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Abstract. We consider the problem of geometrically approximating a com-
plex analytic curve in the plane by the image of a polynomial parametrization
t 7→ (x1(t), x2(t)) of bidegree (d1, d2). We show the number of such curves is
the number of primitive necklaces on d1 white beads and d2 black beads. We
show that this number is odd when d1 = d2 is squarefree and use this to give
a partial solution to a conjecture by Rababah. Our results naturally extend
to a generalization regarding hypersurfaces in higher dimensions. There, the
number of parametrized curves of multidegree (d1, . . . , dn) which optimally os-
culate a given hypersurface are counted by the number of primitive necklaces
with di beads of color i.

1. Introduction

Given a generic complex analytic curve C ⊂ C2 through the origin defined locally
by the graph of g(x1) =

∑∞
i=1 cix

i
1 it is a common task to approximate C at the

origin by a member of a simpler family of curves. The family we consider are curves
which arise as the image of some polynomial map

x(t) : C→ C2

t 7→ (x1(t), x2(t))

of bidegree d := (d1, d2) and the notion of approximation we use is the degree
of vanishing of the univariate power series f(x1, x2) = x2(t) − g(x1(t)) at t = 0.
We call x(t) a k-fold d-parametrization when it is generically k-to-one. Up to
reparametrization, there are finitely many k-fold d-parametrizations which meet
C to the expected maximal approximation order d1 + d2 (Corollary 3.7). Images
of such parametrizations are curves of bidegree d

k :=
(
d1
k ,

d2
k

)
and are called d

k -
interpolants. Because d1 + d2 is the maximal approximation order attainable by a
(d1, d2)-parametrization, we may assume that f(x1, x2) is a polynomial in C[x1, x2]
by truncating higher order terms. We show that the number of d-interpolants of a
generic curve is the number of primitive necklaces on d1 white beads and d2 black
beads (Corollary 1.2).

When f ∈ R[x1, x2], and d1 = d2, Rababah conjectured that there exists at least one
real d-interpolant [11]. A similar conjecture was made by Höllig and Koch which
includes the case when interpolation points are distinct and also conjectures that
local approximation of a curve at a point occurs as the limit of the interpolation
of distinct points on that curve [7]. The cubic case was resolved and analyzed
thoroughly by DeBoor, Sabin, and Höllig [2]. Scherer showed that there are eight
(4, 4)-interpolants and investigated bounds on the number of those which are real
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[12]. For a family of curves known as “circle-like curves”, Rababah’s conjecture has
been resolved for all d1 = d2 [9] as well as for generic curves up to d1 = d2 ≤ 5
[8]. By enumerating interpolants and recognizing them as solutions to polynomial
systems we approach Rababah’s conjecture combinatorially. We show that when
d1 = d2 is squarefree, a real interpolant exists for parity reasons (Theorem 4.3).
Computations done in Section 5 provide evidence for Rababah’s conjecture and also
suggest that the number of real solutions has interesting lower bounds and upper
bounds.

Producing a parametric description of a plane curve with particular derivatives at
a point is a useful tool in Computer Aided Geometric Design particularly because
these curves can achieve a much higher approximation order than Taylor approxi-
mants. For example, a quintic Taylor approximant can meet a generic curve only
to order 6 while a (5, 5)-interpolant will meet to order 10. Such applications do not
have any preference for the behavior of the interpolating curve near infinity and so
only the cases when d1 = d2 have been considered. The more general problem of
finding a polynomial parametrization of multidegree d := (d1, . . . , dn) osculating a
hypersurface in Cn to approximation order |d| :=

∑
di places the original prob-

lem into a broader theoretical context. This does not complicate the notation or
proofs and so all arguments are made in the general setting. We reserve the word
d-interpolant for the case n = 2 and otherwise we call these objects d-osculants.

Theorem 1.1. Let H ⊂ Cn be a generic hypersurface through 0. The number of
d-osculants of H is equal to the number of primitive d-necklaces.

Corollary 1.2. The number of d-interpolants to a generic curve in the plane is
given by the number of primitive d-necklaces.

Table 1. The number of primitive d-necklaces (Sequence A24558
in the Online Encyclopedia of Integer Sequences [14]).

@
@@

d1

d2 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4
3 1 2 3 5 7 9 12 15
4 1 2 5 8 14 20 30 40
5 1 3 7 14 25 42 66 99
6 1 3 9 20 42 75 132 212
7 1 4 12 30 66 132 245 429
8 1 4 15 40 99 212 429 800
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2. Necklaces

Let d := (d1, . . . , dn) ∈ Nn. A d-necklace is a circular arrangement of di beads of
color i modulo cyclic rotation. A d-necklace is called k-fold if it has |d|k elements
in its orbit under rotation and a 1-fold necklace is called primitive. We denote
the number of k-fold d-necklaces by Nd,k and we let Md be the total number of
d-necklaces. Figure 1 displays the four (3, 3)-necklaces, the first three of which are
primitive while the last is 3-fold. Figure 2 displays the two (1, 1, 1)-necklaces, which
are both primitive.

Figure 1. All (3, 3)-necklaces.

Figure 2. All (1, 1, 1)-necklaces.

Observe that the number of k-fold d-necklaces is equal to the number of primi-
tive d

k :=
(
d1
k , . . . ,

dn
k

)
-necklaces. This is illustrated in Figure 1, where the 3-fold

necklace arises as the repetition of the only (1, 1)-necklace, three times. This fact
implies the useful formulaMd =

∑
k|gcd(d)

Nd,k.

Lemma 2.1. The numbers Nd,1 are the unique numbers satisfying the identity(
|d|
d

)
=

∑
k|gcd(d)

|d|
k
N d

k ,1
.

Where
(|d|

d
)
is the multinomial coefficient |d|!

d1!d2!···dn! .

Proof. Partitioning d-necklaces into their orbit size gives the recursion(
|d|
d

)
=

∑
k|gcd(d)

|d|
k
Nd,k

=
∑

k|gcd(d)

|d|
k
Nd

k ,1
.
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To see that only one sequence satisfies this recursion, observe that when gcd(d) = 1
the formula becomes (

|d|
d

)
= |d|Nd,1.

�

Remark 2.2. The identity in Lemma 2.1 induces the recursion

Nd,1 =

(
|d|
d

)
−

∑
k|gcd(d)
k 6=1

|d|
k
Nd

k ,1

on the numbers Nd,1.

There are at least two natural actions on the set of necklaces: reflection and color
swaps. A necklace can be reflected to produce another necklace. Those necklaces
which are invariant under reflection are called achiral. A color swap is given by a
permutation σ ∈ Sn where σ acts on a necklace on n colors by recoloring all beads
colored i instead by σ(i). When the necklace only has two colors, color swapping
is an involution whose fixed points are self-complementary necklaces.

The number of necklaces onN beads which are both self-complementary and achiral
have been enumerated [10]. Let N = 2rm with m odd, and let A2N be the number
of self-complementary achiral necklaces on 2N beads. Then

(1) A2N =

r−1∑
i=−1

2d2
ime−1.

Lemma 2.3. The number of self-complementary achiral necklaces on 2N beads is
even for N > 1.

Proof. If m > 1 then m must be at least three so each summand in Equation (1)
is divisible by two. If m = 1 then r ≥ 1 and we have

A2r =

r−1∑
i=−1

2d2
ie−1 = 20 + 20 +

r−1∑
i=1

2d2
ie−1 = 2 +

r−1∑
i=1

2d2
ie−1

which is also even. �

As mentioned in the introduction, we are primarily concerned with the case where
n = 2 and d1 = d2. We investigate the parity of N(d,d),1.

Lemma 2.4. The number of (d, d)-necklaces is even for all d > 2.

Proof. The sequence B2d is the number of necklaces with 2d beads on two colors
without any conditions on the number of beads of each color. By the color swapping
involution, the parity of the number of (d, d)-necklaces,M(d,d), is the same as the
parity of B2d. By the reflection involution, the parity ofM(d,d) is the same as the
parity of the number of self-complementary achiral necklaces on 2d beads which is
even by Lemma 2.3. �

Theorem 2.5. The number of primitive (d, d)-necklaces is odd if and only if d is
squarefree.
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Proof. By Lemma 2.4, the number M(d,d) is even for d > 2. We prove the result
by induction. The result holds for d < 8 by the diagonal of Table 1. Suppose that
d is squarefree and N(k,k),1 is odd for all squarefree k less than d. We write

(2) M(d,d) =
∑
k|d

N(k,k),1 = N(d,d),1 +

 ∑
k|d

16=k 6=d

N(k,k),1

+ 1.

There are an even number of summands inside the parentheses since each divisor
k can be paired with the distinct divisor d

k since d is not a square. Moreover, each
summand is odd by the induction hypothesis since d being squarefree implies each
divisor is squarefree. Thus, the sum inside the parenthesis is even. SinceM(d,d) is
also even, Equation (2) implies that N(d,d),1 must be odd.

Conversely, suppose that d is not squarefree. We will prove that N(d,d),1 is even by
induction. Note that for d = p2 with p a prime, we have M(p2,p2) = N(p2,p2),1 +
N(p,p),1 + 1 and since N(p,p),1 is odd, and M(p2,p2) is even, we see that N(p2,p2),1

must be even as well. This serves as our base of induction.

Now, consider the case when N is divisible by a square. Then we may write

M(d,d) = N(d,d),1 +
∑
k∈K

N(k,k),1 +
∑
k∈K′

N(k,k),1 + 1

where K is the set of all squarefree divisors of d and K ′ is the set of all non-
squarefree divisors of d other than 1 and d itself. We have by induction hypothesis
that the summands in the right sum are even and thus do not alter the parity of
N(d,d),1. So it is enough to prove that the number of summands in the left sum is
odd. The number of squarefree divisors of d is

2ω(d) =
∑
k|d

|µ(k)|

where ω(d) is the number of distinct primes dividing d and µ is the Möbius function,
so ∑

k|d
16=k 6=d

|µ(k)| = 2ω(d) − |µ(d)| − |µ(1)| = 2ω(d) − 1

which is odd. �

3. Main Definitions and Results

Given a hypersurface H ⊆ Cn, through 0, we wish to find curves which osculate H
optimally at 0. We restrict ourselves to curves which arise from d-parametrizations.

Definition 3.1. Fix d := (d1, . . . , dn) ∈ Nn. A polynomial map

x(t) : C→ Cn

t 7→ (x1(t), . . . , xn(t))

such that xi(t) ∈ C[t] has degree di and x(0) = 0 is called a d-parametrization. A
d-parametrization is said to be k-fold if it is generically k-to-one.
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We write a d-parametrization x(t) in coordinates that describe the roots of xi(t)+1,

xi(t) =

 di∏
j=1

(αi,jt+ 1)

− 1,

and denote the space of d-parametrizations by Cα.

We define approximation order in the following algebraic way.

Definition 3.2. Let H ⊆ Cn be a hypersurface passing through 0 given by the
polynomial

f =
∑

I=(i1,...,in)∈Nn

cIx
i1
1 · · ·xinn ∈ C[x1, . . . , xn].

A k-fold d-parametrization x(t) approximates H at 0 to order γ ∈ N if

(3) f(x(t)) ≡ 0 (mod tγ).

If γ = |d| :=
∑n
i=1 di, then we say that the image x(C) is a d

k -osculant of H.

Remark 3.3. Because we are interested in counting the number of d-osculants
(geometric objects) of H rather than the number of d-parametrizations approx-
imating H to optimal order (algebraic objects), we must account for when two
d-parametrizations yield the same curve. Two d-parametrizations x(t), x̂(t) are
said to be reparametrizations of one another if they have the same image. We
remark that since x(0) = x̂(0) = 0 and both maps are d-parametrizations, this
implies that x(t) = x̂(βt) for some β ∈ C∗

Motivated by the definition of approximation order, we define hk to be the coeffi-
cient of tk in f(x(t)). That is

f(x(t)) =
∑
I∈Nn

cIx(t)
I =

∞∑
k=1

hkt
k

so hk is regarded as a polynomial in C[c][α]. Thus, the condition for x(t) to define
a d-parametrization meeting H to order |d| is given by the vanishing of the |d| − 1

polynomials Hd := {hk}|d|−1k=1 .

Lemma 3.4. Fix d ∈ Nn. Then the polynomial hk ∈ C[c][α] is bihomogeneous of
degree (1, k) in the c and α variables respectively.

Proof. Suppose that f and x(t) satisfy Equation (3). The composition f(x(t)) is a
homogeneous linear form in the cI . Note also, that the reparametrization t 7→ βt
for some β ∈ C∗ does not change whether or not Equation (3) is satisfied, and that
t 7→ βt is the same operation as αi,j 7→ βαi,j . This shows that scaling the αi,j
does not change the solutions to hk, so the hk are homogeneous in those variables
as well. Finally, it is immediate that every factor of t in the term hkt

k must come
with a factor of some α variable and so hk is degree k in the α variables. �

Lemma 3.4 implies that the incidence variety V (Hd) is a subvariety of the product
of projective spaces Pα × Pc. This agrees with the geometric intuition that the
scaling of the equation of H, or the particular parametrization of an osculant x(C)
should not change the approximation order.
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It will prove useful to embed V (Hd) into a larger projective space by keeping track
of the leading coefficient of the product

∏n
i=1 xi(t). Namely, we write

z|d| =

n∏
i=1

di∏
j=1

αi,j .

This gives us the diagram

V (Hd) ⊆ Pα,z × Pcyπ
Pc

and we are interested in the generic properties of the fibres of π.

We will begin by proving Theorem 1.1 for a particular parameter choice c̃ corre-
sponding to the hypersurface

H̃ := V

((
n∏
i=1

(xi + 1)

)
− 1

)
.

For this fibre, Theorem 1.1 can be proven with an explicit bijection. We then argue
that the properties of this specific fibre, such as cardinality, extend to almost all
fibres.

Lemma 3.5. The fibre π−1(c̃) consists of |d|! simple solutions.

Proof. The equations coming from (3) can be written explicitly for H̃ as(
n∏
i=1

(xi(t) + 1)

)
− 1 ≡ 0 (mod t|d|)

 n∏
i=1

 di∏
j=1

αi,jt+ 1

 ≡ 1 (mod t|d|)

(4)

 n∏
i=1

 di∏
j=1

αi,jt+ 1

 = 1 + (zt)
|d|

This equality induces |d| homogeneous polynomial equations to be solved in the
coordinates (α, z) of degrees 1, 2, . . . , |d|.

We note that z cannot be zero, since otherwise all αi,j are zero and there are no
projective solutions to |d| equations in |d|+1 variables. Because of this, all solutions
live in the affine open chart z 6= 0 and so to count the number of projective solutions,
we count the number of affine solutions with z = 1. Our condition now becomes

(5)

 n∏
i=1

 di∏
j=1

αi,jt+ 1

 = 1 + t|d|
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Note that the roots of the univariate polynomial on the right hand side of Equation
(4) are the |d|-th roots of −1, so the roots on the left hand side must be the
same. Thus, assigning the |d|-th roots of −1 to distinct αi,j produces all solutions
to Equation (5). There are exactly |d|! distinct ways to do this so there are |d|!
distinct solutions to Equation (5), in particular, there are finitely many solutions.
Bézout’s Theorem gives |d|! as an upper bound for the number of solutions so each
solution must be simple. �

Theorem 3.6. The d-osculants of H̃ are in bijection with primitive d-necklaces.

Proof. We have constructed all solutions to π−1(c̃) in the proof of Lemma 3.5.
We now produce a bijection between d-parametrizations coming from π−1(c̃) and
circular arrangements of di beads colored i. Then a bijection between images of
these d-parametrizations and d-necklaces. Finally, a bijection between d-osculants
and primitive d-necklaces.

First, we note that we may permute any αi,j with αi,j′ since this only reorders the
factors of xi(t). Pick some solution α̂ from Lemma 3.5. Embed the |d|-th roots of
−1 into C and color such a point i if it appears as α̂i,j for some j. Note now that
this produces a bijection between d-parametrizations meeting H̃ to order |d| and
circular arrangements of |d| roots of −1 (beads) with di colored i.

Reparametrizing α̂ so that z remains equal to 1 corresponds to precomposing a
parametrization with t 7→ ωt for ω|d| = 1, or in other words, rotating the circular
arrangement 2π

|d| radians. This shows that the number of curves parametrized by
our d-parametrizations is equal to the number of circular arrangements of di beads
of color i, modulo cyclic rotation: d-necklaces.

Finally, some necklaces do not parametrize a d-osculant, but rather a d
k -osculant.

These parametrizations are those which appear as precompositions with t 7→ tk,
or in other words, only have |d|k distinct reparametrizations. Since reparametriza-
tion corresponds to cyclic rotaiton, these are the necklaces whose orbits have size
|d|
k . Therefore, the parametrizations which give d-osculants are 1-fold and are in
bijection with the primitive necklaces. �

Corollary 3.7. For generic ĉ ∈ Pc, the fibre π−1(ĉ) is zero dimensional.

Proof. The set Cr := {ĉ ∈ Pc|dim(π−1(ĉ)) ≤ r} is Zariski open in Pc (Ch 1. Sect.
6 Thm 7. [13]) and so exhibiting one fibre, namely π−1(c̃) whose dimension is zero
implies that there is an open subset U ⊆ Pc whose fibre dimension is zero or less.
The fibre of any element in Pc under π is never empty because it corresponds to
solving a system of |d| equations in |d| + 1 variables, and so every fibre of u ∈ U
has dimension 0. �

Corollary 3.8. For generic ĉ, the fibre π−1(ĉ) consists of |d|! simple points.

Proof. By Chapter 2 Section 6 Theorem 4 of [13], the set of points of π which have
fibres of cardinality |d|! is open. Lemma 3.5 implies that it is not empty. �
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Proof of Theorem 1.1

Let ĉ be a generic parameter in Pc. Then π−1(ĉ) consists of |d|! simple points each
corresponding to a d-parametrization. Two d-parametrizations are the same if and
only if their α coordinates are in the same orbit of the action by Sd1×· · ·×Sdn since
permuting the set {αi,j}dij=1 leaves xi(t) fixed. So there are only |d|!

d1!d2!···dn! =
(|d|

d
)

distinct parametrizations.

Partitioning these distinct parametrizations into the sets Pk containing those which
are k-fold induces the equation(

|d|
d

)
=

∑
k|gcdd

|Pk|.

Note that each parametrization x(t) ∈ P1 has |d| reparametrizations which fix
z = 1, namely {x(ωit)}|d|i=1 where ω|d| = 1. However, a d-parametrization in Pk
must appear as a d

k -parametrization precomposed with t 7→ tk and so there are
only |d|k reparametrizations fixing z = 1. Since

f(x(tk)) ≡ 0 (mod t|d|) ⇐⇒ f(x(t)) ≡ 0 (mod t
|d|
k )

we see that the images of the parametrizations in Pk are the d
k -osculants.

Letting Nd equal the number of d-osculants, we see that |Pk| is equal to Nd
k
times

the number of reparametrizations of a d
k -osculant, so(

|d|
d

)
=

∑
k| gcd (d)

|d|
k
N |d|

k

which is the necklace recurrence in Lemma 2.1. �

One desirable property of d-osculants that we have not proven is whether or not all
d-osculants of a regular value ĉ ∈ Cc are smooth. The technique of considering the
hypersurface H̃ and arguing that this is generic behavior is unsuccessful because not
all d-osculants for H̃ are smooth. Under the bijection in Theorem 3.6, a singular
d-osculant corresponds to a primitive d-necklace embedded into C via |d|-th roots
of −1 such that the sum of each subset of |d|-th roots of −1 colored i is zero: these
are the linear terms of the xi(t) and x(C) is singular whenever the linear terms
of each xi(t) are zero. There exists a primitive (9, 9)-necklace with this property,
and thus there exists a singular (9, 9)-interpolant of H̃. This necklace is depicted
in Figure 3.

4. Real solutions

If there is an odd number of solutions to a polynomial system defined over R, then
there must be at least one real solution. However, our solution count in Theorem
1.1 is not a priori the count of a system of real polynomials. In fact, the only such
solution count we have determined is that of Hd∪{z = 1} which has |d|! solutions.
Therefore, this does not directly imply that when Nd is odd a real solution must
exist. However, we show that this does happen to be the case.
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Figure 3. A primitive (9, 9)-necklace corresponding to a singular
(9, 9)-interpolant of H̃.

Lemma 4.1. The k-fold solutions of π−1(ĉ) for a parameter ĉ ∈ Rc are fixed as a
set under complex conjugation.

Proof. We prove this using induction on the number of divisors of gcd (d). For the
base case, suppose that gcd (d) = 1. Then all solutions must correspond to 1-fold
d-parametrizations. Thus, the |d|! solutions are fixed under conjugation as they
are solutions to a real system of polynomial equations.

Suppose now that gcd (d) has proper divisors. The solutions to Hd ∪ {z = 1} are
fixed under conjugation as a set because they are the solutions to a real polynomial
system. Moreover, the set of d-parametrizations which are not 1-fold is fixed under
conjugation by induction hypothesis, so the solutions left over (namely the 1-fold
d-parametrizations) must be as well. �

Lemma 4.2. If Nd is odd, there is at least one real d-osculant.

Proof. Partitioning the |d|! solutions to Hd ∪ {z = 1} into sets determined by
whether or not they are k-fold gives the recursion

|d|! =
∑

k| gcdd

(
n∏
i=1

di!

)
|d|
k
Nd/k

By Lemma 4.1, we know that the (
∏n
i=1 di!) |d|Nd 1-fold d-parametrizations are

fixed under complex conjugation as a set.

Recall that the factor of (
∏n
i=1 di!) |d| occurs because for each d-osculant, there

are |d| reparametrizations, and
∏n
i=1 di! ways to relabel the roots of xi(t). Let

p1, . . . , pNd be all d-osculants and let Si denote the class of all solutions which
correspond to pi.

Let α ∈ Si and consider a relabeling of the roots via (σ1, . . . , σn) ∈ Sd1×· · ·×Sdn so
that αi,j 7→ αi,σi(j). If such a relableing induces complex conjugation (if σ(α) = α)
then the roots of all xi(t) are fixed under conjugation and thus α corresponds to a
real d-osculant. If any reparametrization α 7→ ωkα for ω|d| = 1 induces complex
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conjugation, then

ωkα = α

=⇒ ωk/2α = ω−k/2α = ω−k/2ωkα = ωk/2α

and so the reparametrization ωk/2α is fixed under complex conjugation, so pi must
be real.

Therefore, if Nd is odd, then either (1) there is a real solution, or (2) none of the
(
∏n
i=1 di!) |d| solutions corresponding to pi are conjugates of one another. There-

fore, the classes Si must be conjugates of eachother set-wise. But that is a contra-
diction, since there are an odd number of classes. �

Theorem 4.3. Let C be a generic curve in the plane defined by a real polynomial.
For any squarefree integer d there exists at least one real (d, d)-interpolant.

Proof. This follows directly from Lemma 4.2 and Theorem 2.5. �

5. Computations

Homotopy continuation, a tool in numerical algebraic geometry, provides an ex-
tremely quick way to produce solutions to a particular polynomial system when
solutions to a similar system have been precomputed. Briefly, the method con-
structs a homotopy from the polynomial system whose solutions are known (called
the start system) to the target polynomial system, whose solutions are desired.
Then the start solutions are tracked using predictor-corrector methods toward the
target solutions.

Since we have an explicit description of all d-osculants of H̃ given by necklaces, this
method is perfectly suited for the problem of computing d-osculants for a generic
H. We outline the process in Algorithm 5.1.

Algorithm 5.1. (Finding all d-osculants)

Input: d ∈ Nn, I ⊆ Nn, {cI}I∈I ⊆ C
Output: All d-osculants of V (f) where f =

∑
I∈I

cIx
I .

1) Compute all primitive d-necklaces via set partitions of {1, . . . , |d|}
so that bi,j is the j-th element of the i-th part of the set partition.
2) For each primitive d-necklace, compute x(t) = (x1(t), . . . , xn(t)) where
xi(t) = (−1) +

∏di
j=1(ω

bi,j t+ 1).

3) Set the starting parameters to be those coming from H̃.
4) Set the starting points to be the solutions computed in Step 2.
5) Track the solutions of the equations given by (3) by
varying the parameters cI from those corresponding to H̃ towards those
corresponding to f .
7) Return the solutions given by the homotopy.
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The software alphaCertified can certify if a solution is real or not and relies on
Smale’s α-theory [6, 15]. Algorithm 5.1 computes d-osculants in the α variables
and so solutions which correspond to real osculants probably do not have real
coordinates. Therefore, to certify that solutions are real, we expand the expressions

xi(t) = −1 +
di∏
j=1

(αi,jt+ 1) =

di∑
j=1

ai,jt
i

and normalize so that a1,1 = 1. Even though we have not proven that a1,1 is gener-
ically nonzero, we have only seen this behavior in the computational experiments.
After this normalization, real interpolants do correspond to solutions with real co-
ordinates and we can use alphaCertified to certify the number of real solutions.

We implemented Algorithm 5.1 in Macaulay 2 using the Bertini.m2 package
to call the numerical software Bertini for the homotopy continuation [1, 4, 5].
Using the implementation, we computed many instances of the problem of finding
(d1, d2)-interpolants and we tally the number of real solutions for the problems in
Table 2 where the row labeled k indicates that N(d1,d2) (mod 2)+2k real solutions
were found. The current certified results can be found on the author’s webpage [3].

As one can see from Table 2 that when d1 = d2 it seems that Rababah’s conjecture
holds. Moreover, in the case of (4, 4) and (5, 5) there seem to be nontrivial upper
bounds to the number of real solutions, namely 6 and 15 respectively.

(d1,d2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)
N(d1,d2) 2 2 3 3 5 7 8 14 25

ro
w
=

#
re

al
so

ls
−
N

(
d
1
,d

2
)
(m

o
d

2
)

2

0 84247 102629 195490 414314 414314 1925 0 73 0

1 486533 432605 313559 39985 405142 300265 125841 6344 138

2 - - 30358 71383 336261 38692 15795

3 - - 12072 62 102139 16309

4 - - - - - - 0 15517 3182

5 - - - - - 19 102

6 - - - - - - 0 3

7 - - - - - - - 5
Table 2. Results of Computational Experiments

Example 5.2 (A curve with six real (4, 4)-interpolants). Consider the curve defined
by

f(x, y) = (−586971)x+ (−481753)x2 + (114414)x3 + (−361929)x4+
(152011)x5 + (−616310)x6 + (244262)x7 − 1000000y.
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Figure 4. Six real (4, 4)-interpolants

The eight (4, 4)-interpolants are given (approximately) by

s1 : x(t) = (.166 + 1.601i)t4 + (.028− .204i)t3 + (−.113− 1.053i)t2 + t,

y(t) = (.003− 1.219i)t4 + (.207 + 1.134i)t3 + (−.415 + .618i)t2 − .587t
s2 : x(t) = (.166− 1.601i)t4 + (.028 + .204i)t3 + (−.113 + 1.053i)t2 + t,

y(t) = (.003 + 1.219i)t4 + (.207− 1.134i)t3 + (−.415− .618i)t2 − .587t
s3 : x(t) = .031t4 − .537t3 − .065t2 + t,

y(t) = .113t4 + .492t3 − .444t2 − .587t
s4 : x(t) = −9.902t4 + 4.516t3 + 2.234t2 + t,

y(t) = −.538t4 − 4.689t3 − 1.793t2 − .587t
s5 : x(t) = −.347t4 − .787t3 + .388t2 + t,

y(t) = .661t4 + .203t3 − .709t2 − .587t
s6 : x(t) = 8.902t4 + 2.333t3 − 1.772t2 + t,

y(t) = −9.956t4 + .452t3 + .558t2 − .587t
s7 : x(t) = .162t4 − .799t3 − .349t2 + t,

y(t) = .134t4 + .92t3 − .277t2 − .587t
s8 : x(t) = −.613t4 − 2.228t3 + .031t2 + t,

y(t) = 2.155t4 + 1.392t3 − .5t2 − .587t.

Here, s3, . . . , s8 define real curves. Figure 4 plots their branches near t = 0.
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