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GROUPS WITH IRREDUCIBLY UNFAITHFUL SUBSETS
FOR UNITARY REPRESENTATIONS

PIERRE-EMMANUEL CAPRACE AND PIERRE DE LA HARPE

Abstract. Let G be a group and n a positive integer. We say G has Property
P (n) if, for every subset F ⊆ G of size n, there exists an irreducible unitary
representation π of G such that π(x) 6= id for all x ∈ F r {e}. Every group
has P (1) by a classical result of Gelfand and Raikov. Walter proved that every
group has P (2); it is easy to see that some groups do not have P (3). We provide
an algebraic characterization of the countable groups (finite or infinite) that
have P (n). We deduce that if a countable group G has P (n− 1) but does not
have P (n), then n is the cardinality of a projective space over a finite field.

1. Introduction

Fidèle, infidèle ?
Qu’est-ce que ça fait,
Au fait ?

Paul Verlaine, Chansons pour elle, 1891

1.1. Irreducibly unfaithful subsets. A subset F of a group G is called irre-
ducibly unfaithful if, for every irreducible unitary representation π of G, there
exists x ∈ F such that x 6= e and π(x) = id. (We denote by e the identity element
of the group, and by id the identity operator on the space in which π represents
G.) Otherwise F is called irreducibly faithful. For n ≥ 1, we say that G has
Property P (n) if every subset of size at most n is irreducibly faithful.

Every group has Property P (1). This is the particular case for discrete groups
of a foundational result established for all locally compact groups and continuous
unitary representations by Gelfand and Raikov [GeRa–43].

The starting point of this work is the following refinement of the Gelfand–
Raikov Theorem due to Walter:

Every group has Property P (2).
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2 PIERRE-EMMANUEL CAPRACE AND PIERRE DE LA HARPE

In other words, in a group, every couple is irreducibly faithful(!). See [Walt–74,
Proposition 2], as well as [Sasv–91] and [Sasv–95, 1.8.7].

It is clear that Property P (3) does not hold for all groups. Indeed, Klein’s
Vierergruppe, the direct product C2 × C2 of two copies of the group of order 2,
does not have P (3).

The goal of this note is to characterize groups with P (n) for all n ≥ 3. We
focus on countable groups, i.e., groups that are either finite or countably infinite.
What follows can be seen as a quantitative refinement of results in [BeHa–08].

Before stating our main result, we need the following preliminaries. For any
prime power q, we denote by Fq the finite field of order q. For a group G, we
denote by Fq[G] its group algebra over Fq. We recall that any abelian group V
whose exponent is a prime p carries the structure of a vector space over Fp, which
is invariant under all elements of Aut(V ). In other words, the group structure on
V canonically determines a Fp-linear structure. In particular, an abelian normal
subgroup V of exponent p in a group G may be viewed, in a canonical way, as a
Fp[G]-module. We also recall that if W is a simple Fp[G]-module, then Schur’s
Lemma ensures that the commutant

CEnd(W )(G) = {α ∈ End(W ) | g.α(w) = α(g.w) for all g ∈ G, w ∈ W}

is a division algebra over Fp. If in addition W is finite, then CEnd(W )(G) is a finite
field by Wedderburn’s Theorem. In that case, we may write Fq = CEnd(W )(G) for
some power q of p. Moreover we may view W as a Fq[G]-module.

Our main result reads as follows.

Theorem 1.1. Let G be a countable group and n a positive integer. The following
assertions are equivalent.

(1) G does not have P (n).
(2) There exist a prime p, a positive integer m, a finite abelian normal sub-

group V in G of exponent p, and a finite simple Fp[G]-module W of di-
mension m over Fq = CEnd(W )(G), enjoying the following properties:
(i) V is isomorphic to the direct sum of m+ 1 copies of W , as a Fp[G]-

module;
(ii) qm + qm−1 + · · ·+ q + 1 ≤ n.

To the best of our knowledge, Properties P (n) have not been investigated for
finite groups.

The following easy consequence of Theorem 1.1 shows that Klein’s Vierergruppe
is indeed the only obstruction to P (3).

Corollary 1.2. A countable group has P (3) if and only if its center does not
contain any subgroup isomorphic to C2 × C2.

Theorem 1.1 also has the following immediate consequence:
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Corollary 1.3. Let n be an integer, n ≥ 2. Suppose that there is no prime power
q and integer m ≥ 1 such that n = qm + qm−1 + · · ·+ q + 1.

Every countable group that has P (n− 1) also has P (n).

Since 2 is not of the form qm+qm−1+ · · ·+q+1 for any prime power q and any
m ≥ 1, we recover, in the case of discrete groups, the fact that every countable
group has P (2).

On the other hand, when n = qm + qm−1 + · · ·+ q + 1, we have the following.

Example 1.4. Consider a prime p, a power q of p, an integer m ≥ 1, the vector
space W = Fm

q , and the group GL(W ) = GLm(Fq). Let V0, V1, . . . , Vm be m+ 1
copies of W ; set V =

⊕m

i=0 Vi, viewed as a Fp[GL(W )]-module. Define the semi-
direct product group

G(q,m) = GL(W )⋉ V.

It is straightforward to check that every abelian normal subgroup of G(q,m) is
contained in V , and that every minimal abelian normal subgroup of G(q,m) is
isomorphic to W as a Fp[G(q,m)]-module.

Therefore, if n = qm + qm−1 + · · ·+ q + 1, Theorem 1.1 implies that G(q,m) has
property P (n− 1) but not P (n).

Notice that the group G(q,1) is the semi-direct product F∗
q ⋉ (Fq ⊕ Fq). The

group G(3,1) appears in [Burn–11, Note F] as an example of a centerless finite
group which does not admit any faithful irreducible representation. The group
G(4,1) appears in [Isaa–76, Problem 2.19] for the same reason. Note that G(2,1) is
Klein’s Vierergruppe. Our group G(q,1) appear in the historical review section of
[Szec–16], where they are denoted by G(2, q).

Numerical note 1.5. The sequence of positive integers which are of the form
qm+ qm−1+ ...+ q+1 for some prime power q and positive integer m is Sequence
A258777 of [OEIS]; the first 25 terms are

3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 38, 40

(note that we start with 3 whereas A258777 start with 1). The first 10 000 terms
appear on https://oeis.org/A258777/b258777.txt where the last term is
101 808. For terms below 100, the largest gap is between 45th tem and 46th term,
i.e., between 91 and 98; it follows from Corollary 1.3 that a group with Property
P (91) has necessarily Property P (97). It is a consequence of the Prime Number
Theorem that the asymptotic density of this sequence is 0; in other words, if for
k ≥ 1 we denote by R(k) the number of positive integers less than k which are
terms of this sequence, then limk→∞R(k)/k = 0; see [Radu–17, Appendix B].
Note that the 21st term, which is 31, can be written in two ways justifying its
presence in the sequence: 31 = 24 + 23 + 22 + 2 + 1 = 52 + 5 + 1.

https://oeis.org/A258777/b258777.txt
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It is a conjecture that there are no other terms with this property, but this is
still open. Indeed, conjecturally, the Goormaghtigh equation

xM − 1

x− 1
=

yN − 1

y − 1

has no solution in integers x, y,M,N such that x, y ≥ 2, x 6= y, and M,N ≥ 3,
except 31 = 25−1

2−1
= 52−1

5−1
and 8191 = 213−1

2−1
= 903−1

90−1
. We are grateful to Emmanuel

Kowalski and Yann Bugeaud for information on the relevant literature, which
includes [Goor–17, BuSh–02, He–09].

1.2. Irreducibly faithful groups. Clearly, the existence of a faithful irreducible
unitary representation for a group G implies that G has P (n) for all n ≥ 1.
The problem of characterizing finite groups with a faithful irreducible unitary
representation has been addressed by Burnside in [Burn–11, Note F], where a
sufficient condition is given. Since then, various papers have been published on
the subject, providing various answers to Burnside’s question (see the historical
overview in [Szec–16]).

Gaschütz [Gasc–54] obtained a short proof of the following simple criterion: a
finite group G admits a faithful irreducible representation over an algebraically
closed field of characteristic 0 if and only if the abelian part of the socle of G is
generated by a single conjugacy class. That result was extended to the class of all
countable groups in [BeHa–08, Theorem 2]; see Section 2 below. As a consequence
of Theorem 1.1, we shall obtain the following supplementary characterization.

Corollary 1.6. For a countable group G, the following conditions are equivalent:

(i) G has a faithful irreducible unitary representation.
(ii) G has P (n) for all n ≥ 1.
(iii) For every prime p and every finite simple Fp[G]-module W of dimension

m over Fq = CEnd(W )(G), the group G does not contain any finite abelian
normal subgroup V of exponent p which is isomorphic to the direct sum
of m+ 1 copies of W as a Fp[G]-module.

In the case of finite groups, the equivalence between (i) and (ii) is trivial, while
the equivalence between (i) and (iii) is due to Akizuki (see [Shod–31, Page 207]).

1.3. Abelian groups. In view of Theorem 1.1, a countable abelian group G
does not have P (n) if and only if G contains Cp × Cp for some prime p ≤ n− 1,
where Cp denotes the cyclic group of order p. We shall offer a direct proof of
that fact that does not rely on Theorem 1.1, and holds in particular without the
hypothesis of countability:

Proposition 1.7. An abelian group G does not have P (n) if and only if G con-
tains a subgroup isomorphic to Cp × Cp for some prime p ≤ n− 1.

In order to establish that, we invoke the following result of M. Bhargava:
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Proposition 1.8 ([Bhar–02, Theorem 4]). For any group G and any natural
number n, the following conditions are equivalent:

(i) G is the union of n proper normal subgroups.
(ii) G has a quotient isomorphic to Cp × Cp, for some prime p ≤ n− 1.

Proof of Proposition 1.7. Assume that G does not have Property P (n). Let F ⊂

G r {e} be an irreducibly unfaithful subset of G of size ≤ n. Let Ĝ be the
Pontryagin dual of G, namely the group of all characters G → {z ∈ C | |z| = 1}.

For each x ∈ F , let Hx = {χ ∈ Ĝ | χ(x) = 1}; it is a subgroup of Ĝ. Since G has

P (1), we have Hx 6= Ĝ. Since F is irreducibly unfaithful we have Ĝ =
⋃

x∈F Hx.

Since Ĝ is abelian, every subgroup is normal, and Proposition 1.8 ensures that

Ĝ maps onto Cp × Cp, for some prime p ≤ |F | − 1 ≤ n − 1. By duality (see
[Bourb–TS, chap. II, § 1, no 7, Th. 4]), it follows that G contains a subgroup
isomorphic to Cp × Cp.

Conversely, if G contains V ≃ Cp × Cp for some prime p ≤ n − 1, consider a
set F ⊂ G of size p + 1 containing a generator of each of the p + 1 non-trivial
cyclic subgroups of V . Any character of G kills at least one of the elements of F .
Thus F is irreducibly unfaithful, and G does not have P (n). �

As a consequence, we observe that the condition of countability cannot be
removed in Corollary 1.6. Indeed, any torsion-free abelian group G has P (n) for
all n by Proposition 1.7, but it cannot be irreducibly faithful if its cardinality is
larger than that of the continuum.

2. Gaschütz Theorem and related facts

Theorem 2.2 below is due to Gaschütz in the case of finite groups [Gasc–54] (see
also [Hupp–98, Theorem 42.7]), and has been generalized to countable groups in
[BeHa–08, part of Theorem 2]. First we remind some terminology.

In a group G, a mini-foot is a minimal non-trivial finite normal subgroup;
we denote by MG the set of all mini-feet of G. The mini-socle of G is the
subgroup MS(G) generated by

⋃
M∈MG

M ; the mini-socle is {e} if MG is empty,
for example MS(Z) = {0}. Note that MS(G) is contained in the FC-centre of G,
which is the subgroup of G of elements having a finite conjugacy class.

Let AG denote the subset of MG of abelian mini-feet, and HG the complement
of AG in MG. The abelian mini-socle of G is the subgroup MA(G) generated
by

⋃
A∈AG

A, and the semi-simple partMH(G) of the mini-socle is the subgroup

generated by
⋃

H∈H(G) H . We write
∏′ to indicate a restricted product of groups.

In the context of finite groups, mini-foot and mini-socle are respectively called
foot and socle. We denote the socle of a finite group G by Soc(G), the abelian
socle by SocA(G), and the semi-simple part of the socle by SocH(G). The struc-
ture of the socle is due to Remak [Rema–30]. For general groups, finite or not,
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the structure of the mini-socle can be described similarly, as follows; we refer to
[BeHa–08, Proposition 1] for the proof.

Proposition 2.1. Let G be a group. Let MG,MS(G),AG,MA(G),HG,MH(G)
be as above.

(1) Every abelian mini-foot A in AG is isomorphic to (Cp)
n for some prime

p and positive integer n.
(2) There exists a subset A′

G of AG such that MA(G) =
∏′

A∈A′

G
A. In partic-

ular MA(G) is abelian.
(3) Every non-abelain mino-footH in HG is a direct product of a finite number

of isomorphic non-abelian simple groups, conjugate with each other in G.
(4) MH(G) is the restricted direct product of the feet in HG.
(5) MS(G) is the direct product MA(G)×MH(G).
(6) Each of the subgroups MS(G), MA(G), MH(G) is characteristic (in par-

ticular normal) in G.
(7) Let p : G → H is a surjective homomorphism. Then for every foot X of G,

either p(X) is trivial or p(X) is a foot of H. In particular p maps MA(G)
[respectively MH(G), MS(G)] to a subgroup of MA(H) [resp. MH(H),
MS(H)] which is normal in H.

The following result is a slight reformulation of the equivalence between (i) and
(iv) in [BeHa–08, Theorem 2]

Theorem 2.2. For a countable group G, the following assertions are equivalent.

(i) G has a faithful irreducible unitary representation.
(ii) Every finite normal subgroup of G contained in the abelian mini-socle is

generated by a single conjugacy class.

This result is a crucial tool for the proof of Theorem 1.1. Moreover, we shall
also need subsidiary facts established in [BeHa–08].

Given a group G and a normal subgroup N , a unitary character or a represen-
tation ρ of N is called G-faithful if the intersection over all g ∈ G of the kernels
Ker(ρg) is trivial, where ρg(x) = ρ(gxg−1) for all x ∈ N .

For an element g ∈ G and a subset F ⊂ G, we denote by 〈〈g〉〉G the normal
subgroup of G generated by {g}, and by 〈〈F 〉〉G that generated by F .

Lemma 2.3. Let G be a countable group, N a normal subgroup of G, and π an
irreducible unitary representation of G.

If the restriction π|N is faithful, then N has an irreducible unitary representa-
tion σ which is G-faithful.

Proof. See [BeHa–08, Lemma 9]. The hypothesis ‘π is faithful’ there can be
weakened to ‘π|N is faithful’, and the same proof works. �

Lemma 2.4. Let G be a countable group, N a normal subgroup of G, and σ an
irreducible unitary representation of N .
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If σ is G-faithful, then G has an irreducible unitary representation π with the
following properties: the restriction π|N is faithful, and every element of Ker(π)
is contained in a finite normal subgroup of G.

Proof. Let π = IndG
N(σ) be the unitary representation of G induced from σ. Let

π =
∫ ⊕

Ω
πωdµ(ω) be a direct integral decomposition of π into irreducible unitary

representations. Set

Ω̃ = {ω ∈ Ω | πω|N is not faithful}

and

Ω̂ = {ω ∈ Ω | there exists g ∈ Ker(πω) such that 〈〈g〉〉G is infinite}.

We claim that µ(Ω̃) = µ(Ω̂) = 0; to show this, we argue as in the proof of
[BeHa–08, Lemma 10].

To show that µ(Ω̃) = 0, we proceed by contradiction. We assume that there
exists a conjugacy class Cℓ 6= {e} of G contained in N , generating a subgroup
Gℓ of G which is normal and contained in N , and defining a measurable subset
Ωℓ = {ω ∈ Ω | Gℓ ⊂ Ker(πω)}, such that µ(Ωℓ) > 0. Then, as in ‘Claim 1’ in the
proof of [BeHa–08, Lemma 10] we show that Gℓ∩N = {e}, in contradiction with
Gℓ ⊂ N .

To show that µ(Ω̂) = 0, also by contradiction, we assume now that there
exists a conjugacy class Cm 6= {e} of G generating an infinite subgroup Gm of
G, and defining a measurable subset Ωm = {ω ∈ Ω | Gm ⊂ Ker(πω)}, such that
µ(Ωm) > 0, and we arrive at a contradiction. Indeed, ‘Claim 1’ in the proof
already quoted shows that Gm∩N = {e}, and ‘Claim 2’ in the same proof shows
that Gm is finite, in contradiction with the hypothesis.

Consequently, the complement of Ω̃ ∪ Ω̂ in Ω has full measure, and is thus

non-empty. For any ω ∈ Ω r (Ω̃ ∪ Ω̂), the representation πω is an irreducible
unitary representation of G that has the required properties. �

Lemma 2.5. Let G be a group and N,A, S normal subgroups of G such that
N = A× S. Assume that A is abelian, and that S is the restricted direct product
of a collection {Si} of non-abelian finite simple groups. Then:

(i) S has a faithful irreducible unitary representation;
(ii) N has a G-faithful irreducible unitary representation if and only if A has

a G-faithful unitary character.

Proof: see Lemma 13 and its proof in [BeHa–08]. �

The following consequence of all the facts above is not used below, but may
be of independent interest (compare [BeHa–08, Proposition 11]). It shows that a
countable group has an irreducible unitary representation π with a kernel which
is ‘very small’, in the sense that the normal closure of any g ∈ Ker(π) is finite.
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Proposition 2.6. Any countable group G admits an irreducible unitary repre-
sentation π such that, for every element g ∈ Ker(π), the normal closure 〈〈g〉〉G is
a finite subgroup of G and its socle is abelian.

Proof. Let N = MH(G) be the semi-simple part of the mini-socle of G. Since N is
the restricted direct product of non-abelian finite simple groups (Proposition 2.1),
Lemma 2.5 ensures that N has a faithful irreducible unitary representation σ. Let
π be an irreducible unitary representation of G afforded by applying Lemma 2.4
to σ; given a non-trivial g ∈ Ker(π), the normal closure Γg := 〈〈g〉〉G is finite.

Let SocH(Γg) be the semi-simple part of the socle of of Γg. Since SocH(Γg) is
a characteristic subgroup of Γg, it is also a finite normal subgroup of G, which is
a direct product of non-abelian finite simple groups. Therefore, if SocH(Γg) were
non-trivial, then it would contain a non-abelian mini-feet of G.

Since π|N is faithful, i.e., since N ∩Ker(π) = {e}, any mini-foot of G contained
in Ker(π) is abelian. In particular any mini-foot of G contained in Γg is abelian.

It follows that SocH(Γg) = {e}, so that the socle of Γg = 〈〈g〉〉G is abelian. �

We end this section with the following two subsidiary facts. Given an abelian
group A, the symbol Â denotes the Pontrjagin dual of A, namely the set of all
unitary characters A → U(1) := {z ∈ C | |z| = 1}. Lemma 2.8 will be needed in
Section 4.

Lemma 2.7. Let G be a discrete group, A an abelian normal subgroup of G, and
χ a unitary character of A.

Then χ is G-faithful if and only if the subgroup generated by χG = {χg | g ∈ G}

is dense in Â.

Proof. This follows from Pontrjagin duality: see the proof of the equivalence
between (i) and (ii) in [BeHa–08, Lemma 14]. �

Lemma 2.8. Let G be a group and A be a finite normal subgroup of G contained
in MA(G).

Then A has a G-faithful unitary character if and only if A is generated by a
single conjugacy class.

Proof. We follow the arguments from the proof of Lemma 14 in [BeHa–08] (whose
formal statement is however insufficient for our purposes).

By (2) in Proposition 2.1, A is a finite abelian group and is therefore a direct
sum A =

⊕
p∈P Ap, where P is the set of primes p for which A has elements of

order p, and Ap is the p-Sylow subgroup of A. Moreover Ap is a p-elementary
abelian group for each p ∈ P , by (1) of the same proposition. (For compari-
son with [BeHa–08, Lemma 14], note that it follows from Proposition 3.1 below
applied to each Ap that there exists a finite set {Ai}i∈E of abelian mini-feet in
G such that A =

⊕
i∈I Ai; each Ai is isomorphic to (Fp)

n for some p ∈ P and
some n ≥ 1.) Observe that the Pontryagin dual of A =

⊕
p∈P Ap is canonically

isomorphic to
⊕

p∈P Âp.
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We know by Lemma 2.7 that A has a G-faithful unitary character if and only
if Â is generated by one G-orbit. By the Chinese Remainder Theorem, the

group Â =
⊕

p∈P Âp is generated by a single G-orbit if and only each of its p-

Sylow subgroups Âp is generated by a single G-orbit. Using Lemma 2.7 again, we
deduce that A has a G-faithful unitary character if and only if Ap has a G-faithful
character for each p ∈ P .

Consequently, it suffices to prove the Lemma when A = Ap for one prime p.
Notice that Ap is generated by a single conjugacy class if and only if Ap is cyclic

as a Fp[G]-module. Under the natural identification of Âp with A∗
p, the G-action

on Âp corresponds to the dual (or contragredient) action of G on A∗
p. Thus we

may identify Âp with A∗
p as Fp[G]-modules. A finite semi-simple Fp[G]-module

is cyclic if and only if its dual is cyclic (see Lemma 3.2 in [Szec–16]). Since the

dual A∗
p is canonically isomorphic to the Pontrjagin dual Âp, we deduce from

Lemma 2.7 that Ap is generated by a single conjugacy class if and only if Ap has
a G-faithful unitary character. �

3. Cyclic semi-simple Fp[G]-modules

Let R be a ring. The following classical result will be frequently used in the
sequel, without further notice.

Proposition 3.1. For a R-module V , the following conditions are equivalent:

(i) V is generated by simple submodules.
(ii) V is a direct sum of a family of simple submodules.
(iii) Every submodule of V is a direct summand.

Proof. See [Bourb–A, §3, Proposition 7]. �

A module V satisfying those equivalent conditions is called semi-simple.
The following basic fact is the module version of a result often stated for groups

and known as Goursat’s Lemma. The module version appears, for example, in
[Lamb–76, Page 171]; more on this lemma in [BaSZ–15].

Lemma 3.2. Let A = A1 ⊕ A2 be the direct sum of two R-modules, and for
i = 1, 2, let pi : A → Ai be the canonical projection. Let M ≤ A be a submodule
such that pi(M) = Ai for i = 1, 2, and set Mi = M ∩ Ai.

Then the canonical image of M in A1/M1 ⊕A2/M2 is the graph of an isomor-
phism A1/M1 → A2/M2 of R-modules.

We say that a R-module V is cyclic if there exists v ∈ V such that V = Rv. Let
now p be a prime and G a group. The goal of this section is to characterize when a
finite semi-simple Fp[G]-module is cyclic. This will be achieved in Proposition 3.8
below, after some preparatory steps. Proposition 3.8 is well-known to experts:
see Lemma 3.1 in [Szec–16]. It can be seen as a version over Fp of a result for
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cyclic unitary representations of compact groups due to Greenleaf and Moskowitz
[GrMo–71, Proposition 1.8].

Lemma 3.3. Let W be a finite simple Fp[G]-module and let Fq = CEnd(W )(G).
Let V0, V1 be two copies of W .

Every simple Fp[G]-submodule M of V0 ⊕ V1 such that M ∩ V0 = {0} is of the
form

M = {(λx, x) | x ∈ V1}

for some λ ∈ Fq.

Proof. This is a straightforward consequence of Lemma 3.2. �

The following extension to a direct sum of m+ 1 components will be useful.

Lemma 3.4. Let W be a finite simple Fp[G]-module and let Fq = CEnd(W )(G).
Let m ≥ 0; for each i = 0, . . . , m, let Vi be a copy of W . Set V = V0⊕V1⊕· · ·⊕Vm.

Every maximal Fp[G]-submodule M ( V such that M ∩ V0 = {0} is the form

M =
{( m∑

i=1

λixi, x1, x2, . . . , xm

) ∣∣∣ (x1, . . . , xm) ∈ V1 ⊕ · · · ⊕ Vm

}

for some (λ1, . . . , λm) ∈ Fm
q .

Proof. Let p : V → V1 ⊕ · · · ⊕ Vm be the canonical projection. Let M ( V be
a maximal Fp[G]-submodule such that M ∩ V0 = {0}. Then the restriction p|M
is injective. Since M is maximal, we have V = V0 ⊕ M , so that p|M : M →
V1 ⊕ · · · ⊕ Vm is an isomorphism of Fp[G]-modules.

Given i ∈ {1, . . . , m}, letMi = (p|M)−1(Vi). ThenMi is isomorphic to Vi, hence
it is a simple Fp[G]-submodule ofM contained in V0⊕Vi. Moreover Mi∩V0 = {0}.
By Lemma 3.3, there exists λi ∈ Fq such thatMi ≃ {(λixi, xi) | xi ∈ Vi} ≤ V0⊕Vi.
Since p|M : M → V1 ⊕ · · · ⊕ Vm is an isomorphism, we deduce that

M = M1 ⊕ · · · ⊕Mm

=
{( m∑

i=1

λixi, x1, x2, . . . , xm

) ∣∣∣ (x1, . . . , xm) ∈ V1 ⊕ · · · ⊕ Vm

}

as required. �

We can now characterize when a direct sum of copies of a given simple Fp[G]-
module is cyclic.

Lemma 3.5. Let W be a finite simple Fp[G]-module and let Fq = CEnd(W )(G).
Let m ≥ 0; for each i = 0, . . . , m, let Vi be a copy of W ; set V = V0 ⊕ · · · ⊕ Vm.

Then the Fp[G]-module V is cyclic if and only if m < dimFq
(W ).

Proof. Assume first that m ≥ dimFq
(W ). Let (v0, . . . , vm) ∈ V . Since Vi = W for

all i, we may view vi as an element of W . Then, upon reordering the summands



GROUPS WITH IRREDUCIBLY UNFAITHFUL SUBSETS 11

V0, . . . , Vm, we may assume that there exists (λ1, . . . , λm) ∈ Fm
q such that v0 =∑m

i=1 λivi. It follows that (v0, . . . , vm) belongs to

{( m∑

i=1

λixi, x1, x2, . . . , xm

) ∣∣∣ (x1, . . . , xm) ∈ V1 ⊕ · · · ⊕ Vm

}
,

which is a proper submodule of V . Hence V is not cyclic.
In order to prove the converse, we proceed by induction on m. In the base case

m = 0, we have 0 = m < dimFq
(W ) and V = V0 = W is simple, hence cyclic.

We now assume that 0 < m < dimFq
(W ). The induction hypothesis ensures that

the module V1 ⊕ · · · ⊕ Vm is cyclic. Let (v1, . . . , vm) be a generator. Viewing all
vi as elements of W , the hypothesis that m < dimFq

(W ) ensures the existence
of an element v0 ∈ W which does not belong to the Fq-subspace of W spanned
by {v1, . . . , vm}. Let M be the submodule of V spanned by (v0, v1, . . . , vn). The
image of M under the canonical projection V → V1⊕· · ·⊕Vm is surjective, since
it coincides with the submodule generated by (v1, . . . , vm). If M ∩ V0 = {0},
then M is a maximal proper submodule. Lemma 3.4 then ensures that v0 is a
Fq-linear combination of {v1, . . . , vm}, a contradiction. Therefore M contains V0

since V0 is simple. Hence V = M , so that V is indeed cyclic. �

The following basic counting lemma will also be useful.

Lemma 3.6. Let W be a finite simple Fp[G]-module and let Fq = CEnd(W )(G).
Let m ≥ 0; for each i = 0, . . . , m, let Vi be a copy of W . Set V = V0⊕V1⊕· · ·⊕Vm.
The number of simple Fp[G]-submodules of V is

qm + qm−1 + · · ·+ q + 1 =
qm+1 − 1

q − 1
.

Proof. We proceed by induction on m. In case m = 0, the module V = V0 is
simple, so the result is clear.

Assume now that m ≥ 1. Let S be the collection of all simple submodules
of V . For each S ∈ S such that S ∩ V0 = {0}, there is a simple submodule
S ′ ≤ V1⊕· · ·⊕Vm and a scalar λ ∈ Fq such that S ≃ {(λx, x) | x ∈ S ′} ≤ V0⊕S ′

(see Lemma 3.2). By induction, there are qm−1+ · · ·+ q+1 such modules S ′, and
the scalar λ can take q different values. Since the only S ∈ S with S ∩ V0 6= {0}
is S = V0, we deduce that

|S| = q(qm−1 + · · ·+ q + 1) + 1 = qm + qm−1 + · · ·+ q + 1,

as required. �

Given a semi-simple R-module V and a simple R-module W , the submodule of
V generated by all simple submodules isomorphic to W is called the isotypical
component of type W of V . Every semi-simple R-module is the direct sum of
its isotypical components (see [Bourb–A, §3, Proposition 9]).
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Lemma 3.7. A finite semi-simple Fp[G]-module V is cyclic if and only if each
of its isotypical components is cyclic.

Proof. The ‘only if’ part is clear since any quotient of a cyclic module is cyclic.
Let V = M1 ⊕ · · · ⊕ Mℓ be the decomposition of V as the direct sum of its

isotypical components. Assume thatMk is cyclic for all k ∈ {1, . . . , ℓ} and let vk ∈
Mk be a generator. We claim that v = (v1, . . . , vℓ) is a generator of V . We prove
this by induction on ℓ. The base case ℓ = 1 is trivial. Assume now that ℓ ≥ 2
and let M be the submodule generated by v. The induction hypothesis ensures
that the canonical projection of M to A1 =

⊕ℓ−1
k=1Mk is surjective. Clearly, the

projection of M to A2 = Mℓ is surjective. Since A1 and A2 are disjoint (i.e., they
do not contain any non-zero isomorphic summands), it follows from Lemma 3.2
that M = A1 ⊕ A2 = V . �

Proposition 3.8. Let V be a finite semi-simple Fp[G]-module. The following
assertions are equivalent:

(i) V is not cyclic.
(ii) There exist a simple Fp[G]-module W of dimension m ≥ 1 over Fq =

CEnd(W )(G) and a submodule V ′ ≤ V isomorphic to a direct sum of m+1
copies of W .

Proof. In view of Lemma 3.5, the module V ′ afforded by Condition (ii) is not
cyclic. Since that module is a direct summand of V , it follows that V is not
cyclic.

Assume conversely that V is not cyclic. Then V has a non-cyclic isotypical
component by Lemma 3.7. It then follows from Lemma 3.5 that Condition (ii)
holds. �

4. Proof of Theorem 1.1

The proof of (1) ⇒ (2) rests on the following two lemmas.

Lemma 4.1. Let n be an integer, n ≥ 2, and G a countable group with P (n− 1)
but not P (n).

For every irreducibly unfaithful subset F of size n of G and for every x ∈ F ,
the normal subgroup 〈〈x〉〉G of G is finite and its socle is abelian. In particular all
mini-feet of G contained in 〈〈x〉〉G are abelian.

Proof. We start with a preliminary observation. Let N be a finite normal sub-
group of G. If the socle Soc(N) is abelian, then Soc(N) is a non-trivial finite
abelian normal subgroup of G and thus contains an abelian mini-foot of G.

Similarly, if Soc(N) is non-abelian, then its semi-simple part SocH(N) is a
non-trivial characteristic subgroup of N that splits as a direct product of non-
abelian finite simple groups, and hence N contains a non-abelian minifoot of G.
Conversely, if N contains a non-abelian minifoot of G, say M , then M is a normal
subgroup of N that is a direct product of non-abelian finite simple groups. Thus
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M contains a foot of N which is a fortiori a direct product of non-abelian finite
simple groups. In particular the socle of N is non-abelian.

Let now F be an irreducibly unfaithful subset of G of size n. Note that e /∈ F ,
otherwise G would contain an irreducibly unfaithful subset F r {e} of size n− 1.
We partition F into three subsets, F = FA ⊔ FH ⊔ F∞, where:

FA = {x ∈ F | 〈〈x〉〉G is finite with abelian socle},
FH = {x ∈ F | 〈〈x〉〉G is finite with non-abelian socle},
F∞ = {x ∈ F | 〈〈x〉〉G is infinite} = F r (FA ⊔ FH).

By the preliminary observation above, we may, for each x ∈ FA [respectively FH ],
choose an abelian mini-foot Ax of G inside 〈〈x〉〉G and yx 6= e in Ax [respectively
a non-abelian mini-foot Hx of G inside 〈〈x〉〉G and yx 6= e in Hx]. We have
Ax = 〈〈yx〉〉G [respectively Hx = 〈〈yx〉〉G]. Define

F ′
A = {yx ∈ G | x ∈ FA}, GA = 〈〈F ′

A〉〉G,

F ′
H = {yx ∈ G | x ∈ FH}, GH = 〈〈F ′

H〉〉G,

F ′ = F ′
A ∪ F ′

H ∪ F∞.

By Proposition 2.1, the finite normal subgroup GA of G is abelian, the finite
normal subgroup GH of G is a direct product of non-abelian simple finite groups,
and the subgroup of G generated by GA and GH is their direct product GA×GH .

Observe that |F ′| ≤ |F |. Moreover, by construction, for all x ∈ FA ∪ FH ,
we have 〈〈yx〉〉G ≤ 〈〈x〉〉G, so that F ′ cannot be irreducibly faithful. Since G has
P (n− 1), it follows that |F ′| = |F | = n .

We claim that F ′ = F ′
A. Indeed, assume the contrary. Then |F ′

A| ≤ n− 1, and
since G has P (n − 1) we may find an irreducible unitary representation π of G
with π(yx) 6= id for all yx ∈ F ′

A. Set K = GA ∩ Ker(π) and Q = G/K. Observe
that the image N of GA × GH in Q is a normal subgroup which is the direct
product of the image GA/K of GA in Q, which is abelian, and the image of GH

in Q, which is isomorphic to GH since K ∩GH = {e}.
By construction, all elements of F ′

A have a non-trivial image in Q. Moreover,
since K ≤ Ker(π), we may view π as an irreducible unitary representation of
Q, whose restriction to GA/K is faithful. By Lemma 2.3, we know that GA/K
has a Q-faithful irreducible unitary representation. Since N = (GA/K) × GH

is a normal subgroup of Q satisfying the hypothesis of Lemma 2.5, we see that
N has a Q-faithful irreducible unitary representation. Hence, by Lemma 2.4,
we conclude that Q has an irreducible unitary representation ρ such that every
element in Ker(ρ) has a normal closure which is finite and intersects N trivially.
We may view π as an irreducible unitary representation of G. Since K is finite, we
have π(z) 6= id for all x ∈ F∞. Therefore π(z) 6= id for all z ∈ F ′, a contradiction
because F ′ is not irreducibly faithful.
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It follows that F ′ = F ′
A, and therefore F = FA. By the preliminary observation

above, this implies that for all x ∈ F , every mini-foot of G contained in 〈〈x〉〉G is
abelian. �

Lemma 4.2. Let G be a countable group and F ⊂ G be an irreducibly unfaithful
subset of size n such that every non-trivial element of F is contained in an abelian
mini-foot of G.

Then there exist a prime p, an integer m ≥ 1, a finite abelian normal subgroup
V of G of exponent p, and a simple Fp[G]-module W of dimension m over Fq =
CEnd(W )(G), enjoying the following properties:

(i) V is isomorphic to the direct sum of m+1 copies of W , as a Fp[G]-module;
(ii) qm + qm−1 + · · ·+ q + 1 ≤ n.

Proof. Let A be the normal closure of F in G.
Let K be a maximal normal subgroup of G contained in A and such that

F ∩ K ⊆ {e}. Let G′ = G/K and let A′ and F ′ be the images of A and F in
G′. Notice that every abelian mini-foot of G′ contained in A′ must contain an
element of F ′. In particular A′ contains at most n mini-feet of G′.

Since every element of F ′ is contained in an abelian mini-foot of G′, and since
any two feet commute, we see that A′ is a finite abelian normal subgroup of G′.
Since F is irreducibly unfaithful in G, it follows that F ′ and A′ are irreducibly
unfaithful in G′. Therefore, by Lemma 2.4, it follows that no irreducible unitary
representation of A′ is G′-faithful. By Lemma 2.8, this implies that A′ is not
generated by a single conjugacy class.

Let P be the set of all prime divisors of |A′|, and let A′
p be the p-Sylow subgroup

of A′. Then A′
p is G′-invariant, and we have a G′-equivariant decomposition

A′ ≃
⊕

p∈P A′
p. Each A′

p may be viewed as a Fp[G
′]-module. Moreover A′

p is
semi-simple since it is generated abelian by mini-feet, each of which is a simple
Fp[G

′]-module (see Proposition 3.1).
If each A′

p were generated by a single conjugacy class, then A′ would have the
same property. Thus there exists p such that A′

p is not generated by a single
conjugacy class. In other words the Fp[G

′]-module A′
p is not cyclic. We may

therefore invoke Lemma 3.8. This yields a simple Fp[G]-module W of dimension
m ≥ 1 over Fq = CEnd(W )(G) and a submodule V ′ of A′

p which is isomorphic to
a direct sum of m+ 1 copies of W .

Since A′ contains at most nmini-feet of G′, it follows that V ′ contains at most n
simple submodules. In view of Lemma 3.6, we deduce that qm+qm−1+· · ·+q+1 ≤
n.

Let now Ap be the p-Sylow subgroup of A. Observe that the restriction of the
G-equivariant surjective homomorphism A → A′

p to Ap is still G-equivariant and
surjective. We may view Ap as a Fp[G]-module. Since A is generated by abelian
mini-feet of G, the same holds for Ap, so that Ap is a semi-simple Fp[G]-module.
Therefore, the short exact sequence 0 → K ∩ Ap → Ap → A′

p → 0, which is
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G-equivariant, admits a G-equivariant section (see Proposition 3.1). Thus G has
an abelian normal subgroup V of exponent p which is isomorphic to V ′ as a
Fp[G]-module. The required conclusions follow. �

Proof of Theorem 1.1. Let G be a group for which (1) of Theorem 1.1 holds, i.e.,
a group which does not have Property P (n). Upon replacing n by a smaller
integer, we may assume that G has Property P (n− 1). Let F be an irreducibly
unfaithful subset of G of size n. We invoke Lemma 4.1. This ensures that for
each x ∈ F we may find a non-trivial element yx ∈ 〈〈x〉〉G such that 〈〈yx〉〉G is an
abelian mini-foot of G. Since 〈〈yx〉〉G ≤ 〈〈x〉〉G for all x ∈ F , it follows that the
set F ′ = {yx | x ∈ F} is irreducibly faithful. Notice that F ′ satisfies Lemma 4.2;
moreover we have |F ′| ≤ |F | = n. We deduce that (2) indeed holds.

For the reverse implication (2) ⇒ (1) in Theorem 1.1, we pick a non-trivial
element in each of the qm+ qm−1+ · · ·+ q+1 simple Fp[G]-submodules of V (see
Lemma 3.6). In that way we obtain a subset F of G of size qm+qm−1+ · · ·+q+1.
Since V is not cyclic as a Fp[G]-module by Lemma 3.5, it follows that V is
not generated by a single conjugacy class. In view of Theorem 2.2, for every
irreducible unitary representation π of G, the restriction π|V cannot be faithful.
In particular Ker(π) contains at least one of the simple Fp[G]-submodules of V .
Hence F is irreducibly unfaithful. This shows that G does not have Property
P (qm + · · ·+ q + 1), hence also not P (n) since n ≥ qm + · · ·+ q + 1. The proof
is complete. �

5. Groups with P (n) for all n

Proof of Corollary 1.6. That (i) implies (ii) is clear. That (ii) implies (iii) follows
from Theorem 1.1.

Assume that (iii) holds. Let A be a finite abelian normal subgroup of G
contained in the mini-socle. Let p be a prime dividing |A| and Ap be the p-Sylow
subgroup of A. Then Ap is a finite Fp[G]-module, which is semi-simple because
A, hence also Ap, is generated by mini-feet of G. Since (iii) holds, it follows from
Lemma 3.8 that Ap is generated by a single conjugacy class. Since that holds
for all p dividing |A|, it follows that A is generated by a single conjugacy class.
Therefore G is irreducibly faithful by Theorem 2.2. Thus (i) holds. �

6. Irreducibly injective sets

A subset F of a group G is called irreducibly injective if G has an irreducible
unitary representation π such that the restriction π|F is injective. We say that
G has property Q(n) if every subset of G of size ≤ n is irreducibly injective.
Observe that C2 × C2 does not have Q(2), yet has P (2), as does any group.

Properties P (n) and Q(m) are clearly related; the following observations are
straightforward:

• If G has P (
(
n

2

)
), then G has Q(n).
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• If G has Q(n + 1), then G has P (n).

Can we characterize Q(n) by an algebraic property of G, in the same vein as in
Theorem 1.1?

In particular, we need to determine, for each prime p, the number n such that
the group Cp × Cp (and more generally any group G(q,m) from Example 1.4)
has Q(n − 1) but does not have Q(n). This leads us to additive combinatorics,
through the following questions:

Question 6.1. Let G = Cp × Cp. What is the smallest size of a subset F ⊂ G
such that the set {xy−1 | x, y ∈ F} contains a generator of each of the p+1 cyclic
subgroups of G?

Similarly, let V ≤ G(q,m) as in Example 1.4. What is the smallest size of a
subset F ⊂ V such that the set {x− y | x, y ∈ F} contains a non-zero vector in
each of the qm + · · ·+ q + 1 simple submodules of V ?
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[Rema–30] R. Remak, Über minimale invariante Ungtergruppen in der Theorie der endlichen

Gruppen. J. reine angew. Math. 162 (1930), 1–16. 5
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