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Abstract

Nested recurrence relations are highly sensitive to their initial conditions. The best-
known nested recurrence, the Hofstadter Q-recurrence, generates sequences displaying
a wide variety of behaviors. Most famous among these is the Hofstadter Q-sequence,
which appears to be structured at a macro level and chaotic at a micro level. Other
choices of initial conditions can lead to more predictable solutions, frequently interleav-
ings of simple sequences. Previous work has focused on the form of a desired solution
and on describing an initial condition that generates such a solution. In this paper, we
flip this paradigm around. We illustrate how focusing on the form of an initial condi-
tion and describing the resulting sequences can yield strange families of new solutions
to nested recurrences.

1 Introduction

The Hofstadter Q-sequence [10] is defined by the nested recurrence

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2))

with the initial conditions Q(1) = 1 and Q(2) = 1. As successive terms are generated,
the Q-sequence seems to behave rather chaotically. But, plots of the sequence suggest that
Q(n) remains close to n

2
, and there appears to be a sort of fractal structure in the plot. See

Figure 1 for a plot of the first ten thousand terms.
A key question regarding the Q-sequence is whether it is, in fact, an infinite sequence.

Based on the recurrence, the value of Q(n) depends on the value of Q(n − Q(n − 1)). If
Q(n − 1) ≥ n, then the value of Q(n) depends on the value of Q at a nonpositive index.
Since the Q-sequence is only defined starting with Q(1), Q(n − Q(n − 1)) would not exist,
and hence Q(n) would not exist in this scenario. If a sequence defined by a nested recurrence
is finite in this way, we say that the sequence dies after n− 1 terms, or that it dies at index
n. It is still open whether the Q-sequence dies, but it contains at least 1010 terms [14].
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Figure 1: Plot of the first 10000 terms of the Hofstadter Q-sequence

1.1 Notation

Before we continue, we introduce a few pieces of notation that appear throughout this paper.
The only recurrence relation we discuss is the Hofstadter Q-recurrence, but we study it with
many different initial conditions. The notation Q(n) refers to the nth term of the Q-sequence
itself. The notation Q∗(n) refers to a generic sequence that satisfies the Q-recurrence. For
any other specific sequence satisfying the Q-recurrence, we use Q with a subscript that we
define for that particular sequence.

We use angle brackets to denote our initial conditions. For example, 〈1, 1〉 is shorthand
for Q∗(1) = 1 and Q∗(2) = 1, the initial condition for the Hofstadter Q-sequence. Sometimes,
it is convenient to define Q∗(n) = 0 for all n ≤ 0, as forcing sequences to die as previously
described can limit the diversity of solutions we encounter [4, 13]. This convention is noted
with a symbol 0̄ followed by a semicolon at the start of the initial condition. For example,
〈0̄; 1, 1〉 is shorthand for Q∗(n) = 0 for n ≤ 0, Q∗(1) = 1 and Q∗(2) = 1.

Note that it is still possible for a sequence with such an extended initial condition to be
finite. If Q∗(n − 1) = 0 for some n, then Q∗(n) would be self-referential. This sort of issue
cannot be resolved via an initial condition tweak, so we declare Q∗(n) to be undefined in
this case. To avoid confusion with earlier terminology, we do not say that such a sequence
dies. Rather, we say that it ends after n− 1 terms or at index n.

1.2 Preliminarities

Nested recurrence relations, such as the Hofstadter Q-recurrence, are highly sensitive to their
initial conditions. For example, if we change the initial condition of the Q-recurrence to
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〈3, 2, 1〉, we obtain a sequence consisting of three interleaved constant or linear sequences [9],
which we denote by QG: 

QG(3k) = 3k − 2

QG(3k + 1) = 3

QG(3k + 2) = 3k + 2.

(To use the above expression to determine QG(n), first write n = 3k+ r where r = n mod 3,
and then refer to the appropriate case.) Going forward, we say that a sequence consisting of
m interleaved constant and linear sequences is quasilinear with period m. In this language,
QG is quasilinear with period 3. Another notable initial condition to the Q-recurrence is
〈0̄; 3, 6, 5, 3, 6, 8〉. The resulting sequence is not quasilinear; rather, it is an interleaving of
two constant sequences with the Fibonacci sequence [13].

Previous approaches [1–4,6–9,11–13,15] have focused on trying to find initial conditions
to nested recurrences that produce solutions of a specific form. In this paper, we instead
find predictable solutions to the Hofstadter Q-recurrence by specifying the form of the initial
condition and determining the behavior of the resulting sequence. In Section 2, we charac-
terize the sequences resulting from the family of initial conditions of the form 〈1, 2, 3, . . . , N〉,
and in Section 3, we study the more general initial condition 〈0̄; 1, 2, 3, . . . , N〉. Finally, we
suggest some future research directions in Section 4.

2 A Family of Dying Sequences

In this section, we consider sequences obtained from the Hofstadter Q-recurrence and an
initial condition of the form 〈1, 2, 3, . . . , N〉 for some integer N ≥ 2. Henceforth, we denote
this sequence for a given value of N by QN .

We have the following result, which characterizes the behaviors of almost all of these
sequences.

Theorem 1. For N = 8, N = 11, N = 12, or N ≥ 14, the sequence QN dies. Furthermore,
if N ≥ 21, the sequence has exactly N + 28 terms, and if 14 ≤ N ≤ 20, the sequence has
exactly N + 32 terms.

Proof. It is straightforward to verify by computing terms that Q8(420) = 430, Q11(199) =
206, and Q12(69) = 77, so these sequences all die [14].

In general, we can compute terms following the initial condition as a function of the
parameter N . First, we compute QN(N + 1). By the Q-recurrence, this equals QN(N + 1−
QN(N)) +QN(N + 1−QN(N − 1)). Both Q(N) and Q(N − 1) lie in the initial condition, so
they equal N and N − 1 respectively. This allows us to simplify the expression to QN(N +
1−N) +QN(N + 1− (N − 1)) = QN(1) +QN(2). Again, we have two terms from the initial
condition, so we obtain that QN(N + 1) = 3. This calculation is invalid if N = 1 (as then
neither index 2 nor index N − 1 would be in the initial condition), but it is valid for any
N ≥ 2.

Subsequent terms are computed using a similar process. Two important notes:
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(a) The terms arising in the intermediate steps are not always from the initial condition.
But, if a term is not from the initial condition, we can proceed as long as it lies before
the current term. In that eventuality, we would have already computed it, so we can use
its computed value.

(b) The calculations at each step are only valid for N sufficiently large. If a fact of the form
Q(i) = i is used to simplify an expression for some constant i, then we must have N ≥ i.
Similarly, if a fact of the form Q(N − i) = N − i is used, we must have N > i.

Using this process, we can compute 28 terms following the initial condition before we run
into any issues. These 28 terms are:

3, N + 1, N + 2, 5, N + 3, 6, 7, N + 4, N + 6, 10, 8, N + 6, N + 10, 12, N + 7, 14,

N + 12, 11, N + 11, N + 15, 16, 13, 17, 15, N + 14, 20, 20, 2N + 8.

See Appendix A for explicit computations of these terms, along with a bound on the values
of N for which that computation and all previous computations are valid. In particular,
note that the calculations are valid for N ≥ 13.

The last term we have is Q(N + 28) = 2N + 8. We try to compute Q(N + 29):

QN(N + 29) = QN(N + 29−QN(N + 28)) +QN(N + 29−QN(N + 27))

= QN(N + 29− (2N + 8)) +QN(N + 29− 20)

= QN (−N + 21) +QN (N + 9) .

If N ≥ 21, then −N + 21 ≤ 0, so QN(−N + 21) is undefined and the sequence dies.
This just leaves the values 14 ≤ N ≤ 20 to examine. This is a finite range, so it suffices to

individually check that these sequences all die after N+32 terms. But, these seven sequences
all die according to the same pattern, so we give a unifying proof for all of them. Suppose
14 ≤ N ≤ 20. We then have QN(−N + 21) = −N + 21, as that term now lies in the initial
condition. So, we can continue to compute terms. All calculations below are only valid if
N ≥ 13, which is the case for the range we are considering.

QN(N + 29) = QN (−N + 21) +QN (N + 9) = −N + 21 +N + 6 = 27

QN(N + 30) = QN(N + 30−QN(N + 29)) +QN(N + 30−QN(N + 28))

= QN(N + 30− 27) +QN(N + 30− (2N + 8))

= QN (N + 3) +QN (−N + 22) = N + 2−N + 22 = 24

QN(N + 31) = QN(N + 31−QN(N + 30)) +QN(N + 31−QN(N + 29))

= QN(N + 31− 24) +QN(N + 31− 27)

= QN (N + 7) +QN (N + 4) = 7 + 5 = 12
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QN(N + 32) = QN(N + 32−QN(N + 31)) +QN(N + 32−QN(N + 30))

= QN(N + 32− 12) +QN(N + 32− 24)

= QN (N + 20) +QN (N + 8) = N + 15 +N + 4 = 2N + 19.

If N ≥ 14, then 2N + 19 ≥ N + 33. This means that, if 14 ≤ N ≤ 20, then QN(N + 33)
fails to exist. So, QN dies after N + 32 terms whenever 14 ≤ N ≤ 20, as required.

Theorem 1 says that QN dies for all but finitely many N . This begs the question of
what happens when N ∈ {2, 3, 4, 5, 6, 7, 9, 10, 13}. The sequence Q2 is Hofstadter’s sequence
without the initial 1, so it is unknown whether Q2 dies. Since Q2(3) = 3, Q3 = Q2, so N = 3
also gives Hofstadter’s sequence. The remaining N values in this set give sequences that
are different from Hofstadter’s sequence and different from each other. Like Hofstadter’s, it
is unknown whether any of these sequences dies. All of these sequences last for at least 30
million terms [14].

3 More Complicated Behavior

The sequence in Section 2 almost all die. Here, we consider what happens if we prevent
them from dying by defining their values to be zero at nonpositive integers. For an integer
N ≥ 2, let QN̄ denote the sequence obtained from the Hofstadter Q-recurrence with initial
condition 〈0̄; 1, 2, 3, . . . , N〉.

Somewhat surprisingly, the behavior of QN̄ depends on the congruence class of N mod-
ulo 5. Before delving into details, we describe the high-level structure of these sequences for
sufficiently large N . First, the sequences QN and QN̄ agree until QN dies. Shortly after that
point, QN̄ settles into a period-5 quasilinear pattern. Unlike the sequence QG mentioned in
the introduction, where the quasilinear pattern lasts forever, the period-5 behavior of QN̄ is
only temporary. What happens once it collapses depends on N mod 5. For three congruence
classes, a term in QN̄ depends on itself shortly after the quasilinear behavior stops, causing
the sequence to end there. In one case, the sequence ends only 4 terms beyond the end
of the quasilinear part. The other two cases last 11 and 158 terms beyond it. Of the two
remaining congruence classes, one of them leads to a seemingly infinite sequence some of
whose terms are predictable and others of which appear chaotic. The other class leads to a
period-5 quasilinear pattern not unlike the one that stopped shortly before. Like the original
period-5 pattern, this one is also temporary. When it finishes, the same five possible contin-
uations of behavior are possible, with the behavior now dependent on N mod 25. Similar
period-5 chunks appear to be possible to arbitrary depths.

The structure of this section is as follows. In 3.1 we formally introduce the semi-
predictable sequences discussed above. Then, in 3.2, we formally state and prove Theorem 2,
which fully describes the structure of QN̄ . Then, 3.3 is devoted to a further discussion, in
plain language, of the consequences of Theorem 2. Finally, a discussion of the remaining
cases, when N is not sufficiently large, is carried out in 3.4.
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3.1 Interlude: A Family of Semi-Predictable Solutions

In order to fully characterize the sequences QN̄ , it is necessary to describe a peculiar family
of sequences that satisfy Hofstadter’s recurrence. Historically, solutions to Hofstadter-like
recurrences have looked one of the following:

(a) Finite (dying/ending) sequences (e.g. Q70)

(b) Apparently infinite sequences with seemingly chaotic behavior, though perhaps with
some detectable patterns (e.g. the Hofstadter Q-sequence)

(c) A sequence satisfying a linear recurrence relation (e.g. QG)

(d) A monotone increasing sequence with successive differences 0 or 1 (e.g. Tanny’s se-
quence [15])

Now, we describe a family of solutions to the Q-recurrence that does not fall cleanly into
the above classification, instead combining elements of cases (b) and (c). In particular, the
solutions are interleavings of five sequences. Four of them are chaotic and seemingly infinite,
and the fifth is a constant sequence.

As auxiliary objects, we define three sequences in terms of a system of nested recurrences:

Definition 1. Define sequences R(n), S(n), and T (n) as follows:

• R(n) = 0 for n ≤ 0, R(1) = 1, R(2) = 2, R(n) = R(n−R(n−1)) +S(n−1) for n ≥ 3

• S(n) = 0 for n < 0, S(0) = 1, S(1) = 1, S(n) = S(n − R(n)) + S(n − R(n − 1)) for
n ≥ 2

• T (n) = 0 for n < 0, T (0) = 1, T (n) = T (n−R(n)) + T (n− S(n)) for n ≥ 1

Plots of these sequences are given in Figures 2, 3, and 4 respectively. All of them appear
to behave fairly chaotically, and, much like the Q-sequence, it is unknown whether or not
they end. According to the plots, R and S appear to grow approximately linearly, whereas
T appears to grow superlinearly.

Multiples of the R, S, and T sequences can appear as equally-spaced subsequences of
solutions to the Hofstadter Q-recurrence. We denote such solutions by QT . Proposition 1
describes a parametrized family of such solutions. All solutions in this family eventually
consist of five interleaved subsequences: two multiples of R, one multiple each of S and T ,
and a sequence of all fours. In the next section, we will see that some of the sequences QN̄

are eventually characterized by Proposition 1.

Proposition 1. Let K ≥ 0, λ ≥ 9 and µ ≥ K + 6 be integers. The initial condition
〈0̄; a1, a2, . . . , aK , 5, λ, 4, µ〉 (each ai an arbitrary integer) for the Hofstadter Q-recurrence
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Figure 2: Plot of R(1) through R(2000)

Figure 3: Plot of S(0) through S(2000)
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Figure 4: Plot of T (0) through T (2000)

generates the following pattern, beginning with index K + 5 (the first case, with k = 1),

QT (K + 5k) = 5R(k)

QT (K + 5k + 1) = 5S(k)

QT (K + 5k + 2) = λT (k)

QT (K + 5k + 3) = 4

QT (K + 5k + 4) = 5R(k).

The pattern lasts as long as the R, S, and T sequences live and as long as λT (k) ≥ K+5k+4.

One may wonder how restrictive the condition λT (k) ≥ K + 5k + 4 is. Since the T -
sequence appears to grow superlinearly, it should be satisfied by sufficiently large λ for fixed
K. In particular, λ = 9 seems to suffice for K = 0, lasting for at least fifty million terms
(and λ = 8 fails within the first 60 terms) [14]. The case K = 0, λ = 9 and µ = 6 is depicted
in Figure 5.

We now prove Proposition 1.

Proof. The proof is by induction on n. As a base case, we first manually check n = K + 5
through n = K + 8.

• QT (K + 5) = QT (K + 5− µ) +QT (K + 5− 4) = QT (K + 1) = 5 = 5R(1).

• QT (K + 6) = QT (K + 6− 5) +QT (K + 6− µ) = QT (K + 1) = 5 = 5S(1).
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Figure 5: The first 2000 terms of QT with initial condition 〈0̄; 5, 9, 4, 6〉

• QT (K + 7) = QT (K + 7− 5) +QT (K + 7− 5) = 2QT (K + 2) = 2λ = λT (1).

• QT (K + 8) = QT (K + 8− 2λ) +QT (K + 8− 5) = QT (K + 3) = 4.

(Note that K + 8− 2λ ≤ 0 because λT (1) = 2λ ≥ K + 5 + 4 = K + 9.) We now proceed by
induction on n for n ≥ K + 9. There are 5 cases to consider.

n−K ≡ 0 (mod 5): Here, n = K + 5k for some k ≥ 2. We have

QT (K + 5k) = QT (K + 5k −QT (K + 5k − 1))

+QT (K + 5k −QT (K + 5k − 2))

= QT (K + 5k − 5R(k − 1)) +QT (K + 5k − 4)

= 5R(k −R(k − 1)) + 5S(k − 1)

= 5R(k),

as required.

n−K ≡ 1 (mod 5): Here, n = K + 5k + 1 for some k ≥ 2. We have

QT (K + 5k + 1) = QT (K + 5k + 1−QT (K + 5k))

+QT (K + 5k + 1−QT (K + 5k − 1))

= QT (K + 5k + 1− 5R(k)) +QT (K + 5k + 1− 5R(k − 1))

= 5S(k −R(k)) + 5S(k −R(k − 1))

= 5S(k),

as required.
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n−K ≡ 2 (mod 5): Here, n = K + 5k + 2 for some k ≥ 2. We have

QT (K + 5k + 2) = QT (K + 5k + 2−QT (K + 5k + 1))

+QT (K + 5k + 2−QT (K + 5k))

= QT (K + 5k + 2− 5S(k)) +QT (K + 5k + 2− 5R(k))

= λT (k − S(k)) + λT (k −R(k))

= λT (k),

as required.

n−K ≡ 3 (mod 5): Here, n = K + 5k + 3 for some k ≥ 2. We have

QT (K + 5k + 3) = QT (K + 5k + 3−QT (K + 5k + 2))

+QT (K + 5k + 3−QT (K + 5k + 1))

= QT (K + 5k + 3− λT (k)) +QT (K + 5k + 3− 5S(k))

= 0 + 4

= 4,

as required.

n−K ≡ 4 (mod 5): Here, n = K + 5k + 4 for some k ≥ 1. We have

QT (K + 5k + 4) = QT (K + 5k + 4−QT (K + 5k + 3))

+QT (K + 5k + 4−QT (K + 5k + 2))

= QT (K + 5k + 4− 4) +QT (K + 5k + 4− λT (k))

= QT (K + 5k) + 0

= 5R(k),

as required.

What assumptions do we make about λ and µ? When computing QT (K + 6), we require
µ ≥ K + 6. After this, µ never appears again. For λ, when computing QT (K + 5k + 3) we
need λT (k) ≥ K + 5k + 4 for every k, as required.

Aside from the existence of the solutions described in Proposition 1 and the single appli-
cation to the sequences QN̄ , little is know about these and related semi-predictable solutions
to the Q-recurrence. A preliminary exploration can be found in [5].

3.2 Structure Theorem for QN̄

In this section, we formally state and prove a theorem (Theorem 2) that describes the full
behavior of all but finitely many of the sequences QN̄ , modulo open questions about whether
or not the sequences in 3.1 are infinite. The theorem has many parts, all of which have some
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substance. Because of the length and amount of technical details in this theorem, we state
both a short version and a long version.

Before we state Theorem 2, we introduce some auxiliary sequences.

Definition 2. Fix an integer N . Define A0 = N − 2, A1 = 2N + 4, B1 = −11N − 22, and
C1 = (N − 1) mod 5. Then, for i ≥ 2, define

Ai+1 = Ai

(
Ai − Ai−1 + 2

5

)
+Bi,

Bi+1 = Ai+1 − Ai,

and
Ci = (Ai + 2i+ 1) mod 5.

Finally, for all i ≥ 1, define

C ′i = max(0, ((3− Ci) mod 5)− 1).

Note that Ai is not guaranteed to always be an integer, but it is an integer whenever
we use it (a fact that is guaranteed by Propopsition 2 on p. 19). We now state our main
theorem.

Theorem 2 (Short Version). Let N be a natural number. Let j be the first index where
Cj 6= 1 (or j =∞ if Cj = 1 for all j). Provided N ≥ 35, the sequence QN̄ has the following
structure:

(a) For all 1 ≤ i ≤ N , QN̄(i) = i.

(b) The 28 terms following the initial conditions are the remaining 28 terms of QN (see
Appendix A). The sequence then contains six sporadic terms, which are then followed by
a quasilinear chunk with period 5 that lasts through index A1 + C ′1.

(c) For each 1 ≤ m < j, the previous quasilinear chunk is followed by five sporadic terms
and then another quasilinear chunk with period 5 that lasts through index Am+1 +C ′m+1.

(d) If Cj = 0 and N ≥ 118, then QN̄ is finite, and it contains 158 terms after the last
quasilinear chunk concludes.

(e) If Cj = 2, then the behavior of the rest of the sequence is described by Proposition 1,
where the initial condition in that proposition is given by the already-generated terms
along with the two next terms.

(f) If Cj = 3, then QN̄ is finite, and it contains 4 terms after the last quasilinear chunk
concludes.

(g) If Cj = 4, then QN̄ is finite, and it contains 11 terms after the last quasilinear chunk
concludes.
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Theorem 2 (Full Version). Let N be a natural number. Let j be the first index where
Cj 6= 1 (or j =∞ if Cj = 1 for all j). Provided N ≥ 35, the sequence QN̄ has the following
structure:

(a) For all 1 ≤ i ≤ N , QN̄(i) = i.

(b) For 1 ≤ k ≤ 28, QN̄(N + k) = QN(N + k) (see Appendix A). The next six terms are
QN̄(N + 29) = N + 6, QN̄(N + 30) = 24, QN̄(N + 31) = 32, QN̄(N + 32) = 2N + 4,
QN̄(N + 33) = 3, QN̄(N + 34) = 32. Thereafter, for 35 ≤ 5k + r ≤ A1 + C ′1 with
0 ≤ r < 5, 

QN̄(N + 5k) = A1k +B1

QN̄(N + 5k + 1) = 5

QN̄(N + 5k + 2) = A1

QN̄(N + 5k + 3) = 3

QN̄(N + 5k + 4) = 5.

(c) For each 1 ≤ m < j, QN̄(Am + 2) = 5, QN̄(Am + 3) = 8, QN̄(Am + 4) = Am+1,
QN̄(Am + 5) = 3, QN̄(Am + 6) = 8, and for all 7 ≤ 5k + r ≤ Am+1 + C ′m+1 with
0 ≤ r < 5, 

QN̄(Am + 5k) = 3

QN̄(Am + 5k + 1) = 5

QN̄(Am + 5k + 2) = Am+1k +Bm+1

QN̄(Am + 5k + 3) = 5

QN̄(Am + 5k + 4) = Am+1.

(d) If Cj = 0 and N ≥ 118, then QN̄ ends after Aj + 160 terms. See Appendix B for the
remaining 158 terms.

(e) If Cj = 2, then QN̄(Aj + 1) = 4, QN̄(Aj + 2) = Aj

(
Aj−Aj−1−4

5

)
+Bj + 2, and thereafter,

for 5k + r ≥ 3 with 0 ≤ r < 5

QN̄(Aj + 5k) = AjT (k)

QN̄(Aj + 5k + 1) = 4

QN̄(Aj + 5k + 2) = 5R(k)

QN̄(Aj + 5k + 3) = 5R(k + 1)

QN̄(Aj + 5k + 4) = 5S(k + 1)

assuming the R, S, and T sequences from 3.1 last forever and assuming that, for all
k ≥ 1,

T (k) ≥ 1 +
5k + 2

Aj

.
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(f) If Cj = 3, then QN̄ ends after Aj + 4 terms. The remaining 4 terms are:

• QN̄(Aj + 1) = 6

• QN̄(Aj + 2) = Aj + 5

• QN̄(Aj + 3) = Aj

(
Aj−Aj−1−5

5

)
+Bj

• QN̄(Aj + 4) = 0

(g) If Cj = 4, then QN̄ ends after Aj + 14 terms. The remaining 11 terms are:

• QN̄(Aj + 4) = 7

• QN̄(Aj + 5) = Aj + 5

• QN̄(Aj + 6) = 4

• QN̄(Aj + 7) = Aj + 2

• QN̄(Aj + 8) = 13

• QN̄(Aj +9) = Aj

(
Aj−Aj−1−6

5

)
+Bj +7

• QN̄(Aj + 10) = 5

• QN̄(Aj + 11) = 4

• QN̄(Aj + 12) = Aj + 15

• QN̄(Aj+13) = Aj

(
Aj−Aj−1−6

5

)
+Bj+7

• QN̄(Aj + 14) = 0

It is worth noting that the condition

T (k) ≥ 1 +
5k + 2

Aj

in part (e) of Theorem 2 is almost certainly not necessary, since the T -sequence appears to
grow superlinearly and Aj is always at least 80 (and often much larger).

The proof of Theorem 2 requires the following lemma, which is of a similar flavor to
Proposition 1.

Lemma 1. Let K ≥ 0 be an integer, and let λ and µ be any integers satisfying λ > K + 5
and λ + µ > K + 6. Let ν = max(0, ((K + 4− λ) mod 5)− 1). Then, for arbitrary integers
a1, a2, . . . , aK, denote the sequence resulting from the Hofstadter Q-recurrence and the initial
condition 〈0̄; a1, a2, . . . , aK , µ, 5, λ, 3〉 by QC. The sequence QC follows the following pattern
from QC(K + 1) through QC(λ+ ν):

QC(K + 5k) = 5

QC(K + 5k + 1) = λk + µ

QC(K + 5k + 2) = 5

QC(K + 5k + 3) = λ

QC(K + 5k + 4) = 3.

Proof. The proof is by induction on the index. The base cases are QC(K + 1) through
QC(K + 4), which are part of the initial condition. Now, suppose K + 5 ≤ n ≤ λ (we
handle indices greater than λ later), and suppose that QC(n′) is what we want it to be for
all K + 1 ≤ n′ < n. There are five cases to consider:
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n−K ≡ 0 (mod 5): In this case, n = K + 5k for some k. Applying the Q-recurrence, we
have

QC(K + 5k) = QC(K + 5k −QC(K + 5k + 4))

+QC(K + 5k −QC(K + 5k + 3))

= QC(K + 5k − 3) +QC(K + 5k − λ)

= 5 + 0

= 5,

as required. Note that the validity of this case depends on n ≤ λ.

n−K ≡ 1 (mod 5): In this case, n = 5k+1 for some k. Applying the Q-recurrence, we have

QC(K + 5k + 1) = QC(K + 5k + 1−QC(K + 5k))

+QC(K + 5k + 1−QC(K + 5k − 1))

= QC(K + 5k + 1− 5) +QC(K + 5k + 1− 3)

= λ(k − 1) + µ+ λ

= λk + µ,

as required. Note that the validity of this case does not depend on λ or µ.

n−K ≡ 2 (mod 5): In this case, n = K + 5k+ 2 for some k. Applying the Q-recurrence, we
have

QC(K + 5k + 2) = QC(K + 5k + 2−QC(K + 5k + 1))

+QC(K + 5k + 2−QC(K + 5k))

= QC(K + 5k + 2− (λk + µ)) +QC(K + 5k + 2− 5)

= 0 + 5

= 5,

as required. Note that the validity of this case does not depend on λ or µ.

n−K ≡ 3 (mod 5): In this case, n = 5k+3 for some k. Applying the Q-recurrence, we have

QC(K + 5k + 3) = QC(K + 5k + 3−QC(K + 5k + 2))

+QC(K + 5k + 3−QC(K + 5k + 1))

= QC(K + 5k + 3− 5) +QC(K + 5k + 3− (λk + µ))

= λ+ 0

= λ,

as required. Note that the validity of this case does not depend on λ or µ.
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n−K ≡ 4 (mod 5): In this case, n = 5k+4 for some k. Applying the Q-recurrence, we have

QC(5k + 4) = QC(K + 5k + 4−QC(K + 5k + 3))

+QC(K + 5k + 4−QC(K + 5k + 2))

= QC(K + 5k + 4− λ) +QC(K + 5k + 4− 5)

= 0 + 3

= 3,

as required. Note that the validity of this case depends on n ≤ λ.

This proves that the pattern lasts through index λ. We now complete the proof by
showing that the pattern continues through index λ+ ν. There are five cases to consider:

λ−K ≡ 0 (mod 5): In this case, ν = 3, and the calculation of QC(λ) falls into the first case
above. The next three cases do not depend on λ, so the values of QC(λ+1), QC(λ+2),
and QC(λ+ 3) are what we want.

λ−K ≡ 1 (mod 5): In this case, ν = 2, and the calculation of QC(λ) falls into the second
case above. The next two cases do not depend on λ, so the values of QC(λ + 1) and
QC(λ+ 2) are what we want.

λ−K ≡ 2 (mod 5): In this case, ν = 1, and the calculation of QC(λ) falls into the third
case above. The next case does not depend on λ, so the value of QC(λ+ 1) is what we
want.

λ−K ≡ 3 (mod 5): In this case, ν = 0, so there is nothing to be checked.

λ−K ≡ 4 (mod 5): In this case, ν = 0, so there is nothing to be checked.

We now prove Theorem 2.

Proof. We refer the reader to Appendix A for terms QN̄(1) through QN̄(N + 28). Those
calculations, which are for QN , also apply for QN̄ . From there, it is easy to compute QN̄(N+
29) through QN̄(N + 34), and each one equals its purported value. We now compute the
next four terms:

• QN̄(N + 35) = QN̄(N + 3) +QN̄(N + 32) = (N + 2) + (2N + 4) = 3N + 6.

• QN̄(N + 36) = QN̄(N + 4) = 5.

• QN̄(N + 37) = QN̄(N + 32) = 2N + 4 = A1.

• QN̄(N + 38) = QN̄(N + 33) = 3.
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By Lemma 1, taking K = N + 34, λ = 2N + 4, and µ = 3N + 6, these four terms spawn a
period-5 pattern: 

QN̄(N + 34 + 5k) = 5

QN̄(N + 34 + 5k + 1) = (2N + 4) k + (3N + 6)

QN̄(N + 34 + 5k + 2) = 5

QN̄(N + 34 + 5k + 3) = 2N + 4

QN̄(N + 34 + 5k + 4) = 3,

provided that N > 35. Lemma 1 then guarantees that this pattern persists through index
QN̄(A1 + ν), where

ν = max(0, ((N + 34 + 4− A1) mod 5)− 1)

= max(0, ((N + 34 + 4− 2N − 4) mod 5)− 1)

= max(0, ((34−N) mod 5)− 1)

= max(0, ((4−N) mod 5)− 1)

= max(0, ((3− (N − 1)) mod 5)− 1)

= max(0, ((3− C1) mod 5)− 1)

= C ′1,

as required. Shifting indices and recalling the definitions of A1 and B1 allows us to rewrite
this pattern as 

QN̄(N + 5k) = A1k +B1

QN̄(N + 5k + 1) = 5

QN̄(N + 5k + 2) = A1

QN̄(N + 5k + 3) = 3

QN̄(N + 5k + 4) = 5,

which is the required form.
We now prove part (c) of Theorem 2, which refers to a parameter 1 ≤ m < j. Suppose

inductively that we are considering the value m < j, and that QN̄(Am−3) = 3, QN̄(Am−2) =

5, QN̄(Am − 1) = Am

(
Am−Am−1−3

5

)
+Bm, QN̄(Am) = 5, and QN̄(Am + 1) = Am. Note that

this is all true if m = 0, from the above. So, m = 0 serves as our (already proved) base case.
Since m < j, it must be the case that C ′m = 1 (as Cm = 1 implies C ′m = 1). So,

QN̄(Am + 2) is the first non-calculated term. We compute the next 9 terms:

• QN̄(Am + 2) = QN̄(2) +QN̄(Am − 3) = 2 + 3 = 5.

• QN̄(Am + 3) = QN̄(Am − 2) +QN̄(3) = 5 + 3 = 8.
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• QN̄(Am + 4) = QN̄(Am − 4) + QN̄(Am − 1). We have that QN̄(Am − 4) = Am. But,

QN̄(Am − 1) = Am

(
Am−Am−1−3

5

)
+Bm. So,

QN̄(Am + 4) = Am

(
1 +

Am − Am−1 − 3

5

)
+Bm

= Am

(
Am − Am−1 + 2

5

)
+Bm

= Am+1.

This term is much larger than Am.

• QN̄(Am + 5) = QN̄(Am − 3) = 3.

• QN̄(Am + 6) = QN̄(Am + 1) = 8.

• QN̄(Am + 7) = QN̄(Am − 1) + QN̄(Am + 4). We have from before QN̄(Am − 1) =

Am

(
Am−Am−1−3

5

)
+Bm. But, our calculations in the QN̄(Am+4) step allow us to write

QN̄(Am − 1) = Am+1 −Am. So, QN̄(Am + 7) = Am+1 −Am +Am+1 = 2Am+1 −Am =
Am+1 +Bm+1.

• QN̄(Am + 8) = QN̄(Am) = 5.

• QN̄(Am + 9) = QN̄(Am + 4) = Am+1.

• QN̄(Am + 10) = QN̄(Am + 5) = 3.

The first five of these terms are what we want. And, by Lemma 1, the last four terms
generate a period-5 pattern as in the lemma statement, with K = Am + 6, λ = Am+1, and
µ = Am+1 +Bm+1. The resulting pattern is

QN̄(Am + 6 + 5k) = 5

QN̄(Am + 6 + 5k + 1) = Am+1(k + 1) +Bm+1

QN̄(Am + 6 + 5k + 2) = 5

QN̄(Am + 6 + 5k + 3) = Am+1

QN̄(Am + 6 + 5k + 4) = 3,

which lasts through index Am+1 + ν, where

ν = max(0, ((Am + 6 + 4− Am+1) mod 5)− 1)

= max(0, ((Am − Am+1) mod 5)− 1).
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Shifting indices by 6, the pattern can be rewritten as

QN̄(Am + 5k) = 3

QN̄(Am + 5k + 1) = 5

QN̄(Am + 5k + 2) = Am+1k + Am+1 − Am = Am+1k +Bm+1

QN̄(Am + 5k + 3) = 5

QN̄(Am + 5k + 4) = Am+1,

the required form
To complete the proof of part (c) of the theorem, we need to show that ν = C ′m+1. We

know that Cm+1 ≡ (Am+1 + 2m+ 3) mod 5. This means that Am+1 ≡ (Cm+1 − 2m− 3) mod
5. Similarly, Am ≡ (Cm − 2m− 1) mod 5. But, we know that Cm = 1. So, Am ≡ −2m mod
5. Combining these yields Am+1 − Am ≡ (Cm+1 − 3) mod 5. This allows us to say that

ν = max(0, ((Am − Am+1) mod 5)− 1)

= max(0, ((3− Cm+1) mod 5)− 1)

= C ′m+1,

as required.
All that remains now is to determine the eventual behaviors for Cj ∈ {0, 2, 3, 4} (parts (d),

(e), (f), and (g) of the theorem respectively).

Cj = 0: The first term here we have not yet computed is QN̄(Aj + 3). We compute the next
158 terms (see Appendix B), and we observe that the sequence ends once QN̄(Aj +
160) = 0. Computation of these terms assumes that N ≥ 118, because computing
QN̄(Aj +157) refers to QN̄(118), which we assume equals 118 (and this is the strongest
requirement we use anywhere in the calculations).

Cj = 2: The first term here we have not yet computed is QN̄(Aj + 1). We compute the next
2 terms (keeping in mind that QN̄(Aj) = Aj and QN̄(Aj − 1) = 5):

• QN̄(Aj + 1) = QN̄(1) +QN̄(Aj − 4) = 1 + 3 = 4.

• QN̄(Aj + 2) = QN̄(Aj − 2) +QN̄(2) = Aj

(
Aj−Aj−1−4

5

)
+Bj + 2.

We now have the sort of initial condition described by Proposition 1 with K = Aj − 2,

λ = Aj, and µ = Aj

(
Aj−Aj−1−4

5

)
+Bj +2. By Proposition 1, this results in the pattern

QN̄(Aj − 2 + 5k) = 5R(k)

QN̄(Aj − 2 + 5k + 1) = 5S(k)

QN̄(Aj − 2 + 5k + 2) = AjT (k)

QN̄(Aj − 2 + 5k + 3) = 4

QN̄(Aj − 2 + 5k + 4) = 5R(k),
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as long as the R, S, and T sequences exist and as long as AjT (k) ≥ Aj − 2 + 5k + 4.
This last condition is equivalent to

T (k) ≥ 1 +
5k + 2

Aj

.

Shifting indices by 2, the pattern can be rewritten as

QN̄(Aj + 5k) = AjT (k)

QN̄(Aj + 5k + 1) = 4

QN̄(Aj + 5k + 2) = 5R(k)

QN̄(Aj + 5k + 3) = 5R(k + 1)

QN̄(Aj + 5k + 4) = 5S(k + 1),

as required.

Cj = 3: The first term here we have not yet computed is QN̄(Aj + 1). We compute the next
4 terms, obtaining the values in the theorem statement. We observe that the sequence
ends once QN̄(Aj + 4) = 0.

Cj = 4: The first term here we have not yet computed is QN̄(Aj + 4). We compute the next
11 terms, obtaining the values in the theorem statement. We observe that the sequence
ends once QN̄(Aj + 14) = 0.

3.3 Discussion of Theorem 2

See Figure 6 for a plot of the first 30000 terms of Q42. For N = 42, we have j = 3 and
C3 = 2, so, after the initial condition, there is the zone before Q42 dies, followed by a (very
short) quasilinear piece, followed by two (successively longer) quasilinear pieces, followed by
the eventual Proposition 1-like behavior. Both axes have logarithmic scales, as otherwise
the third quasilinear piece would dominate the plot. (Each Ai is on the order of the square
of the previous one.)

Theorem 2 completely characterizes the behavior of QN̄ (as long as N is sufficiently large
and as long as conjectures about the R, S, and T sequences hold), but the characterization
of which N result in which behavior is not immediately apparent. Every N with j < ∞
(which is every known value of N) is associated to a pair (j, Cj) ∈ Z>0 × {0, 2, 3, 4}. We
denote these values by j(N) and C(N) respectively. We also use notation Ai(N), Bi(N),
and Ci(N) to denote Ai, Bi, and Ci values for N . Our first observation is the following:

Proposition 2. Let N be a positive integer, and let j = j(N). For all 1 ≤ i ≤ j, Ai(N +
5j) ≡ Ai(N) (mod 5j−i+1).

19



Figure 6: The first 30000 terms of Q42 (both axes log scale)

Proof. The proof is by induction on i. If i = 1, then A1(N) = 2N + 4 and A1(N + 5j) =
2 (N + 5j) + 4 = 2N + 4 + 2 · 5j. Then, A1(N + 5j)− A1(N) = 2 · 5j, which is divisible by
5j = 5j−1+1, as required. If i = 2, then

A2(N) =
2

5
N2 − 7N − 78

5

and

A2(N + 5j) =
2

5
N2 − 7N − 78

5
+ 2 · 52j−1 − 7 · 5j + 4 · 5j−1.

The difference is divisible by 5j−1, as required.
Now, suppose i ≥ 3 and suppose that Proposition 2 holds for all smaller i values. Recall

that

Ai = Ai−1

(
Ai−1 − Ai−2 + 2

5

)
+Bi−1.

Since i ≥ 3, Bi−1 = Ai−1 − Ai−2, so we can eliminate Bi−1 and write

Ai = Ai−1

(
Ai−1 − Ai−2 + 7

5

)
− Ai−2.

By induction, Ai−1(N+5j) = Ai−1(N)+α·5j−i+2 for some integer α. Similarly, Ai−2(N+5j) =
Ai−2(N) + β · 5j−i+3 for some integer β.
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We now evaluate

Ai(N + 5j)− Ai(N) = Ai−1(N + 5j)

(
Ai−1(N + 5j)− Ai−2(N + 5j) + 7

5

)
− Ai−2(N + 5j)− Ai−1(N)

(
Ai−1(N)− Ai−2(N) + 7

5

)
− Ai−2(N)

=
(
Ai−1(N) + α · 5j−i+2

)
·
(

(Ai−1(N) + α · 5j−i+2)− (Ai−2(N) + β · 5j−i+3) + 7

5

)
−
(
Ai−2(N) + β · 5j−i+2

)
− Ai−1(N)

(
Ai−1(N)− Ai−2(N) + 7

5

)
− Ai−2(N).

Simplifying this expression yields

Ai(N + 5j)− Ai(N) = 5j−i+1 (2αAi−1(N)− 5βAi−1(N)− αAi−2(N)

+α2 · 5j−i+2 − α · 5j−i+3 + 7α− 25β
)
,

which is divisible by 5j−i+1, as required.

Of course, Proposition 2 immediately generalizes to replacing 5j with any integer multiple
of 5j. We have the following corollary to Proposition 2 (which also generalizes in this way):

Corollary 1. For all N , and for all 1 ≤ i ≤ j(N), Ci

(
N + 5j(N)

)
= Ci(N). In particular,

j
(
N + 5j(N)

)
= j(N).

Proof. Let j = j(N). Let 1 ≤ i ≤ j. By Proposition 2,

Ai(N + 5j) ≡ Ai(N)
(
mod 5j−i+1

)
.

Since Ci is a function solely of Ai mod 5 and of i, we have Ci(N + 5j) = Ci(N). Since i
is arbitrary in the preceding expression, we have Ci(N + 5j) = Ci(N) for every such i, as
required. Also, Ci(N) = 1 if i < j (by the definition of j). So, by the definition of j, we
have j (N + 5j) = j(N), as required.

Corollary 1 tells us that, to determine the behavior of QN̄ , we should first look at N mod
5. If C1(N) = 1, then we need to look at N mod 25. If C2(N) = 1, then we need to look at
N mod 125, etc. This process can be thought of in terms of a tree on a subset of the strings
{0, 1, 2, 3, 4}∗, each of which can be thought of as an integer written in base 5. In addition,
each leaf of the tree has one of four “types.”

• The root of the tree is the empty string, and it has the five length-1 strings as children.
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• For a string w, interpret it as a base 5 integer Nw. Let C = C|w|(Nw) (where |w| denotes
the length of w). If C = 1, then w has children {xw : x ∈ {0, 1, 2, 3, 4}}; otherwise w
is a leaf of type C.

To determine the behavior of QN̄ , read the base-5 digits of N from right to left, and traverse
the tree accordingly. Each internal node (non-leaf) visited corresponds to an additional
temporary quasilinear piece in the sequence. When a leaf is reached, stop, and the leaf’s
type determines the eventual behavior, according to Theorem 2. Consider N = 42 as an
example. In base 5, 42 is 1325. The last digit is 2, so we go from the root of the tree to the
node labeled 2. This is not a leaf, so we go from it to the node labeled 32. This is also not
a leaf, so we continue to the node labeled 132. This is a leaf of type 2. So, Q42 consists of
three period-5 quasilinear pieces followed by a Proposition 1-like piece.

The tree has a structure consisting of levels: level i consists of the strings of length i that
appear in the tree. See Figure 7 for a diagram of levels 0 through 7 of the tree. Each leaf
is labeled as its type (0, 2, 3, or 4). The black nodes are internal nodes. This includes the
black nodes on the right. Each of these has five children, but they are not shown because
the tree is truncated. The structure of this tree is poorly understood. See [5] for further
discussion.

3.4 The Remaining Values of N

Theorem 2 characterizes the behavior of QN̄ for all

N /∈ {n : 2 ≤ n ≤ 34} ∪ {n : 1 < n < 118 and n ≡ 1 (mod 5)} ∪ {57, 67, 82, 107, 117} .

These 55 sequences can be studied individually by generating the sequences and observing
the terms. This study is carried out in [5]; what follows is a summary of those findings.
If N ≤ 27, QN̄ appears to behave chaotically and last for a long time (at least 10 million
terms), unless N ∈ {19, 23, 26}, in which case QN̄ is finite with no observable structure.
Thereafter, the remaining QN̄ sequences are finite, except for N ∈ {33, 36, 67, 71}. These all
eventually satisfy the conditions of Proposition 1 and are therefore conjectured to be infinite.

Of the N values exceeding 27, all but N = 67 and N = 117 can be computed explicitly
until either a 0 appears (ending the sequence) or until the conditions of Proposition 1 are
satisfied. For N = 67 and N = 117, Theorem 2 can be used to describe many terms.
Thereafter, Q67 can be shown to satisfy Proposition 1, and Q117 can be shown to reach 0,
and hence its end, not too long after Theorem 2 stops applying.

4 Future Work

This paper presents an initial application of the method of using parametrized families of
initial conditions to generate solutions to nested recurrence relations. The application here
involves the simplest sort of non-constant initial condition (a sequential one) and the most
well-known nested recurrence (the Q-recurrence). Our methods are applicable to a wider
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4 : 3
3 : 2

2

42 : 4

32

432

4432 : 3

3432

43432 : 4
33432 : 0

23432

423432

4423432 : 4
3423432 : 4
2423432 : 4
1423432 : 4
0423432 : 4

323432

4323432 : 2
3323432 : 2
2323432 : 2
1323432 : 2
0323432 : 2

223432

4223432
3223432
2223432
1223432
0223432

123432

4123432
3123432
2123432
1123432
0123432

023432

4023432 : 2
3023432 : 2
2023432 : 2
1023432 : 2
0023432 : 2

13432 : 2
03432 : 3

2432 : 4
1432 : 2
0432 : 0

332 : 3
232 : 0
132 : 2
032 : 4

22 : 3
12 : 0
02 : 2

1 : 0
0 : 4

Figure 7: Levels 0 through 7 of the tree of behaviors
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range of initial conditions and recurrence relations. Some initial work in this direction is
undertaken in [5].

Subsection 3.1 introduces a seemingly chaotic system of three nested recurrences, and it
uses them to construct a solution to Hofstadter’s recurrence that weaves together predictabil-
ity and unpredictability. There are a few directions that work related to these sequences could
progress in [5]. These include a deeper study of the properties of the R, S, and T sequences
or a search for other families of solutions to the Q-recurrence (or other recurrences) that
behave analogously to Proposition 1.

Quasilinear sequences appear frequently in this paper. There are many known solutions
to nested recurrences that are eventually quasilinear [4, 9]. The quasilinear chunks of these
solutions have a fixed starting point, but they continue forever. Here, we consider quasi-
linear chunks with fixed starting and stopping points. Previous work [4] gives a method
for discovering eventually quasilinear solutions of arbitrary periods to arbitrary recurrences.
Perhaps it can be extended to also find temporary quasilinear solutions.

Finally, the structure of the tree in Figure 7 remains poorly understood. In particular,
it is unknown whether the tree is finite or infinite, and it is unknown whether every string
in {0, 1, 2, 3, 4}∗ has a suffix in some leaf (equivalently, whether j(N) <∞ for all N). A full
understanding of this tree would give a more efficient characterization of the behaviors of
the sequences QN̄ .

A First 28 terms following initial condition of QN

Assuming N ≥ 14, these are the first 28 terms of QN following the initial condition.

QN(N + 1) = QN(N + 1−QN(N)) +QN(N + 1−QN(N − 1))

= QN(N + 1−N) +QN(N + 1− (N − 1))

= QN(1) +QN(2) = 1 + 2 = 3

(N ≥ 2)

QN(N + 2) = QN(N + 2−QN(N + 1)) +QN(N + 2−QN(N))

= QN(N + 2− 3) +QN(N + 2−N)

= QN(N − 1) +QN(2) = N − 1 + 2 = N + 1

(N ≥ 2)

QN(N + 3) = QN(N + 3−QN(N + 2)) +QN(N + 3−QN(N + 1))

= QN(N + 3− (N + 1)) +QN(N + 3− 3)

= QN(2) +QN(N) = 2 +N = N + 2

(N ≥ 2)
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QN(N + 4) = QN(N + 4−QN(N + 3)) +QN(N + 4−QN(N + 2))

= QN(N + 4− (N + 2)) +QN(N + 4− (N + 1))

= QN(2) +QN(3) = 2 + 3 = 5

(N ≥ 3)

QN(N + 5) = QN(N + 5−QN(N + 4)) +QN(N + 5−QN(N + 3))

= QN(N + 5− 5) +QN(N + 5− (N + 2))

= QN(N) +QN(3) = N + 3 = N + 3

(N ≥ 3)

QN(N + 6) = QN(N + 6−QN(N + 5)) +QN(N + 6−QN(N + 4))

= QN(N + 6− (N + 3)) +QN(N + 6− 5)

= QN(3) +QN(N + 1) = 3 + 3 = 6

(N ≥ 3)

QN(N + 7) = QN(N + 7−QN(N + 6)) +QN(N + 7−QN(N + 5))

= QN(N + 7− 6) +QN(N + 7− (N + 3))

= QN(N + 1) +QN(4) = 3 + 4 = 7

(N ≥ 4)

QN(N + 8) = QN(N + 8−QN(N + 7)) +QN(N + 8−QN(N + 6))

= QN(N + 8− 7) +QN(N + 8− 6)

= QN(N + 1) +QN(N + 2) = 3 +N + 1 = N + 4

(N ≥ 4)

QN(N + 9) = QN(N + 9−QN(N + 8)) +QN(N + 9−QN(N + 7))

= QN(N + 9− (N + 4)) +QN(N + 9− 7)

= QN(5) +QN(N + 2) = 5 +N + 1 = N + 6

(N ≥ 5)

QN(N + 10) = QN(N + 10−QN(N + 9)) +QN(N + 10−QN(N + 8))

= QN(N + 10− (N + 6)) +QN(N + 10− (N + 4))

= QN(4) +QN(6) = 4 + 6 = 10

(N ≥ 6)
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QN(N + 11) = QN(N + 11−QN(N + 10)) +QN(N + 11−QN(N + 9))

= QN(N + 11− 10) +QN(N + 11− (N + 6))

= QN(N + 1) +QN(5) = 3 + 5 = 8

(N ≥ 6)

QN(N + 12) = QN(N + 12−QN(N + 11)) +QN(N + 12−QN(N + 10))

= QN(N + 12− 8) +QN(N + 12− 10)

= QN(N + 4) +QN(N + 2) = 5 +N + 1 = N + 6

(N ≥ 6)

QN(N + 13) = QN(N + 13−QN(N + 12)) +QN(N + 13−QN(N + 11))

= QN(N + 13− (N + 6)) +QN(N + 13− 8)

= QN(7) +QN(N + 5) = 7 +N + 3 = N + 10

(N ≥ 7)

QN(N + 14) = QN(N + 14−QN(N + 13)) +QN(N + 14−QN(N + 12))

= QN(N + 14− (N + 10)) +QN(N + 14− (N + 6))

= QN(4) +QN(8) = 4 + 8 = 12

(N ≥ 8)

QN(N + 15) = QN(N + 15−QN(N + 14)) +QN(N + 15−QN(N + 13))

= QN(N + 15− 12) +QN(N + 15− (N + 10))

= QN(N + 3) +QN(5) = N + 2 + 5 = N + 7

(N ≥ 8)

QN(N + 16) = QN(N + 16−QN(N + 15)) +QN(N + 16−QN(N + 14))

= QN(N + 16− (N + 7)) +QN(N + 16− 12)

= QN(9) +QN(N + 4) = 9 + 5 = 14

(N ≥ 9)

QN(N + 17) = QN(N + 17−QN(N + 16)) +QN(N + 17−QN(N + 15))

= QN(N + 17− 14) +QN(N + 17− (N + 7))

= QN(N + 3) +QN(10) = N + 2 + 10 = N + 12

(N ≥ 10)
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QN(N + 18) = QN(N + 18−QN(N + 17)) +QN(N + 18−QN(N + 16))

= QN(N + 18− (N + 12)) +QN(N + 18− 14)

= QN(6) +QN(N + 4) = 6 + 5 = 11

(N ≥ 10)

QN(N + 19) = QN(N + 19−QN(N + 18)) +QN(N + 19−QN(N + 17))

= QN(N + 19− 11) +QN(N + 19− (N + 12))

= QN(N + 8) +QN(7) = N + 4 + 7 = N + 11

(N ≥ 10)

QN(N + 20) = QN(N + 20−QN(N + 19)) +QN(N + 20−QN(N + 18))

= QN(N + 20− (N + 11)) +QN(N + 20− 11)

= QN(9) +QN(N + 9) = 9 +N + 6 = N + 15

(N ≥ 10)

QN(N + 21) = QN(N + 21−QN(N + 20)) +QN(N + 21−QN(N + 19))

= QN(N + 21− (N + 15)) +QN(N + 21− (N + 11))

= QN(6) +QN(10) = 6 + 10 = 16

(N ≥ 10)

QN(N + 22) = QN(N + 22−QN(N + 21)) +QN(N + 22−QN(N + 20))

= QN(N + 22− 16) +QN(N + 22− (N + 15))

= QN(N + 6) +QN(7) = 6 + 7 = 13

(N ≥ 10)

QN(N + 23) = QN(N + 23−QN(N + 22)) +QN(N + 23−QN(N + 21))

= QN(N + 23− 13) +QN(N + 23− 16)

= QN(N + 10) +QN(N + 7) = 10 + 7 = 17

(N ≥ 10)

QN(N + 24) = QN(N + 24−QN(N + 23)) +QN(N + 24−QN(N + 22))

= QN(N + 24− 17) +QN(N + 24− 13)

= QN(N + 7) +QN(N + 11) = 7 + 8 = 15

(N ≥ 10)
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QN(N + 25) = QN(N + 25−QN(N + 24)) +QN(N + 25−QN(N + 23))

= QN(N + 25− 15) +QN(N + 25− 17)

= QN(N + 10) +QN(N + 8) = 10 +N + 4 = N + 14

(N ≥ 10)

QN(N + 26) = QN(N + 26−QN(N + 25)) +QN(N + 26−QN(N + 24))

= QN(N + 26− (N + 14)) +QN(N + 26− 15)

= QN(12) +QN(N + 11) = 12 + 8 = 20

(N ≥ 12)

QN(N + 27) = QN(N + 27−QN(N + 26)) +QN(N + 27−QN(N + 25))

= QN(N + 27− 20) +QN(N + 27− (N + 14))

= QN(N + 7) +QN(13) = 7 + 13 = 20

(N ≥ 13)

QN(N + 28) = QN(N + 28−QN(N + 27)) +QN(N + 28−QN(N + 26))

= QN(N + 28− 20) +QN(N + 28− 20)

= QN(N + 8) +QN(N + 8) = N + 4 +N + 4 = 2N + 8

(N ≥ 13)

B Final terms of QN̄ in the Cj = 0 case

These are the final 158 terms in QN̄(n) when Cj = 0 and N ≥ 118.

• QN̄(Aj + 3) = 6

• QN̄(Aj + 4) = 7

• QN̄(Aj + 5) = 8

• QN̄(Aj + 6) = 8

• QN̄(Aj + 7) = 10

• QN̄(Aj + 8) = Aj

(
Aj−Aj−1−2

5

)
+Bj + 3

• QN̄(Aj + 9) = 5

• QN̄(Aj + 10) = 8

• QN̄(Aj + 11) = 14

• QN̄(Aj + 12) = 10

• QN̄(Aj + 13) = 11

• QN̄(Aj + 14) = 13

• QN̄(Aj + 15) = Aj + 7

• QN̄(Aj + 16) = 15

• QN̄(Aj + 17) = Aj + 10

• QN̄(Aj + 18) = 14

• QN̄(Aj + 19) = 17
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• QN̄(Aj + 20) = 14

• QN̄(Aj + 21) = 17

• QN̄(Aj+22) = Aj

(
Aj−Aj−1−2

5

)
+Bj+11

• QN̄(Aj + 23) = 8

• QN̄(Aj + 24) = 15

• QN̄(Aj + 25) = Aj + 18

• QN̄(Aj + 26) = 22

• QN̄(Aj + 27) = 17

• QN̄(Aj + 28) = 22

• QN̄(Aj + 29) = 20

• QN̄(Aj+30) = Aj

(
Aj−Aj−1−2

5

)
+Bj+11

• QN̄(Aj + 31) = 14

• QN̄(Aj + 32) = 14

• QN̄(Aj + 33) = 34

• QN̄(Aj+34) = Aj

(
Aj−Aj−1−2

5

)
+Bj+14

• QN̄(Aj + 35) = 5

• QN̄(Aj + 36) = 14

• QN̄(Aj + 37) = 22

• QN̄(Aj + 38) = 30

• QN̄(Aj + 39) = Aj + 15

• QN̄(Aj + 40) = 33

• QN̄(Aj+41) = Aj

(
Aj−Aj−1−2

5

)
+Bj+29

• QN̄(Aj + 42) = 5

• QN̄(Aj + 43) = 30

• QN̄(Aj + 44) = Aj + 28

• QN̄(Aj + 45) = Aj + 24

• QN̄(Aj + 46) = 40

• QN̄(Aj + 47) = 33

• QN̄(Aj + 48) = Aj

(
Aj−Aj−1−2

5

)
+Aj +

Bj + 10

• QN̄(Aj + 49) = 15

• QN̄(Aj + 50) = 5

• QN̄(Aj + 51) = 54

• QN̄(Aj + 52) = 36

• QN̄(Aj + 53) = Aj + 15

• QN̄(Aj + 54) = 53

• QN̄(Aj + 55) = Aj + 40

• QN̄(Aj + 56) = 22

• QN̄(Aj + 57) = 22

• QN̄(Aj + 58) = 28

• QN̄(Aj + 59) = 36

• QN̄(Aj + 60) = 29

• QN̄(Aj + 61) = Aj + 32

• QN̄(Aj + 62) = 64

• QN̄(Aj + 63) = 36

• QN̄(Aj+64) = Aj

(
Aj−Aj−1−2

5

)
+Bj+22

• QN̄(Aj + 65) = 20

• QN̄(Aj + 66) = 40

• QN̄(Aj + 67) = 50

• QN̄(Aj + 68) = 36

• QN̄(Aj + 69) = 51
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• QN̄(Aj+70) = Aj

(
Aj−Aj−1−2

5

)
+Bj+31

• QN̄(Aj + 71) = 14

• QN̄(Aj + 72) = 28

• QN̄(Aj + 73) = Aj + 60

• QN̄(Aj + 74) = 54

• QN̄(Aj + 75) = 32

• QN̄(Aj + 76) = Aj

(
Aj−Aj−1−2

5

)
+Aj +

Bj + 39

• QN̄(Aj + 77) = Aj + 24

• QN̄(Aj + 78) = 54

• QN̄(Aj + 79) = Aj + 73

• QN̄(Aj + 80) = 29

• QN̄(Aj + 81) = 44

• QN̄(Aj + 82) = Aj + 45

• QN̄(Aj + 83) = Aj + 53

• QN̄(Aj + 84) = 70

• QN̄(Aj + 85) = Aj + 39

• QN̄(Aj + 86) = 62

• QN̄(Aj + 87) = Aj + 66

• QN̄(Aj + 88) = 44

• QN̄(Aj + 89) = Aj + 47

• QN̄(Aj + 90) = 83

• QN̄(Aj+91) = Aj

(
Aj−Aj−1−2

5

)
+Bj+47

• QN̄(Aj + 92) = 5

• QN̄(Aj + 93) = 44

• QN̄(Aj + 94) = Aj + 52

• QN̄(Aj + 95) = 97

• QN̄(Aj + 96) = 49

• QN̄(Aj +97) = 2Aj

(
Aj−Aj−1−2

5

)
+Aj +

2Bj + 10

• QN̄(Aj + 98) = 15

• QN̄(Aj + 99) = 70

• QN̄(Aj +100) = Aj

(
Aj−Aj−1−2

5

)
+Aj +

Bj + 50

• QN̄(Aj + 101) = 14

• QN̄(Aj + 102) = 44

• QN̄(Aj + 103) = Aj + 83

• QN̄(Aj + 104) = 50

• QN̄(Aj + 105) = Aj + 62

• QN̄(Aj + 106) = 66

• QN̄(Aj +107) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

74

• QN̄(Aj + 108) = 5

• QN̄(Aj + 109) = 50

• QN̄(Aj + 110) = Aj + 91

• QN̄(Aj + 111) = Aj + 52

• QN̄(Aj + 112) = 81

• QN̄(Aj + 113) = 75

• QN̄(Aj + 114) = Aj + 49

• QN̄(Aj + 115) = 99

• QN̄(Aj + 116) = Aj + 77

• QN̄(Aj + 117) = 54
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• QN̄(Aj +118) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

63

• QN̄(Aj + 119) = 20

• QN̄(Aj +120) = Aj

(
Aj−Aj−1−2

5

)
+Aj +

Bj + 50

• QN̄(Aj + 121) = 14

• QN̄(Aj + 122) = 5

• QN̄(Aj +123) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

113

• QN̄(Aj + 124) = 20

• QN̄(Aj + 125) = Aj + 62

• QN̄(Aj + 126) = 130

• QN̄(Aj + 127) = Aj + 65

• QN̄(Aj + 128) = 66

• QN̄(Aj + 129) = 100

• QN̄(Aj + 130) = 2Aj

(
Aj−Aj−1−2

5

)
+

2Bj + 33

• QN̄(Aj + 131) = 14

• QN̄(Aj +132) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

63

• QN̄(Aj + 133) = 20

• QN̄(Aj + 134) = Aj + 49

• QN̄(Aj + 135) = 185

• QN̄(Aj + 136) = 92

• QN̄(Aj + 137) = 2Aj + 24

• QN̄(Aj + 138) = 40

• QN̄(Aj + 139) = 70

• QN̄(Aj+140) = 2Aj

(
Aj−Aj−1−2

5

)
+Aj+

2Bj + 81

• QN̄(Aj + 141) = 14

• QN̄(Aj + 142) = 66

• QN̄(Aj + 143) = Aj + 124

• QN̄(Aj + 144) = 74

• QN̄(Aj + 145) = 35

• QN̄(Aj + 146) = Aj + 80

• QN̄(Aj + 147) = 148

• QN̄(Aj +148) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

68

• QN̄(Aj + 149) = 5

• QN̄(Aj + 150) = 35

• QN̄(Aj + 151) = 2Aj + 157

• QN̄(Aj + 152) = 54

• QN̄(Aj + 153) = 70

• QN̄(Aj +154) = Aj

(
Aj−Aj−1−2

5

)
+Aj +

Bj + 120

• QN̄(Aj + 155) = Aj + 39

• QN̄(Aj + 156) = 117

• QN̄(Aj + 157) = 151

• QN̄(Aj +158) = Aj

(
Aj−Aj−1−2

5

)
+Bj +

39

• QN̄(Aj+159) = Aj

(
Aj−Aj−1−2

5

)
+Bj+3

• QN̄(Aj + 160) = 0
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