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A q-QUEENS PROBLEM

IV. ATTACKING CONFIGURATIONS

AND THEIR DENOMINATORS

SETH CHAIKEN, CHRISTOPHER R. H. HANUSA, AND THOMAS ZASLAVSKY

Abstract. In Parts I–III we showed that the number of ways to place q nonattacking
queens or similar chess pieces on an n × n chessboard is a quasipolynomial function of n
whose coefficients are essentially polynomials in q.

In this part we focus on the periods of those quasipolynomials. We calculate denominators
of vertices of the inside-out polytope, since the period is bounded by, and conjecturally equal
to, their least common denominator. We find an exact formula for that denominator of every
piece with one move and of two-move pieces having a horizontal move. For pieces with three
or more moves, we produce geometrical constructions related to the Fibonacci numbers that
show the denominator grows at least exponentially with q.
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1. Introduction

The famous n-Queens Problem asks for the number of arrangements of n nonattacking
queens—the largest possible number—on an n× n chessboard.1 There is no known general
formula, other than the very abstract—that is to say impractical—one we obtained in Part II
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1For surveys of the n-Queens Problem see, for instance, [12, 2].
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and more recently the concrete but also impractical permanental formula of Pratt [11].
Solutions have been found only by individual analyses for small n.

In this series of six papers [3, 4, 5, 6, 7]2 we treat the problem by separating the board size,
n, from the number of queens, q, and rephrasing the whole problem in terms of geometry.
We also generalize to every piece P whose moves are, like those of the queen, rook, and
bishop, unlimited in length. Such pieces are known as “riders” in fairy chess (chess with
modified rules, moves, or boards); an example is the nightrider, whose moves are those of
the knight extended to any distance. The problem then, given a fixed rider P, is:

Problem 1. Find an explicit, easily evaluated formula for uP(q;n), the number of nonat-
tacking configurations of q unlabelled pieces P on an n× n board.

One would wish there to be a single style of formula that applies to all riders. This ideal
is realized to an extent by our work. We proved in Part I that for each rider P, uP(q;n)
is a quasipolynomial function of n of degree 2q and that the coefficients of powers of n are
given by polynomials in q, up to a simple normalization; for instance, the leading term is
n2q/q!. Being a quasipolynomial means that for each fixed q, uP(q;n) is given by a cyclically
repeating sequence of polynomials in n (called the constituents of the quasipolynomial); the
shortest length of such a cycle is the period of uP(q;n). That raises a fundamental question.

Problem 2. What is the period p of the quasipolynomial formula for uP(q;n)? (The period,
which pertains to the variable n, may depend on q.)

The period tells us how much data is needed to rigorously determine the complete formula;
2qp values of the counting function determine it completely, since the degree is 2q and the
leading coefficient is known. Václav Kotěšovec [9, 10] has expertly used this computational
approach to make educated guesses for many counting functions; proving the formula requires
a proof of the period. The difficulty with this computational approach is that, in general,
p is hard to determine and seems usually to explode with increasing q. (We have reason to
believe the period increases at least exponentially for any rider with at least three moves;
see Theorem 5.6.) A better way would be to find information about the uP(q;n) that is valid
for all q. For instance:

Problem 3. For a given piece P, find explicit, easily evaluated formulas for the coefficients
of powers of n in the quasipolynomials uP(q;n), valid for all values of q.

A complete solution to Problem 3 would solve Problem 1. We think that is unrealistic but
we have achieved some results. In Part I we took a first step: in each constituent polynomial,
the coefficient γi of n

2q−i is (neglecting a denominator of q!) itself a polynomial in q of degree
2i, that varies with the residue class of n modulo a period pi that is independent of q. In
other words, if we count down from the leading term there is a general formula for the ith
coefficient as a function of q that has its own intrinsic period; the coefficient is independent
of the overall period p. This opens the way to explicit formulas and in Part II we found
such a formula for the second leading coefficient as well as the complete quasipolynomial
for an arbitrary rider with only one move—an unrealistic game piece but mathematically
informative. In Part III we found the third and fourth coefficients by concentrating on partial
queens, whose moves are a subset of the queen’s.

2Some of this paper was contained in the first version of Part IV, announced in Parts I and II, which is
now mostly Part V.
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In the current part we push the same method in another direction by focusing on the effect
of the number of moves. In our geometrical approach the boundaries of the square determine
a hypercube in R2q and the attack lines determine hyperplanes whose 1/(n + 1)-fractional
points within the hypercube represent attacking configurations, which must be excluded;
the nonattacking configurations are the 1/(n+1)-fractional points inside the hypercube and
outside every hyperplane, so it is they we want to count. The combination of the hypercube
and the hyperplanes is an inside-out polytope [1]. We apply the inside-out adaptation of
Ehrhart lattice-point counting theory, in which we combine by Möbius inversion the numbers
of lattice points in the polytope that are in each intersection subspace of the hyperplanes.
The Ehrhart theory implies quasipolynomiality of the counting function and that the period
divides the denominator D, defined as the least common multiple of the denominators of
all coordinates of all vertices of the inside-out polytope. We investigate the denominators of
individual vertices to provide a better understanding of the period. A consequence is an exact
formula for the denominator of a one-move rider in Proposition 3.1. We apply the notion
of trajectories from Hanusa and Mahankali [8] to prove a formula for the denominator of a
two-move rider with a horizontal move in Proposition 4.2. Theorem 5.6 proves that when
a piece has three or more moves, by letting the number q of pieces increase we obtain a
sequence of inside-out polytope vertices with denominators that increase exponentially, and
the polytope denominators may increase even faster. These vertices arise from geometrical
constructions related to Fibonacci numbers.

In general in Ehrhart theory the period and the denominator need not be equal and often
are not, so it is surprising that in all our examples, and for any rider with only one move,
they are. We cannot prove that is always true for the inside-out polytopes arising from the
problem of nonattacking riders, but this observation suggests that our work may be a good
test case for understanding the relationship between denominators and periods.

A summary of this paper: Section 2 recalls some essential notation and formulas from
Parts I–III, continuing on to describe the concepts we use to analyze the periods. We
turn to the theory of attacking configurations of pieces with small numbers of moves in
Sections 3–6, partly to establish formulas and conjectural bounds for the denominators of
their inside-out polytopes, especially for partial queens and nightriders, and partly to support
the exponential lower bound on periods and our many conjectures.

We append a dictionary of notation for the benefit of the authors and readers.

2. Essentials

2.1. From before.

Each configuration-counting problem arises from three choices: a chess board, a chess
piece, and the number of pieces. (The size of the board is considered a variable within the
problem.)

The board B, is any rational convex polygon, i.e., it has rational corners. (We call the
vertices of B its corners to avoid confusion with other points called vertices.) The pieces
are placed on the integral points in the interior of an integral dilation of B. In many cases
we will consider our board to be the unit square B = [0, 1]2, in that the n × n chessboard
corresponds to the interior points of the (n + 1)-dilation of B. We call the open or closed
unit square the “(square) board”; it will always be clear which board we mean.

The piece P has moves defined as all integral multiples of a finite set M of non-zero,
non-parallel integral vectors m = (c, d) ∈ Z2, which we call the basic moves. Each one must
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be reduced to lowest terms; that is, its two coordinates need to be relatively prime; and no
basic move may be a scalar multiple of any other. Thus, the slope of m contains all necessary
information and can be specified instead of m itself. We say two distinct pieces attack each
other if the difference of their locations is a move. In other words, if a piece is in position
z := (x, y) ∈ Z2, it attacks any other piece in the lines z + rm for r ∈ Z and m ∈ M. For
example, the set M is {(1, 1), (1,−1)} for the bishop. Attacks are not blocked by a piece
in between (a superfluous distinction for nonattacking configurations), and they include the
case where two pieces occupy the same location. The number q is the number of pieces that
are to occupy places on the board; we assume q > 0.

A configuration z = (z1, . . . , zq) is any choice of locations for the q pieces, including on
the board’s boundary, where zi := (xi, yi) denotes the position of the ith piece Pi. (The
boundary, while not part of the board proper, is necessary in our counting method in order
to estimate periods.) That is, z is an integral point in the (n + 1)-fold dilation of the 2q-
dimensional closed, convex polytope P = Bq.. If we are considering the undilated board, z
is a fractional point in Bq. We consider these two points of view equivalent; it will always be
clear which kind of board or configuration we are dealing with. Any integral point z in the
dilated polytope, or its fractional representative 1

n+1
z in the undilated board, represents a

placement of pieces on the board, and vice versa; thus we use the same term “configuration”
for the point and the placement.

The constraint for a nonattacking configuration is that the pieces must be in the board
proper (so z ∈ (B◦)q or its dilation) and that no two pieces may attack each other. In other
words, if there are pieces at positions zi and zj , then zj − zi is not a multiple of any m ∈ M;
equivalently, (zj − zi) ·m⊥ 6= 0 for each m ∈ M, where m⊥ := (d,−c).

For counting we treat nonattacking configurations as “interior” integral lattice points in the
dilation of an inside-out polytope (P,AP), where P = Bq and AP is the move arrangement ,
whose members are the move hyperplanes (or attack hyperplanes)

H
d/c
ij := {(z1, . . . , zq) ∈ R2q : (zj − zi) ·m⊥ = 0}

for m = (c, d) ∈ M; the equations of these hyperplanes are called the move equations (or
attack equations) of P. We supplement this notation with

Xij := H
1/0
ij : xi = xj and Yij := H

0/1
ij : yi = yj

for the hyperplanes that express an attack along a row or column. Thus, by the definition of
the interior of an inside-out polytope [1], a configuration z ∈ P is nonattacking if and only if

it is in P◦ and not in any of the hyperplanes H
d/c
ij . A vertex of (P,AP) is any point in P that

is the intersection of facets of P and hyperplanes of AP. For instance, it may be a vertex of
P, or it may be the intersection point of hyperplanes if that point is in P, or it may be the
intersection of some facets and some hyperplanes.

The 2q equations that determine a vertex z of (Bq,AP) are move equations, associated to

hyperplanes H
d/c
ij ∈ AP, and boundary equations or fixations, of the form zi ∈ an edge line

E of B. (For the square board a fixation is one of xi = 0, yi = 0, xi = 1, and yi = 1. In
a dilation N · B, a fixation has the form zi ∈ N · E; on the square board, xi = 0, yi = 0,
xi = N , or yi = N .) The vertex z represents a configuration with Pi on the boundary of the
board (if it has a fixation) or attacking one or more other pieces (if in a hyperplane). We
call the configuration of pieces that corresponds to a vertex z a vertex configuration.
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2.2. Periods and denominators.

Let us write ∆(z) for the least common denominator of a fractional point z ∈ R2q and
call it the denominator of z. The denominator D = D(Bq,AP) of the inside-out polytope is
then the least common multiple of the denominators ∆(z) of the individual vertices.

One way to find ∆(z) for a vertex z is to find its coordinates by intersecting move hyper-
planes of P and facet hyperplanes of Bq. There is an equivalent method to find ∆(z). For
a set of move equations and fixations producing a vertex configuration z, notice that the
∆(z)-multiple of z has integer coordinates and no smaller multiple of z does. This proves:

Lemma 2.1. For a vertex z of (Bq,AP), ∆(z) equals the smallest integer N such that a
configuration N · z satisfying the move equations and fixations zi ∈ N ·E for edge lines E has
integral coordinates.

We expect the period to be weakly increasing with q and also with the set of moves;
that is, if q′ > q, the period for q′ pieces should be a multiple of that for q; and if P′ has
move set containing that of P, then the period of P′ should be a multiple of that of P. We
cannot prove either property, but they are obvious for denominators, and we see in examples
that the period equals the denominator. Write Dq(P) for the denominator of the inside-out
polytope ([0, 1]2q,A q

P ). (The optional superscript in A
q
P is for when the number of pieces

varies.)

Proposition 2.2. Let B be any board, let q′ > q > 0, and suppose P and P′ are pieces
such that every basic move of P is also a basic move of P′. Then the denominators satisfy
Dq(P)|Dq′(P) and Dq(P)|Dq(P

′).

Proof. The first part is clear if we embed R2q into R2q′ as the subspace of the first 2q
coordinates, so the polytope Bq is a face of B2q′ and the move arrangement A

q
P in R2q is a

subarrangement of the arrangement induced in R2q by A
q′

P .
The second part is obvious since A

q
P ⊆ A

q
P′. �

A partial queen Qhk is a piece with h basic moves that are horizontal or vertical (obviously,
h ≤ 2) and k basic moves at ±45◦ to the horizontal (also, k ≤ 2). Four of them are the
semirook Q10, rook Q20, semibishop Q01, anassa Q11,3 and semiqueen Q21. Anticipating later
results, we have the striking conclusion that:

Theorem 2.3. On the square board there are only four pieces whose denominator is 1 for
all q ≥ 1. They are the rook, semirook, semibishop, and anassa. Their counting functions
are polynomials in n.

Proof. By Theorem 3.2 the only one-move pieces with denominator 1 are the semirook and
semibishop, so by Proposition 2.2 the only pieces that can have denominator 1 are partial
queens. Theorem 5.6 reduces that to pieces with two or fewer moves. The rook obviously
has denominator 1, while the bishop has denominator and period 2 when q ≥ 3 (Part VI).
Proposition 4.3 implies that the anassa has denominator 1. �

Although in Ehrhart theory periods often are less than denominators, we observe that not
to be true for our solved chess problems. We believe that will some day become a theorem.

3“Anassa” is archaic Greek feminine for a tribal chief, i.e., presumably for the consort of a chief [13].
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Conjecture 2.4 (Conjecture II.8.6). For every rider piece P and every number of pieces q ≥
1, the period of the counting quasipolynomial uP(q;n) equals the denominator D([0, 1]2q,AP)
of the inside-out polytope for q pieces P.

If Conjecture 2.4 is true, the four special partial queens of Theorem 2.3 will be the only
pieces with period 1.

Conjecture 2.5. The rook, semirook, semibishop, and anassa are the only four pieces whose
counting functions on the square board are polynomials in n.

3. One-move riders

The denominator of the inside-out polytope of a one-move rider on an arbitrary board B

can be explicitly determined.
Given a move m = (c, d), the line parallel to m through a corner z of B may pass through

another point on the boundary of B. Call that point the antipode of z. The antipode may
be another corner of B. When m is parallel to an edge zizj of B, we consider zi and zj to
be each other’s antipodes.

Proposition 3.1. For a one-move rider P with move (c, d), the denominator of the inside-
out polytope (Bq,AP) equals the least common denominator of the corners of B when q = 1,
and when q ≥ 2 it equals the least common denominator of the corners of B and their
antipodes.

Proof. A vertex of (Bq,AP) is generated by some set of hyperplanes, possibly empty, and a
set of fixations. The total number of hyperplanes and fixations required is 2q. When q = 1,
because there are no move equations involved, a vertex of the inside-out polytope is a corner
of B.

When q ≥ 2, a vertex is determined by its fixations and the intersection I of the move
hyperplanes it lies in. Let π be the partition of [q] into blocks for which i and j are in

the same block if H
d/c
ij is one of the hyperplanes containing I. The number of hyperplanes

necessary to determine I is q minus the number of blocks of π. (I will be contained in
additional, unnecessary hyperplanes if a block of π has three or more members; we do not
count those.)

Consider a particular block of π, which we may suppose to be [k] for some k ≥ 1. We
need k + 1 fixations on the k pieces to specify a vertex, so there must be two fixations that
apply to the same i ∈ [k], anchoring zi to a corner of B. The remaining k − 1 fixations fix
the other values zj for j ∈ [k] to either zi’s corner or its antipode.

It follows that all vertices (z1, . . . , zq) of the inside-out polytope satisfy that each zi is
either a corner or a corner’s antipode for all i. Furthermore, with at least two pieces and for
every corner z, it is possible to create a vertex containing z and its antipode as components,
from which the proposition follows. �

For the square board, the corners are (0, 0), (1, 0), (0, 1), and (1, 1), and the antipodes
have denominator max(|c|, |d|). Proposition II.6.2 tells us that the coefficient of n2q−3 has
period max(|c|, |d|) when q ≥ 2. Thus:

Theorem 3.2. On the square board with q ≥ 2 copies of a one-move rider with basic move
(c, d), the period of uP(q;n) is max(|c|, |d|).

This theorem was previously Conjecture II.6.1. Hence Conjecture 2.4 is true for one-move
riders: the period agrees with the denominator.
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4. Two-move riders

The denominator of the inside-out polytope for a two-move rider is also well understood.
Hanusa and Mahankali [8] extend the concept of antipode to define configurations of two-
move riders called trajectories.

An infinite trajectory is an infinite sequence [z1, z2, z3, . . .] of points on the boundary of B
such that the points zi and zi+1 are related by an attack equation. We only need trajectories
where the attack equations alternate between those of the moves m1 and m2. A trajectory
(or finite trajectory) T = [z1, . . . , zl] is an initial sequence of an infinite trajectory, with length
l ≥ 1. It is subject to the following stopping rule: it may stop at any step l ≥ 1, except that
it is forced to stop if it hits an edge of B that is parallel to a move vector or if it repeats
the first point (then zl = z1). A trajectory that stops where it is forced to is maximal ; every
trajectory is therefore an initial portion of a maximal trajectory. A trajectory of length 1 is

trivial. The extension of T is the trajectory T̂ = [z1, . . . , zl, zl+1] involving one more point
from its infinite trajectory.

A corner trajectory is a trajectory that includes a corner of B. A rigid cycle is a trajectory
that does not contain a corner, that returns to its initial point, and whose system of attack
equations and fixation equations is linearly independent. A point in the interior where two
extended trajectories cross or an extended trajectory crosses itself is called a crossing point.
With these definitions, we state the main theorem of [8].

Theorem 4.1 ([8, Theorem 4.10]). The denominator of (Bq,A q
P ) is equal to the least com-

mon multiple of

(1) the denominators of points in the boundary of B belonging to corner trajectories and
rigid cycles of length at most q, and

(2) the denominators of all crossing points c of corner trajectories and rigid cycles, where
if c is a self-crossing, the length of its defining trajectory is at most q− 1, and if c is
a crossing of two distinct trajectories, their lengths must sum to at most q − 1.

Figure 4.1 shows that trajectories can involve complex dynamics and denominators that
grow quickly. The pattern of piece placements depends where the slopes fall (less than −1,
between −1 and 0, between 0 and 1, or greater than 1). In many cases, the piece positions

Figure 4.1. A two-move rider with diagonal slopes can produce configura-
tions with arbitrarily large denominators. The coordinates of the ninth pieces
are, from left to right, (15/16, 0), (32/63, 1), and (22850/194481, 0).
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and the denominator of the corresponding vertex follow a pattern that we found difficult to
describe completely.

For certain two-move riders it is possible to state the denominator explicitly.

Proposition 4.2. Let B be the square board and let c and d be relatively prime positive
integers. The denominator of the inside-out polytope for q two-move riders with moves (1, 0)
and (±c,±d) is

D =





1 if q = 1,

d if d ≥ c and q > 1,

c if d < c and 1 < q ≤ 2⌊c/d⌋+ 1,

cd if d < c and q ≥ 2⌊c/d⌋+ 2.

Proof. We consider the two-move rider with basic move (+c,+d); the other signs follow by
reflecting the board. We assume q > 1 since otherwise the denominator trivially equals
1. There are no self-crossing trajectories nor, by the stopping rule, rigid cycles. A corner
trajectory with basic move (1, 0) can only include a corner if it begins (or ends—equivalently)
there since it can only reach or leave a corner by the move (c, d). The only two maximal
corner trajectories, T and T ′, start at (0, 0) and (1, 1), respectively; they are 180◦ rotations
of each other about the center of the square.

If d ≥ c, then T = [(0, 0), (c/d, 1)] is the maximal trajectory that starts at (0, 0). It does
not cross T ′, so since q ≥ 2 it contributes a factor d to the denominator D, as does T ′.
Therefore D = d.

Assume d < c from now on. The trajectories zigzag back and forth across the square. T
starts at z1 = (0, 0) and visits the points z2 = (1, d/c), z3 = (0, d/c), z4 = (1, 2d/c), and so
forth until it stops. If it is long enough, T continues until it reaches y = 1, where it must
stop.

When d = 1 all points on T lie on the maximal corner trajectory from (0, 0), which ends
at (1, 1), so corner trajectories contribute a factor c to the denominator D (since q ≥ 2).
Consequently, D = c.

When d > 1 and q is large enough, the zigzag pattern can continue up to z2k+1 = (0, kd/c),
where k = ⌈c/d⌉ − 1 = ⌊c/d⌋, so z2k+2 is located along the line y = 1 with x-coordinate
c/d − ⌊c/d⌋. (See Figure 4.2.) A trajectory from (0, 0) can continue to z2k+2 if and only if
q ≥ 2⌊c/d⌋ + 2. Hence there is a corner trajectory T contributing c to D when q ≥ 2, and
there is one contributing d and c when q ≥ 2⌊c/d⌋+2 (so that T can be chosen maximal). By
central symmetry, the points along T and T ′ have the same denominators, so T ′ contributes
nothing new.

It remains to calculate the crossing points of T̂ (of length l + 1) and T̂ ′ (of length l′ + 1),
with the restriction that l + l′ ≤ q − 1 (so there are enough pieces to occupy T , T ′, and

the crossing). Intersections occur when a sloped edge of one extended trajectory—say T̂ , by

symmetry—intersects a horizontal edge of the other trajectory, T̂ ′. The sloped edges of T̂
join (0, jd/c) to (1, (j + 1)d/c) for 0 ≤ j ≤ ⌊(l − 1)/2⌋. The horizontal edges of T̂ ′ occur at
y-coordinates 1 − id/c for 1 ≤ i ≤ ⌊l′/2⌋. The x-coordinate of an intersection point of this
type is c/d− ⌊c/d⌋, whose denominator is d. When q ≥ 2⌊c/d⌋+ 2, d already appears in D
from a maximal corner trajectory; therefore a crossing contributes nothing new in that case.

On the other hand, when q < 2⌊c/d⌋+2 there is no crossing. For there to be an intersection,
the sloped edge must end at a greater y-coordinate than that of the intersecting horizontal



A q-Queens Problem. IV. Configurations and Denominators 9

Figure 4.2. In a trajectory of a two-move rider with a horizontal move
and d < c, the coordinates of pieces have denominator c until a piece has y-
coordinate 1. In this example (c, d) = (13, 4) and the coordinates of the even
pieces are P2(1, 4/13), P4(1, 8/13), P6(1, 12/13), and P8(1/4, 1).

edge. Hence an intersection will occur only if ⌊(l − 1)/2⌋+ ⌊l′/2⌋+ 1 > c/d; equivalently,
⌈
l

2

⌉
+

⌊
l′

2

⌋
>

c

d
.

However, when l + l′ ≤ q − 1, which is ≤ 2⌊c/d⌋,
⌈
l

2

⌉
+

⌊
l′

2

⌋
≤

⌈
l

2

⌉
+

⌊
c

d

⌋
+

⌊−l

2

⌋
=

⌊
c

d

⌋
<

c

d
.

Therefore no crossing points exist for q ≤ 2⌊c/d⌋+ 1.
It follows that the overall denominator in the trajectories is c if q ≤ 2⌊c/d⌋ + 1 and cd if

q ≥ 2⌊c/d⌋+ 2. �

Proposition 4.2 applies to the anassa.

Proposition 4.3. On the square board, the denominator and period of the anassa are 1.

5. Pieces with Three or More Moves

From now on we assume the square board.
With three or more moves, three new configurations appear: a triangle of pairwise at-

tacking pieces (Section 5.1), a golden parallelogram (Example 5.4), and with four moves, a
twisted Fibonacci spiral (Example 6.6). The latter two, which combine 2q − 3 move equa-
tions and three fixations, yield the largest vertex denominators known to us (see especially
Section 5.2).

A piece with at least three moves has not only new configuration types; it also enters a new
domain of complexity. There is no straightforward generalization of Theorem 4.1 involving
rigid cycles, like that in Figure 5.1(a), whose points are all on the boundary of the board.
We now see rigid cycles of a new kind, as in Figure 5.1(b), whose points are not all boundary
points. We also lose constancy of the denominator in a very strong way. For every piece with
at least three moves, the denominator grows exponentially or faster with q (Theorem 5.6);
and if Conjecture 2.4 is true, the period of its counting quasipolynomial grows as fast.
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5.1. Triangle configurations.

With three (or more) moves, a new key configuration appears: a triangle of pairwise
attacking pieces, whose denominator we can calculate exactly.

Consider a piece with the three basic moves m1 = (c1, d1), m2 = (c2, d2), andm3 = (c3, d3).
Since no move is a multiple of another, there exist nonzero integers w1, w2, and w3 with
gcd(w1, w2, w3) = 1 such that w1m1 + w2m2 + w3m3 = (0, 0). The wi are unique up to
negating them all.

Proposition 5.1. For q = 3, a triangular configuration of three pieces on the square board,
attacking pairwise along three distinct move directions m1 = (c1, d1), m2 = (c2, d2), and
m3 = (c3, d3), together with three fixations that fix its position in the square [0, 1]2, gives a
vertex z of the inside-out polytope. Its denominator is

(5.1) ∆(z) = max(|w1c1|, |w1d1|, |w2c2|, |w2d2|, |w3c3|, |w3d3|).
The pieces may be at corners, and there may be two pieces on the same edge. The three

fixations may be choosable in more than one way but they will give the same denominator.

Proof. There is a unique similarity class of triangles with edge directions m1, m2, and m3, if
we define triangles with opposite orientations to be similar. We can assume the the pieces are
located at coordinates z1, z2, z3 with max yi−min yi ≤ maxxi−min xi (by diagonal reflection)
= x3−x1 since we can assume x1 ≤ x2 ≤ x3 (by suitably numbering the pieces), with y1 ≤ y3
(by horizontal reflection), and with z2 below the line z1z3 (by a half-circle rotation). The
reflections change the move vectors mi by negating or interchanging components; that makes
no change in Equation (5.1). We number the slopes so that m1, m2, and m3 are, respectively,
the directions of z1z2, z1z3, and z2z3.

Given these assumptions the triangle must have width x3 − x1 = 1, since otherwise it will
be possible to enlarge it by a similarity transformation while keeping it in the square [0, 1]2;
consequently x1 = 0 and x3 = 1. Furthermore, the slopes satisfy d1/c1 < d2/c2 < d3/c3.
(If c3 = 0 we say the slope d3/c3 = +∞ and treat it as greater than all real numbers. If
c1 = 0 we say d1/c1 = −∞ and treat it as less than all real numbers. c2 cannot be 0.) Our
configuration has d2/c2 ≥ 0 so two slopes are nonnegative but d1/c1 may be negative. That
gives two cases.

If d1/c1 ≤ 0, we choose fixations x1 = 0, y2 = 0, and x3 = 1. (A different choice of
fixations is possible if z1z2 is horizontal or vertical, if z2z3 is horizontal or vertical, or if
z1z3 is horizontal, not to mention combinations of those cases. Note that the denominator
computation depends on the differences of coordinates rather than their values. In each
horizontal or vertical case the choice of fixations affects only the triangle’s location in the
square, not its size or orientation.)

If d1/c1 > 0, we choose fixations x1 = y1 = 0 and x3 = 1.
The rest of the proof is the same for both cases. First we prove that the configuration

is a vertex. That means the locations of the three pieces are completely determined by the
fixations and the fact that z = (z1, z2, z3) ∈ H

m1

12 ∩ H
m2

13 ∩ H
m3

23 . We know the similarity
class of △z1z2z3 and its orientation. The fixations of P1 and P3 determine the length of the
segment z1z3. That determines the congruence class of △z1z2z3, and the fixations determine
its position. Thus, z is a vertex.

We now aim to find the smallest integer N such that N · △z1z2z3 embeds in the integral
lattice [0, N ] × [0, N ], i.e., it has integral coordinates. By the definition of w1, w2, and w3,
we know that z′1 = (0, 0), z′2 = −w1m1, and z′3 = w2m2 gives an integral triangle that is
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similar to △z1z2z3 and similarly or oppositely oriented, because its sides have the same or
opposite slopes. If △z′1z

′
2z

′
3 is oppositely oriented to △z1z2z3 (that means z′2 is above the line

z′1z
′
3), we can make the orientations the same by negating all wi. Given these restrictions

△z′1z
′
2z

′
3 is as compact as possible, for if some multiple ν△z′1z

′
2z

′
3 were smaller (0 < ν < 1)

and integral, then (νw1)m1+(νw2)m2+(νw3)m3 = 0 with integers νw1, νw2, νw3, so ν would
be a proper divisor of 1. By Lemma 2.1, N = ∆(z). We can now translate △z′1z

′
2z

′
3 to the

box [0, N ]× [0, N ] where

N = max(|w1c1|, |w1d1|, |w2c2|, |w2d2|, |w3c3|, |w3d3|). �

Example 5.2. The three-move partial nightrider has move set M = {(2,−1), (2, 1), (1, 2)}.
Because 3 · (2,−1)− 5 · (2, 1)+4 · (1, 2) = (0, 0) the denominator of its triangle configuration
is

max(|6|, |−3|, |−10|, |−5|, |4|, |8|) = 10,

as shown in Figure 5.1(a).
For the piece with move set M = {(1, 2), (3, 1), (4, 3)}, the denominator of its triangle

configuration is 4 because the moves satisfy (1, 2) + (3, 1)− (4, 3) = (0, 0). Furthermore, all
move slopes are positive, so the configuration does not entirely lie on the boundary of B, as
shown in Figure 5.1(b).

Figure 5.1. Two integral configurations of pieces illustrating Proposition 5.1

when (a) d1/c1 < 0 and (b) d1/c1 > 0. (a) For H
−1/2
12 , H

1/2
13 , H

2/1
23 , x1 = 0,

y2 = 0, and x3 = 10, the coordinates are (0, 3), (6, 0), and (10, 8), so N = 10.

(b) For H
1/3
12 , H

3/4
13 , H

2/1
23 , x1 = 0, y2 = 0, and x3 = 4, we have N = 4 because

the coordinates are (0, 0), (3, 1), and (4, 3), which are not all on the boundary.

5.2. The golden parallelogram.

Now we explore vertex configurations that use three moves. We prepare for the general
case by studying the semiqueen Q21, which has a horizontal, vertical, and diagonal move; we
take its move set to be M = {(1, 0), (0, 1), (−1, 1)}.

A golden rectangle is a rectangle whose sides are in the ratio 1:ϕ, ϕ being the golden ratio
1+

√
5

2
. The rectangle that has side lengths Fi and Fi+1, where the Fi are Fibonacci numbers,

is a close approximation to such a rectangle. (We index the Fibonacci numbers so that
F0 = F1 = 1.)

Many vertex configurations of q semiqueens have denominator F⌊q/2⌋. One of them is the
golden rectangle configuration, defined by the move hyperplanes

X4i,4i+1, X4i+2,4i+6, X4i+1,4i+3,
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Y14, Y4i,4i+4, Y4i+2,4i+3, Y4i+3,4i+5,

H
−1/1
2i+1,2i+2,

for all i such that both indices fall between 1 and q, inclusive, and the fixations y1 = 0,
x2 = 0, and either xq = F⌊q/2⌋ if ⌊q/2⌋ is even or yq = F⌊q/2⌋ if ⌊q/2⌋ is odd. These fixations
define the smallest square box that contains all pieces in the configuration. They also serve
to locate the configuration in the unit-square board, by giving the unique positive integer
N such that dividing by N fits the shrunken configuration z into the square board with
three queens fixed on its boundary; thus z is a vertex with denominator ∆(z) = N (see
Lemma 2.1).

Figure 5.2(a) shows the golden rectangle configuration of 12 semiqueens; it fits in an 8×13
rectangle. Figure 5.2(b) is a configuration that has the same denominator and is similarly
related to a discrete Fibonacci spiral (which will be explained in Section 6, where it figures
more prominently).

Figure 5.2. (a) The golden rectangle configuration. (b) A configuration
based on a discrete Fibonacci spiral.

It is straightforward to find the coordinates of Pi in the golden rectangle configuration,
which we present without proof. We assume coordinates with origin in the lower left corner
of Figure 5.2(a).

Proposition 5.3. For the semiqueen P = Q21, when the pieces are arranged in the golden
rectangle configuration, P1 is in position (1, 0) and, for i ≥ 2, Pi is in position

(F⌊i/2⌋, 0) if i ≡ 0 mod 4,

(F⌊i/2⌋, F⌊i/2⌋−1) if i ≡ 1 mod 4,

(0, F⌊i/2⌋) if i ≡ 2 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋) if i ≡ 3 mod 4.

The step from Pi−1 to Pi is

F⌊i/2⌋−1(1,−1) if i ≡ 0 mod 4,

F⌊i/2⌋−1(0, 1) if i ≡ 1 mod 4,
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F⌊i/2⌋−1(−1, 1) if i ≡ 2 mod 4,

F⌊i/2⌋−1(1, 0) if i ≡ 3 mod 4.

The next key idea is that we can apply a linear transformation to the golden rectangle
configuration to create six golden parallelogram configurations (some of which may coincide
if there is symmetry in the move set) for any piece with three (or more) moves. To define the
golden parallelogram, in the golden rectangle configuration consider the semiqueens Q21

1 at
position (1, 0), Q21

2 at (0, 1), and Q21
3 at (1, 1). They form the smallest possible triangle. For

an arbitrary piece P with moves m1, m2, and m3, we consider the smallest integral triangle
involving three copies of P, which we discussed in Proposition 5.1. We apply to the golden
rectangle configuration a linear transformation that takes vectors (1, 0) and (0, 1) to any
two of the vectors w1m1, w2m2, and w3m3, with a minus sign on one of them if needed to
ensure that the third side of the triangle has the correct orientation. That transforms the
golden rectangle with the Q21

i in their locations to a golden parallelogram with pieces Pi in
the transformed locations and with P1,P2,P3 forming the aforementioned smallest triangle;
hence, there are six possible golden parallelograms.

Example 5.4. For the three-move partial nightrider (Example 5.2) the vectors are w1m1 =
(6,−3), w2m2 = (−10,−5), and w3m3 = (4, 8). The corresponding six distinct golden
parallelogram configurations are in Figure 5.3. The precise linear transformations are given
in Table 5.2. Of these six parallelograms, the one yielding the largest denominator is that
in the upper left.

Figure 5.3. The six golden parallelograms for 13 three-move partial nightrid-
ers. The corresponding linear transformations are given in Table 5.2.
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Transformation
(1, 0) 7→ (10, 5)
(0, 1) 7→ (6,−3)

(1, 0) 7→ (−6, 3)
(0, 1) 7→ (4, 8)

(1, 0) 7→ (10, 5)
(0, 1) 7→ (4, 8)

∆ 172 110 158

Transformation
(1, 0) 7→ (6,−3)
(0, 1) 7→ (10, 5)

(1, 0) 7→ (4, 8)
(0, 1) 7→ (−6, 3)

(1, 0) 7→ (4, 8)
(0, 1) 7→ (10, 5)

∆ 152 125 139

Table 5.1. The linear transformations corresponding to the golden parallel-
ogram configurations of 13 pieces in Figure 5.3, along with the denominator
∆ for each configuration.

These golden parallelograms appear to maximize the denominator; from them we may
infer conjectural formulas for the largest denominators.

Conjecture 5.5. For a piece with exactly three moves, one of the golden parallelogram
configurations gives a vertex with the largest denominator.

Suppose the linear transformation that creates a golden parallelogram carries (1, 0) 7→
w1m1 = (w1c1, w1d1) and (0, 1) 7→ w2m2 = (w2c2, w2d2). It is possible to write an explicit
formula for the denominator of the resulting golden parallelogram configuration. The com-
putation has not more than 128 = 4 ·24 ·2 cases, with one case for each value of q mod 4 and
one subcase for each of the 24 sign patterns of the components of w1m1 and w2m2 (sign 0
can be combined with sign +), and in some of those subcases one further subcase for each of
the 22 magnitude relations between |w1c1| and |w2c2| or between |w1d1| and |w2d2|. We have
not computed the entire formula. Nevertheless, we can give an exponential lower bound,
thereby obtaining a lower bound on the denominator of the inside-out polytope.

Theorem 5.6. The denominators Dq(P) of any piece that has three or more moves increase
at least exponentially in q. Specifically, they are bounded below by 1

2
ϕq/2 when q ≥ 12, where

ϕ is the golden ratio.

Proof. To prove the theorem it suffices to produce a vertex of ([0, 1]2q,A q
P ) with denominator

exceeding ϕq/2.
First consider the semiqueen. The points Q21

1 and Q21
4j of the golden rectangle have coor-

dinates (1, 0) and (F2j , 0). Letting q = 4j or 4j + 1 gives an x-difference of F2j − 1 for a
golden rectangle of q pieces. Similarly, letting q = 4j + 2 or 4j + 3 gives a y-difference of
F2j+1. The golden rectangle is a vertex configuration so it follows by Lemma 2.1 that the

vertex z has ∆(z) ≥ F⌊q/2⌋ − 1. A calculation shows that F⌊j⌋ − 1 > 1
2
ϕj+ 1

2 for j ≥ 6. The
theorem for Q21 follows.

An arbitrary piece with three (or more) moves has a golden parallelogram configuration
formed from the golden rectangle by the linear transformation (1, 0) 7→ w1m1 and (0, 1) 7→
w2m2. We may choose these moves from at least three, so we can select m1 to have c1 6= 0 and
m2 to have d2 6= 0. The displacement from Q21

1 to Q21
4j becomes that from P1 at w1m1 to P4j

at F2jw1m1. This displacement is (F2j − 1)(w1c1, w1d1). Since c1 6= 0, the x-displacement is
at least that for Q21; therefore the denominator of the corresponding vertex for P is bounded
below by F2j−1, just as it is for Q21. Similarly, the y-displacement for q = 4j+2 is bounded
below by F2j+1. This reduces the problem to the semiqueen, which is solved. �
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We know from Proposition 2.2 thatDq(P) is weakly increasing. If, as we believe, the period
equals Dq(P), then the period increases at least exponentially for any piece with more than
two moves.

We think any board has a similar lower bound, say C(B)ϕq/2 where C(B) is a constant
depending upon B, but we ran into technical difficulties trying to prove it.

Example 5.7. The semiqueen has (up to symmetry) only one other golden parallelogram
besides the golden rectangle; it is shown in Figure 5.4. It has a larger denominator than the
golden rectangle configuration when q is odd and q ≥ 7. If we put P2 in position (0, 0), then

Figure 5.4. A golden parallelogram configuration of q semiqueens has the
largest denominator when q is odd.

P1 is in position (0,−1) and for i ≥ 2, Pi is in position

(F⌊i/2⌋ − 1,−F⌊i/2⌋) if i ≡ 0 mod 4,

(F⌊i/2⌋+1 − 1,−F⌊i/2⌋) if i ≡ 1 mod 4,

(F⌊i/2⌋ − 1, 0) if i ≡ 2 mod 4,

(F⌊i/2⌋+1 − 1,−F⌊i/2⌋−1) if i ≡ 3 mod 4.

Conjecture 5.5 specializes to:

Conjecture 5.8. The largest denominator of a vertex for q semiqueens Q21 is F⌊q/2⌋ if q is
even and F⌊q/2⌋+1 − 1 if q is odd.

Example 5.9. The trident Q12 has move set M = {(0, 1), (1, 1), (−1, 1)}. It gives the three
distinct golden parallelogram configurations shown in Figure 5.5. The piece positions for
i ≥ 2 for the configuration in Figure 5.5(a) are

(0, 2F⌊i/2⌋ − 1) if i ≡ 0 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋+2 − 1) if i ≡ 1 mod 4,

(F⌊i/2⌋, F⌊i/2⌋ − 1) if i ≡ 2 mod 4,

(F⌊i/2⌋, F⌊i/2⌋+1 + F⌊i/2⌋−1 − 1) if i ≡ 3 mod 4,

so the largest denominator for such a configuration is

2F⌊q/2⌋ − 1 if q ≡ 0 mod 4,
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Figure 5.5. The three golden parallelograms for the trident Q12. For twelve
pieces, the denominators are 25, 21, and 20, respectively.

F⌊q/2⌋+2 − 1 if q ≡ 1 mod 4,

F⌊q/2⌋+1 − 1 if q ≡ 2 mod 4,

F⌊q/2⌋+1 + F⌊q/2⌋−1 − 1 if q ≡ 3 mod 4.

On the other hand, in Figure 5.5(c), the piece positions for i ≥ 2 are

(F⌊i/2⌋, F⌊i/2⌋ − 1) if i ≡ 0 mod 4,

(F⌊i/2⌋, F⌊i/2⌋+1 + F⌊i/2⌋−1 − 1) if i ≡ 1 mod 4,

(0, 2F⌊i/2⌋ − 1) if i ≡ 2 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋+2 − 1) if i ≡ 3 mod 4,

which yields a largest denominator of such a configuration of

F⌊q/2⌋+1 − 1 if q ≡ 0 mod 4,

F⌊q/2⌋+1 + F⌊q/2⌋−1 − 1 if q ≡ 1 mod 4,

2F⌊q/2⌋ − 1 if q ≡ 2 mod 4,

F⌊q/2⌋+2 − 1 if q ≡ 3 mod 4.

Conjecture 5.5 specializes to:

Conjecture 5.10. The largest denominator of a vertex for q tridents Q12 is 2Fq/2 − 1 if q is
even and F(q+3)/2 − 1 if q is odd.

There is a remarkable symmetry between the piece positions in configurations (a) and (c).
The position formulas for i ≡ r mod 4 in (c) are identical to those for i ≡ r − 2 mod 4 in
(a). We do not know why.

6. Pieces with Four or More Moves

When a piece has four or more moves, the diversity of vertex configurations increases
dramatically and the denominators grow much more quickly. Again we start with the piece
with the simplest four moves, the queen.

The Fibonacci spiral is an approximation to the golden spiral (the logarithmic spiral with
growth factor ϕ); it is obtained by arranging in a spiral pattern squares of Fibonacci side
length, each with a quarter circle inscribed, as shown in Figure 6.1(a).
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(a) (b)

Figure 6.1. (a) The Fibonacci spiral. (b) The discrete Fibonacci spiral for
eight queens.

The discrete Fibonacci spiral with q queens is defined by the move hyperplanes

H
+1/1
2i,2i+1, H

−1/1
2i+1,2i+2, X1,3, X2i,2i+3, Y2i+1,2i+4

for all i such that both indices fall between 1 and q, inclusive, and fixations for pieces Pq−2,
Pq−1, and Pq. The fixations are

xq = 0, yq−1 = 0, xq−2 = Fq if q ≡ 0 mod 4,

xq = 0, yq = 0, xq−2 = Fq if q ≡ 1 mod 4,

xq = Fq, yq = 0, xq−2 = 0 if q ≡ 2 mod 4,

yq = Fq, xq−1 = 0, yq−2 = 0 if q ≡ 3 mod 4.

Figure 6.1(b) shows the discrete Fibonacci spiral of 8 queens.
The bounding rectangle of the discrete Fibonacci spiral with q queens has dimensions Fq

by Fq−1 so the vertex’s denominator is Fq.

Conjecture 6.1. The largest denominator that appears in any vertex configuration for q
queens is Fq.

The queen appears to have an extremely special property, not shared with three-piece
riders nor with other four-piece riders. The initial data (for q ≤ 9) seem to indicate that it
is possible to construct vertex configurations that generate all denominators up to Fq.

Conjecture 6.2. For every integer δ between 1 and Fq inclusive, there exists a vertex
configuration of q queens with denominator δ.

Example 6.3. The eighth Fibonacci number is F8 = 21. The spiral in Figure 6.1(b) exhibits
a denominator of 21. For each δ ≤ F7 = 13 there is a vertex configuration of seven or
fewer queens with denominator δ (we do not show them). Figure 6.2 provides seven vertex
configurations of eight queens in which the denominator ranges from 14 to 20, as one can
tell from the size of the smallest enclosing square and Lemma 2.1.
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Figure 6.2. Vertex configurations of eight queens with denominators 14
through 20.

Kotěšovec [10, Section 1.1; p. 31 in 6th ed.] suggests a period expressed in terms of
Fibonacci numbers.

Conjecture 6.4 (Kotěšovec). The counting quasipolynomial for q queens has period lcm[Fq],
the least common multiple of all positive integers up through the qth Fibonacci number Fq.

The appearance of Fibonacci numbers here was the motivation for our study of Fibonacci
configurations. Kotěšovec’s conjectured periods up to q = 7 (from [10, 6th ed., p. 31], or see
them in our Part V) agree with this proposal and the theory of this section lends credence
to it. (We discuss this in more detail in Part V.) We hope that our theory can yield a proof
of the following (weaker) denominator analog of Conjecture 6.4:

Conjecture 6.5. The denominator of the inside-out polytope for q queens is exactly lcm[Fq],
where [Fq] = {1, 2, . . . , Fq}.

The discrete Fibonacci spiral is more complicated than the golden parallelogram. For each
three-move piece P, the same linear transformation of the golden rectangle of q semiqueens,
independent of q, gives golden parallelogram configurations with the largest known denomi-
nator for q copies of P. With four-move pieces, that is no longer true. The linear transfor-
mation of the queen’s Fibonacci spiral needed to get largest known denominators depends
on q; in particular, its dilation factor increases as q does. Consider the nightrider N. In
the least integral expansions of Figure 6.3 △N1N2N3 has width 72 in the first picture, 3 · 72
in the second, and 9 · 72 in the third. Similarly, when we fit four nightriders in the next
Fibonacci spiral, the smallest triangle dilates by a factor of four as each new piece is added,
from width 128 to 512 to 2048.

We define a twisted Fibonacci spiral of q pieces P with moves {m1, m2, m3, m4} by the
move equations

H
m1

2i,2i+1, H
m2

2i+1,2i+2, H
m3

1,3 , H
m3

2i,2i+3, H
m4

2i+1,2i+4
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for all i such that both indices fall between 1 and q, inclusive, and three fixations to ensure
that the square box bounding all the pieces is as small as possible to make that all coordinates
are integral.

By varying the choice of m1, m2, m3, and m4 we get different vertex configurations.
Consider nightriders in the following example.

Example 6.6. The most obvious analog for nightriders of the queens’ discrete Fibonacci
spiral is that in Figure 6.3, for which m1 = 1/2, m2 = −2/1, m3 = 2/1, and m4 = −1/2.
There is an alternate vertex configuration with larger denominator, the “expanding kite”
shown in Figure 6.4, which is a twisted Fibonacci spiral with m1 = −2/1, m2 = 1/2,
m3 = 2/1, and m4 = −1/2.

Figure 6.3. A twisted Fibonacci spiral involving 5, 6, and then 7 nightriders.
Each configuration, in integral form, is contained in the next, expanded by a
factor of 3. The configurations in fractional form have denominators 286, 1585,
and 8914.

Figure 6.4. The same expanding kite configuration, successively involving
5, 6, and then 7 nightriders. In integral form, each configuration is contained
in the next, expanded by a factor of 4. In fractional form the configurations
have denominators 346, 2030, and 11626.

Conjecture 6.7. For any piece P, there is a vertex configuration that maximizes the de-
nominator and is a twisted Fibonacci spiral.

Unlike for queens, the maximum denominator of a vertex for q of a general piece P, call
it ∆q(P), is difficult to compute. Furthermore, not every integer from 1 to ∆q may be a
vertex denominator. As an example, with three nightriders the only possible denominators
are 1, 2, 3, 4, 5, 10.
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Dictionary of Notation

(c, d) – coordinates of move vector (p. 3)
d/c – slope of line or move (p. 4)
h – # of horizontal, vertical moves of partial queen (p. 5)
k – # of diagonal moves of partial queen (p. 5)
m = (c, d) – basic move (p. 3)
m⊥ = (d,−c) – orthogonal vector to move m (p. 4)
n – size of square board (p. 1)
p – period of quasipolynomial (p. 2)
q – # of pieces on a board (p. 2)
uP(q;n) – # of nonattacking unlabelled configurations (p. 2)
z = (x, y), zi = (xi, yi) – piece position (p. 4)
z = (z1, . . . , zq) – configuration (p. 4)

ϕ – golden ratio (1 +
√
5)/2 (p. 11)

D, Dq(P) – denominator of inside-out polytope (p. 3)
Fq – Fibonacci numbers (F0 = F1 = 1) (p. 11)
M – set of basic moves (p. 3)
∆(z) – denominator of vertex z (p. 5)

AP – move arrangement of piece P (p. 4)
B,B◦ – closed, open board: usually the square [0, 1]2, (0, 1)2 (p. 3)
E – edge line of the board (p. 4)

H
d/c
ij – hyperplane for move (c, d) (p. 4)

P,P◦ – closed, open polytope (p. 4)
[0, 1]2q, (0, 1)2q – closed, open hypercube (p. 4)
(P,AP), ([0, 1]

2q,AP) – inside-out polytope (p. 4)
(P◦,AP), ((0, 1)

2q,AP) – open inside-out polytope (p. 4)

Xij := H
1/0
ij – hyperplane of equal x coordinates (p. 4)

Yij := H
0/1
ij – hyperplane of equal y coordinates (p. 4)

R – real numbers
R2q – configuration space (p. 3)
Z – integers

N – nightrider (p. 2)
P – piece (p. 3)
Qhk – partial queen (p. 5)
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