pushout square. J

I Theorem 3.3 (Associativity Theorem). The composition operation .
.
J . is associative in the

following sense: given linear rules p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence
between pairs of admissible matches m21 ∈ p2 
 p1 and m3(21) ∈ p3 


(
p2

m12J p1

)
, and

pairs of admissible matches m32 ∈ p3 
 p2 and m(32)1 ∈
(
p3

m23J p2

)

 p1 such that

p3
m3(21)
J

(
p2

m21J p1

)
=
(
p3

m32J p2

) m(32)1
J p1 . (7)

Proof. We refer the readers to the main text for the first part of the proof. To prove the
final part, whence that the Y1(23) is the pushout of R1 ← X1(23) → L23, we construct the
following extended diagram (with S23, T23, V23 and W23 obtained by taking the indicated
pullbacks PB(. . . ), and where the remaining new morphisms are formed as those that make
the respective triangles involving the aforementioned objects commute):

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3

S23 = PB(K3(12) → Y(12)3 ← L3)

T23 = PB(K21 → R12 ← X(12)3)

V23 = PB(K23 → Y23 ← L3)

W23 = PB(K2 → R2 ← X23)

V23

W23

T23

S23

Invoking Lemma A.1 twice, we may conclude that the squares�W23,V23,K23,K2 , �W23,V23,L3,X23 ,
�T23,S23,K3(12),K21 and �T23,S23,L3,X(12)3 are pushout squares. In addition, since the squares
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�W23,V23,L23,L2 and �T23,S23,Y1(23),Y12 are compositions of pushout squares, according to
Lemma 2.4 they are pushout squares themselves. In order to prove the claim, we have
to demonstrate that the monomorphisms of the cospan R1 → Y1(23) ← L23 are jointly
epimorphic. Since Y12 is the pushout of R1 ← X12 → L2, and since Y12 is included in Y1(23)
(as encoded in the arrow Y12 → Y1(23)), the proof reduces to proving that the monomor-
phism L23 → Y1(23) covers Y1(23) \ Y12. The proof is facilitated by taking advantage of
the notion of algebra of subobjects available in every adhesive category (see [11] for the de-
tails). Note first that according to the structure of the auxiliary diagram constructed above,
Y1(23) = Y12 ∪T23 S23, while S23 in turn is the pushout complement of T23 → X(12)3 → L3,
whence S23 = L3 \ (X(12)3 \ T23). Analogously, L23 = L2 ∪W23 V23, where V23 is the pushout
complement of W23 → X23 → L3, whence V23 = L3 \ (X23 \ W23). In addition, since
L23 → Y1(23), L2 → L23 and W23 → L2, we conclude that W23 → T23. But since the
monomorphism X23 → X(12)3 encodes that X23 is a subobject of X(12)3, combining all
arguments reveals that the portion of L3 in Y1(23) not covered by Y12 is never larger than
the portion of L3 in L23 not covered by L2, whence the claim that R1 → Y1(23) ← L23 is
jointly epimorphic follows. In summary, we have proved that each triple of linear rules and
choice of admissible overlaps (X12, X(12)3) induces an overlap pair (X23, X1(23)) as given in
the construction, which concludes the proof of associativity. J

A.2 Proof of the homomorphism property of the canonical
representations

I Theorem 4.5 (Canonical Representation). For C adhesive with strict initial object, ρC :
RC → End(Ĉ) of Definition 4.4 is a homomorphism of unital associative algebras.

Proof. In order for ρC to qualify as an algebra homomorphism (of unital associative algebras
RC and End(Ĉ)), we must have (with R∅ = δ(r∅), r∅ = c∅

∅−⇀ c∅)

(i) ρC(R∅) = 1End(Ĉ) and (ii) ∀R1, R2 ∈ RC : ρC(R1 ∗RC R2) = ρC(R1)ρC(R1) .

Due to linearity, it suffices to prove the two properties on basis elements δ(p), δ(q) of RC
and on basis elements |C〉 of Ĉ. Property (i) follows directly from the definition,

∀C ∈ ob(C) : ρC(R∅) |C〉
(14)=

∑
m∈Mr∅ (C)

|(r∅)m(C)〉 = |C〉 .

Property (ii) follows from Theorem 3.1 (the concurrency theorem): for all basis elements
δ(p), δ(q) ∈ RC (with p, q ∈ Lin(C)) and for all C ∈ ob(C),

ρC (δ(q) ∗C δ(p)) |C〉 (10)=
∑

d∈q
p

ρC

(
δ

(
q

d
J p
))
|C〉

(14)=
∑

d∈q
p

∑
e∈Mrd (C)

|(rd)e(C)〉 (rd = q
d
J p)

=
∑

m∈Mp(C)

∑
n∈Mq(pm(C))

|qn(pm(C)〉 (via Thm. 3.1)

(14)=
∑

m∈Mp(C)

ρC (δ(q)) |pm(C)〉

(14)= ρC (δ(q)) ρC (δ(p)) |C〉 .

J
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A.3 Proof of the relationship between discrete graph rewriting and the
Heisenberg-Weyl algebra

Proof.
(i) Since there is no partial injection possible between the input of one copy and the output

of another copy of x† other than the trivial match, and similarly for two copies of x,
the claim follows.

(ii) Computing the commutator [x, x†] = x ∗ x† − x† ∗ x (with ∗ ≡ ∗R0) explicitly, we find
that

x ∗ x† = x ] x† + idR0 , x† ∗ x = x† ] x , (46)

from which the claim follows due to commutativity of the operation ] on R0, x ] x† =
x† ] x.

(iii) It suffices to prove the statement for basis elements of H. Consider thus an arbitrary
composition of a finite number of copies of the generators x and x†. Then by repeated
application of the commutation relation [x, x†] = idR0 , and since idR0 is the unit
element for ∗ on R0, we can convert the arbitrary basis element of H into a linear
combination of normal-ordered elements.

(iv) Note first that by definition |0〉 = |∅〉. To prove the claim that for all n ≥ 0

a† |n〉 = |n+ 1〉 ,

we apply Definitions 2.6 and 4.4 by computing the following diagram (compare (3)):
there exists precisely one admissible match of the empty graph ∅ ∈ G0 into the n-vertex
discrete graph ] n, whence constructing the pushout complement marked with dashed
arrows and the pushout marked with dotted arrows we verify the claim:

∅ ∅

] n ] n ] (n+1)

∃!

Proceeding analogously in order to prove the formula for the representation a = ρR0(x),

a |n〉 :=
{
n · |n− 1〉 if n > 0
0Ĝ0

else,

we find that for n > 0 there exist n admissible matches of the 1-vertex graph into
the n-vertex graph ] n, for each of which the application of the rule −⇀ ∅ along the
match results in the graph ] (n−1):

∅ ∅

] n ] (n−1) ] (n−1)

n different matches

⇒ ∀n > 0 : a | ] n〉 = n ·
∣∣∣ ] (n−1)

〉
Finally, for n = 0, since by definition there exists no admissible match from the 1-vertex
graph into the empty graph ∅, whence indeed

a |∅〉 = ρR0

(
∅ ∅⇐

)
|∅〉 = 0Ĝ0

.

J
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A.4 Proof of the stochastic mechanics framework theorem
I Theorem 7.3 (Stochastic mechanics framework). Let C be an adhesive category with strict
initial object, let {(Oj

rj⇐ Ij) ∈ RC}j∈J be a (finite) set of rule algebra elements and
{κj ∈ R≥0}j∈J a collection of non-zero parameters (called base rates). Then one may
construct a Hamiltonian H from this data according to

H := Ĥ + H̄ , Ĥ :=
∑
j∈J

κj · ρ
(
Oj

rj⇐ Ij

)
, H̄ := −

∑
j∈J

κj · ρ
(
Ij

iddom(rj )⇐ Ij

)
. (36)

Here, for arbitrary (I r−⇀ O) ≡ (I i←− K o−→ O) ∈ Lin(C), we define

(I
iddom(r)−−−−−⇀ I) := (I i←− K i−→ I) . (37)

The observables for the resulting CTMC are operators of the form

OtM = ρ
(
M

t⇐M
)
. (38)

We furthermore have the jump-closure property, whereby for all (O r⇐ I) ∈ RC

〈| ρ(O r⇐ I) = 〈|Oiddom(r)
I . (39)

Proof. By definition, the canonical representation of a generic rule algebra element (O r⇐
I) ∈ RC is both a row- and a column-finite object, since for every object C ∈ ob(C) the
set of admissible matches Mp(C) of the associated linear rule p ≡ (I r−⇀ O) is finite, and
since for every object C ∈ ob(C) there exists only finitely many objects C ′ ∈ ob(C) such that
C = pm(C ′) for some match m ∈Mp(C ′). Consequently, ρC(O r⇐ I) lifts consistently from
a linear operator in End(Ĉ) to a linear operator in End(SC). Let us prove next the claim
on the precise structure of observables. Recall that according to Definition 7.2, an observable
O ∈ OC must be a linear operator in End(SC) that acts diagonally on basis states |C〉 (for
C ∈ ob(C)), whence that satisfies for all C ∈ ob(C)

O |C〉 = ωO(C) |C〉 (ωO(C) ∈ R) .

Comparing this equation to the definition of the canonical representation (Definition 4.4) of
a generic rule algebra basis element δ(p) ∈ RC (for p ≡ (I i←− K o−→ O) ∈ Lin(C)),

ρC(δ(p)) |C〉 :=
{∑

m∈Mp(C) |pm(C)〉 ifMp(C) 6= ∅
0Ĉ else,

we find that in order for ρC(δ(p)) to be diagonal we must have

∀C ∈ ob(C) : ∀m ∈Mp(C) : pm(C) = C .

But by definition of derivations of objects along admissible matches (Definition 2.6), the only
linear rules p ∈ Lin(C) that have this special property are precisely the rules of the form

prM = (M r←− K r−→M) .

In particular, defining OrM := ρC(δ(prM )), we find that the eigenvalue ωOr
M

(C) coincides with
the cardinality of the setMpr

M
(C) of admissible matches,

∀C ∈ ob(C) : OrM |C〉 = |Mpr
M

(C)| · |C〉 .
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This proves that the operators OrM form a basis of diagonal operators on End(C) (and thus
on End(SC)).

To prove the jump-closure property, note that it follows from Definition 2.6 that for
an arbitrary linear rule p ≡ (I i←− K

o−→ O) ∈ Lin(C), a generic object C ∈ C and a
monomorphism m : I → C, the admissibility of m as a match is determined by whether or
not the match fulfills the gluing condition (Definition 2.3), i.e. whether or not the following
pushout complement exists,

I K

C E

i

m g

q v
.

Thus we find that with p′ = (I i←− K i−→ I) ∈ Lin(C), the setMp(C) of admissible matches of
p in C andMp′(C) of p′ in C have the same cardinality. Combining this with the definition
of the projection operator 〈| (Definition 7.2),

∀C ∈ ob(C) : 〈 |C〉 := 1R ,

we may prove the claim of the jump-closure property via verifying it on arbitrary basis
elements (with notations as above):

〈| ρC(δ(p)) |C〉 = |Mp(C)| = |Mp′(C)| = 〈| ρC(δ(p′)) |C〉 .

Since C ∈ ob(C) was chosen arbitrarily, we thus have indeed that

〈| ρC(δ(p)) = 〈| ρC(δ(p′)) .

Finally, combining all of these findings, one may verify that H as stated in the theorem fulfills
all required properties in order to qualify as an infinitesimal generator of a continuous-time
Markov chain. J
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