GROUPS WITH IRREDUCIBLY UNFAITHFUL SUBSETS FOR UNITARY REPRESENTATIONS

PIERRE-EMMANUEL CAPRACE AND PIERRE DE LA HARPE

Abstract

Let G be a group and n a positive integer. We say G has Property $P(n)$ if, for every subset $F \subseteq G$ of size n, there exists an irreducible unitary representation π of G such that $\pi(x) \neq$ id for all $x \in F \backslash\{e\}$. Every group has $P(1)$ by a classical result of Gelfand and Raikov. Walter proved that every group has $P(2)$; it is easy to see that some groups do not have $P(3)$. We provide an algebraic characterization of the countable groups (finite or infinite) that have $P(n)$. We deduce that if a countable group G has $P(n-1)$ but does not have $P(n)$, then n is the cardinality of a projective space over a finite field.

1. Introduction

Fidèle, infidèle?
Qu'est-ce que ça fait,
Au fait?
Paul Verlaine, Chansons pour elle, 1891
1.1. Irreducibly unfaithful subsets. A subset F of a group G is called irreducibly unfaithful if, for every irreducible unitary representation π of G, there exists $x \in F$ such that $x \neq e$ and $\pi(x)=\mathrm{id}$. (We denote by e the identity element of the group, and by id the identity operator on the space in which π represents G.) Otherwise F is called irreducibly faithful. For $n \geq 1$, we say that G has Property $\boldsymbol{P}(\boldsymbol{n})$ if every subset of size at most n is irreducibly faithful.

Every group has Property $P(1)$. This is the particular case for discrete groups of a foundational result established for all locally compact groups and continuous unitary representations by Gelfand and Raikov [GeRa-43].

The starting point of this work is the following refinement of the GelfandRaikov Theorem due to Walter:

Every group has Property P(2).
Date: July 13, 2018.
2000 Mathematics Subject Classification. 43A65, 22D10.
Key words and phrases. Countable group, unitary representation, irreducible representation, faithful representation.
P.-E.C. is a F.R.S.-FNRS senior research associate. This work was accomplished at the Bernoulli Center of EPFL, during the project Descriptive set theory and Polish groups; the authors are grateful for support and hospitality.

In other words, in a group, every couple is irreducibly faithful(!). See Walt-74, Proposition 2], as well as [Sasv-91] and Sasv-95, 1.8.7].

It is clear that Property $P(3)$ does not hold for all groups. Indeed, Klein's Vierergruppe, the direct product $C_{2} \times C_{2}$ of two copies of the group of order 2, does not have $P(3)$.

The goal of this note is to characterize groups with $P(n)$ for all $n \geq 3$. We focus on countable groups, i.e., groups that are either finite or countably infinite. What follows can be seen as a quantitative refinement of results in $\mathrm{BeHa}-08$.

Before stating our main result, we need the following preliminaries. For any prime power q, we denote by \mathbf{F}_{q} the finite field of order q. For a group G, we denote by $\mathbf{F}_{q}[G]$ its group algebra over \mathbf{F}_{q}. We recall that any abelian group V whose exponent is a prime p carries the structure of a vector space over \mathbf{F}_{p}, which is invariant under all elements of $\operatorname{Aut}(V)$. In other words, the group structure on V canonically determines a \mathbf{F}_{p}-linear structure. In particular, an abelian normal subgroup V of exponent p in a group G may be viewed, in a canonical way, as a $\mathbf{F}_{p}[G]$-module. We also recall that if W is a simple $\mathbf{F}_{p}[G]$-module, then Schur's Lemma ensures that the commutant

$$
\mathrm{C}_{\operatorname{End}(W)}(G)=\{\alpha \in \operatorname{End}(W) \mid g \cdot \alpha(w)=\alpha(g . w) \text { for all } g \in G, w \in W\}
$$

is a division algebra over \mathbf{F}_{p}. If in addition W is finite, then $\mathrm{C}_{\operatorname{End}(W)}(G)$ is a finite field by Wedderburn's Theorem. In that case, we may write $\mathbf{F}_{q}=\mathrm{C}_{\operatorname{End}(W)}(G)$ for some power q of p. Moreover we may view W as a $\mathbf{F}_{q}[G]$-module.

Our main result reads as follows.
Theorem 1.1. Let G be a countable group and n a positive integer. The following assertions are equivalent.
(1) G does not have $P(n)$.
(2) There exist a prime p, a positive integer m, a finite abelian normal subgroup V in G of exponent p, and a finite simple $\mathbf{F}_{p}[G]$-module W of dimension m over $\mathbf{F}_{q}=\mathrm{C}_{\mathrm{End}(W)}(G)$, enjoying the following properties:
(i) V is isomorphic to the direct sum of $m+1$ copies of W, as a $\mathbf{F}_{p}[G]$ module;
(ii) $q^{m}+q^{m-1}+\cdots+q+1 \leq n$.

To the best of our knowledge, Properties $P(n)$ have not been investigated for finite groups.

The following easy consequence of Theorem 1.1 shows that Klein's Vierergruppe is indeed the only obstruction to $P(3)$.

Corollary 1.2. A countable group has $P(3)$ if and only if its center does not contain any subgroup isomorphic to $C_{2} \times C_{2}$.

Theorem 1.1 also has the following immediate consequence:

Corollary 1.3. Let n be an integer, $n \geq 2$. Suppose that there is no prime power q and integer $m \geq 1$ such that $n=q^{m}+q^{m-1}+\cdots+q+1$.

Every countable group that has $P(n-1)$ also has $P(n)$.
Since 2 is not of the form $q^{m}+q^{m-1}+\cdots+q+1$ for any prime power q and any $m \geq 1$, we recover, in the case of discrete groups, the fact that every countable group has $P(2)$.

On the other hand, when $n=q^{m}+q^{m-1}+\cdots+q+1$, we have the following.
Example 1.4. Consider a prime p, a power q of p, an integer $m \geq 1$, the vector space $W=\mathbf{F}_{q}^{m}$, and the group $\mathrm{GL}(W)=\mathrm{GL}_{m}\left(\mathbf{F}_{q}\right)$. Let $V_{0}, V_{1}, \ldots, V_{m}$ be $m+1$ copies of W; set $V=\bigoplus_{i=0}^{m} V_{i}$, viewed as a $\mathbf{F}_{p}[\mathrm{GL}(W)]$-module. Define the semidirect product group

$$
G_{(q, m)}=\mathrm{GL}(W) \ltimes V .
$$

It is straightforward to check that every abelian normal subgroup of $G_{(q, m)}$ is contained in V, and that every minimal abelian normal subgroup of $G_{(q, m)}$ is isomorphic to W as a $\mathbf{F}_{p}\left[G_{(q, m)}\right]$-module.

Therefore, if $n=q^{m}+q^{m-1}+\cdots+q+1$, Theorem 1.1 implies that $G_{(q, m)}$ has property $P(n-1)$ but not $P(n)$.

Notice that the group $G_{(q, 1)}$ is the semi-direct product $\mathbf{F}_{q}^{*} \ltimes\left(\mathbf{F}_{q} \oplus \mathbf{F}_{q}\right)$. The group $G_{(3,1)}$ appears in [Burn-11, Note F] as an example of a centerless finite group which does not admit any faithful irreducible representation. The group $G_{(4,1)}$ appears in [Isaa-76, Problem 2.19] for the same reason. Note that $G_{(2,1)}$ is Klein's Vierergruppe. Our group $G_{(q, 1)}$ appear in the historical review section of [Szec-16], where they are denoted by $G(2, q)$.

Numerical note 1.5. The sequence of positive integers which are of the form $q^{m}+q^{m-1}+\ldots+q+1$ for some prime power q and positive integer m is Sequence A258777 of OEIS; the first 25 terms are

$$
3,4,5,6,7,8,9,10,12,13,14,15,17,18,20,21,24,26,28,30,31,32,33,38,40
$$

(note that we start with 3 whereas A258777 start with 1). The first 10000 terms appear on https://oeis.org/A258777/b258777.txt where the last term is 101808 . For terms below 100, the largest gap is between 45 th tem and 46 th term, i.e., between 91 and 98 ; it follows from Corollary 1.3 that a group with Property $P(91)$ has necessarily Property $P(97)$. It is a consequence of the Prime Number Theorem that the asymptotic density of this sequence is 0 ; in other words, if for $k \geq 1$ we denote by $R(k)$ the number of positive integers less than k which are terms of this sequence, then $\lim _{k \rightarrow \infty} R(k) / k=0$; see [Radu-17, Appendix B]. Note that the 21st term, which is 31 , can be written in two ways justifying its presence in the sequence: $31=2^{4}+2^{3}+2^{2}+2+1=5^{2}+5+1$.

It is a conjecture that there are no other terms with this property, but this is still open. Indeed, conjecturally, the Goormaghtigh equation

$$
\frac{x^{M}-1}{x-1}=\frac{y^{N}-1}{y-1}
$$

has no solution in integers x, y, M, N such that $x, y \geq 2, x \neq y$, and $M, N \geq 3$, except $31=\frac{2^{5}-1}{2-1}=\frac{5^{2}-1}{5-1}$ and $8191=\frac{2^{13}-1}{2-1}=\frac{90^{3}-1}{90-1}$. We are grateful to Emmanuel Kowalski and Yann Bugeaud for information on the relevant literature, which includes Goor-17, BuSh-02, He-09].
1.2. Irreducibly faithful groups. Clearly, the existence of a faithful irreducible unitary representation for a group G implies that G has $P(n)$ for all $n \geq 1$. The problem of characterizing finite groups with a faithful irreducible unitary representation has been addressed by Burnside in Burn-11, Note F], where a sufficient condition is given. Since then, various papers have been published on the subject, providing various answers to Burnside's question (see the historical overview in [Szec-16]).

Gaschütz [Gasc-54] obtained a short proof of the following simple criterion: a finite group G admits a faithful irreducible representation over an algebraically closed field of characteristic 0 if and only if the abelian part of the socle of G is generated by a single conjugacy class. That result was extended to the class of all countable groups in [BeHa-08, Theorem 2]; see Section 2 below. As a consequence of Theorem 1.1, we shall obtain the following supplementary characterization.

Corollary 1.6. For a countable group G, the following conditions are equivalent:
(i) G has a faithful irreducible unitary representation.
(ii) G has $P(n)$ for all $n \geq 1$.
(iii) For every prime p and every finite simple $\mathbf{F}_{p}[G]$-module W of dimension m over $\mathbf{F}_{q}=\mathrm{C}_{\mathrm{End}(W)}(G)$, the group G does not contain any finite abelian normal subgroup V of exponent p which is isomorphic to the direct sum of $m+1$ copies of W as a $\mathbf{F}_{p}[G]$-module.

In the case of finite groups, the equivalence between (i) and (ii) is trivial, while the equivalence between (i) and (iii) is due to Akizuki (see Shod-31, Page 207]).
1.3. Abelian groups. In view of Theorem 1.1, a countable abelian group G does not have $P(n)$ if and only if G contains $C_{p} \times C_{p}$ for some prime $p \leq n-1$, where C_{p} denotes the cyclic group of order p. We shall offer a direct proof of that fact that does not rely on Theorem 1.1, and holds in particular without the hypothesis of countability:

Proposition 1.7. An abelian group G does not have $P(n)$ if and only if G contains a subgroup isomorphic to $C_{p} \times C_{p}$ for some prime $p \leq n-1$.

In order to establish that, we invoke the following result of M. Bhargava:

Proposition 1.8 ([Bhar-02, Theorem 4]). For any group G and any natural number n, the following conditions are equivalent:
(i) G is the union of n proper normal subgroups.
(ii) G has a quotient isomorphic to $C_{p} \times C_{p}$, for some prime $p \leq n-1$.

Proof of Proposition 1.7. Assume that G does not have Property $P(n)$. Let $F \subset$ $G \backslash\{e\}$ be an irreducibly unfaithful subset of G of size $\leq n$. Let \widehat{G} be the Pontryagin dual of G, namely the group of all characters $G \rightarrow\{z \in \mathbf{C}||z|=1\}$. For each $x \in F$, let $H_{x}=\{\chi \in \widehat{G} \mid \chi(x)=1\}$; it is a subgroup of \widehat{G}. Since G has $P(1)$, we have $H_{x} \neq \widehat{G}$. Since F is irreducibly unfaithful we have $\widehat{G}=\bigcup_{x \in F} H_{x}$. Since \widehat{G} is abelian, every subgroup is normal, and Proposition 1.8 ensures that \widehat{G} maps onto $C_{p} \times C_{p}$, for some prime $p \leq|F|-1 \leq n-1$. By duality (see [Bourb-TS, chap. II, § 1, no 7, Th. 4]), it follows that G contains a subgroup isomorphic to $C_{p} \times C_{p}$.

Conversely, if G contains $V \simeq C_{p} \times C_{p}$ for some prime $p \leq n-1$, consider a set $F \subset G$ of size $p+1$ containing a generator of each of the $p+1$ non-trivial cyclic subgroups of V. Any character of G kills at least one of the elements of F. Thus F is irreducibly unfaithful, and G does not have $P(n)$.

As a consequence, we observe that the condition of countability cannot be removed in Corollary 1.6. Indeed, any torsion-free abelian group G has $P(n)$ for all n by Proposition 1.7, but it cannot be irreducibly faithful if its cardinality is larger than that of the continuum.

2. Gaschütz Theorem and related facts

Theorem[2.2]below is due to Gaschütz in the case of finite groups [Gasc-54] (see also (Hupp-98, Theorem 42.7]), and has been generalized to countable groups in [BeHa-08, part of Theorem 2]. First we remind some terminology.

In a group G, a mini-foot is a minimal non-trivial finite normal subgroup; we denote by \mathcal{M}_{G} the set of all mini-feet of G. The mini-socle of G is the subgroup $\operatorname{MS}(G)$ generated by $\bigcup_{M \in \mathcal{M}_{G}} M$; the mini-socle is $\{e\}$ if \mathcal{M}_{G} is empty, for example $\operatorname{MS}(\mathbf{Z})=\{0\}$. Note that $\operatorname{MS}(G)$ is contained in the FC-centre of G, which is the subgroup of G of elements having a finite conjugacy class.

Let \mathcal{A}_{G} denote the subset of \mathcal{M}_{G} of abelian mini-feet, and \mathcal{H}_{G} the complement of \mathcal{A}_{G} in \mathcal{M}_{G}. The abelian mini-socle of G is the subgroup MA (G) generated by $\bigcup_{A \in \mathcal{A}_{G}} A$, and the semi-simple part $\mathrm{MH}(G)$ of the mini-socle is the subgroup generated by $\bigcup_{H \in \mathcal{H}(G)} H$. We write Π^{\prime} to indicate a restricted product of groups.

In the context of finite groups, mini-foot and mini-socle are respectively called foot and socle. We denote the socle of a finite group G by $\operatorname{Soc}(G)$, the abelian socle by $\operatorname{SocA}(G)$, and the semi-simple part of the socle by $\operatorname{SocH}(G)$. The structure of the socle is due to Remak Rema-30]. For general groups, finite or not,
the structure of the mini-socle can be described similarly, as follows; we refer to [BeHa-08, Proposition 1] for the proof.
Proposition 2.1. Let G be a group. Let $\mathcal{M}_{G}, \operatorname{MS}(G), \mathcal{A}_{G}, \operatorname{MA}(G), \mathcal{H}_{G}, \operatorname{MH}(G)$ be as above.
(1) Every abelian mini-foot A in \mathcal{A}_{G} is isomorphic to $\left(C_{p}\right)^{n}$ for some prime p and positive integer n.
(2) There exists a subset \mathcal{A}_{G}^{\prime} of \mathcal{A}_{G} such that $\mathrm{MA}(G)=\prod_{A \in \mathcal{A}_{G}^{\prime}}^{\prime}$ A. In particular $\mathrm{MA}(G)$ is abelian.
(3) Every non-abelain mino-foot H in \mathcal{H}_{G} is a direct product of a finite number of isomorphic non-abelian simple groups, conjugate with each other in G.
(4) $\mathrm{MH}(G)$ is the restricted direct product of the feet in \mathcal{H}_{G}.
(5) $\operatorname{MS}(G)$ is the direct product $\mathrm{MA}(G) \times \mathrm{MH}(G)$.
(6) Each of the subgroups $\operatorname{MS}(G), \mathrm{MA}(G), \mathrm{MH}(G)$ is characteristic (in particular normal) in G.
(7) Let $p: G \rightarrow H$ is a surjective homomorphism. Then for every foot X of G, either $p(X)$ is trivial or $p(X)$ is a foot of H. In particular p maps $\mathrm{MA}(G)$ [respectively $\mathrm{MH}(G), \mathrm{MS}(G)$] to a subgroup of $\mathrm{MA}(H)$ [resp. $\mathrm{MH}(H)$, $\operatorname{MS}(H)]$ which is normal in H.

The following result is a slight reformulation of the equivalence between (i) and (iv) in [BeHa-08, Theorem 2]

Theorem 2.2. For a countable group G, the following assertions are equivalent.
(i) G has a faithful irreducible unitary representation.
(ii) Every finite normal subgroup of G contained in the abelian mini-socle is generated by a single conjugacy class.

This result is a crucial tool for the proof of Theorem 1.1. Moreover, we shall also need subsidiary facts established in [BeHa-08].

Given a group G and a normal subgroup N, a unitary character or a representation ρ of N is called G-faithful if the intersection over all $g \in G$ of the kernels $\operatorname{Ker}\left(\rho^{g}\right)$ is trivial, where $\rho^{g}(x)=\rho\left(g x g^{-1}\right)$ for all $x \in N$.

For an element $g \in G$ and a subset $F \subset G$, we denote by $\langle\langle g\rangle\rangle_{G}$ the normal subgroup of G generated by $\{g\}$, and by $\langle\langle F\rangle\rangle_{G}$ that generated by F.
Lemma 2.3. Let G be a countable group, N a normal subgroup of G, and π an irreducible unitary representation of G.

If the restriction $\left.\pi\right|_{N}$ is faithful, then N has an irreducible unitary representation σ which is G-faithful.

Proof. See [BeHa-08, Lemma 9]. The hypothesis ' π is faithful' there can be weakened to ' $\left.\pi\right|_{N}$ is faithful', and the same proof works.
Lemma 2.4. Let G be a countable group, N a normal subgroup of G, and σ an irreducible unitary representation of N.

If σ is G-faithful, then G has an irreducible unitary representation π with the following properties: the restriction $\left.\pi\right|_{N}$ is faithful, and every element of $\operatorname{Ker}(\pi)$ is contained in a finite normal subgroup of G.

Proof. Let $\pi=\operatorname{Ind}_{N}^{G}(\sigma)$ be the unitary representation of G induced from σ. Let $\pi=\int_{\Omega}^{\oplus} \pi_{\omega} d \mu(\omega)$ be a direct integral decomposition of π into irreducible unitary representations. Set

$$
\widetilde{\Omega}=\left\{\omega \in \Omega\left|\pi_{\omega}\right|_{N} \text { is not faithful }\right\}
$$

and

$$
\widehat{\Omega}=\left\{\omega \in \Omega \mid \text { there exists } g \in \operatorname{Ker}\left(\pi_{\omega}\right) \text { such that }\langle\langle g\rangle\rangle_{G} \text { is infinite }\right\} .
$$

We claim that $\mu(\widetilde{\Omega})=\mu(\widehat{\Omega})=0$; to show this, we argue as in the proof of BeHa-08, Lemma 10].

To show that $\mu(\widetilde{\Omega})=0$, we proceed by contradiction. We assume that there exists a conjugacy class $C_{\ell} \neq\{e\}$ of G contained in N, generating a subgroup G_{ℓ} of G which is normal and contained in N, and defining a measurable subset $\Omega_{\ell}=\left\{\omega \in \Omega \mid G_{\ell} \subset \operatorname{Ker}\left(\pi_{\omega}\right)\right\}$, such that $\mu\left(\Omega_{\ell}\right)>0$. Then, as in 'Claim 1' in the proof of [BeHa-08, Lemma 10] we show that $G_{\ell} \cap N=\{e\}$, in contradiction with $G_{\ell} \subset N$.

To show that $\mu(\widehat{\Omega})=0$, also by contradiction, we assume now that there exists a conjugacy class $C_{m} \neq\{e\}$ of G generating an infinite subgroup G_{m} of G, and defining a measurable subset $\Omega_{m}=\left\{\omega \in \Omega \mid G_{m} \subset \operatorname{Ker}\left(\pi_{\omega}\right)\right\}$, such that $\mu\left(\Omega_{m}\right)>0$, and we arrive at a contradiction. Indeed, 'Claim 1 ' in the proof already quoted shows that $G_{m} \cap N=\{e\}$, and 'Claim 2' in the same proof shows that G_{m} is finite, in contradiction with the hypothesis.

Consequently, the complement of $\widetilde{\Omega} \cup \widehat{\Omega}$ in Ω has full measure, and is thus non-empty. For any $\omega \in \Omega \backslash(\widetilde{\Omega} \cup \widehat{\Omega})$, the representation π_{ω} is an irreducible unitary representation of G that has the required properties.

Lemma 2.5. Let G be a group and N, A, S normal subgroups of G such that $N=A \times S$. Assume that A is abelian, and that S is the restricted direct product of a collection $\left\{S_{i}\right\}$ of non-abelian finite simple groups. Then:
(i) S has a faithful irreducible unitary representation;
(ii) N has a G-faithful irreducible unitary representation if and only if A has a G-faithful unitary character.

Proof: see Lemma 13 and its proof in $\mathrm{BeHa}-08$].
The following consequence of all the facts above is not used below, but may be of independent interest (compare [BeHa-08, Proposition 11]). It shows that a countable group has an irreducible unitary representation π with a kernel which is 'very small', in the sense that the normal closure of any $g \in \operatorname{Ker}(\pi)$ is finite.

Proposition 2.6. Any countable group G admits an irreducible unitary representation π such that, for every element $g \in \operatorname{Ker}(\pi)$, the normal closure $\langle\langle g\rangle\rangle_{G}$ is a finite subgroup of G and its socle is abelian.
Proof. Let $N=\operatorname{MH}(G)$ be the semi-simple part of the mini-socle of G. Since N is the restricted direct product of non-abelian finite simple groups (Proposition 2.1), Lemma [2.5 ensures that N has a faithful irreducible unitary representation σ. Let π be an irreducible unitary representation of G afforded by applying Lemma 2.4 to σ; given a non-trivial $g \in \operatorname{Ker}(\pi)$, the normal closure $\Gamma_{g}:=\langle\langle g\rangle\rangle_{G}$ is finite.

Let $\operatorname{SocH}\left(\Gamma_{g}\right)$ be the semi-simple part of the socle of of Γ_{g}. Since $\operatorname{SocH}\left(\Gamma_{g}\right)$ is a characteristic subgroup of Γ_{g}, it is also a finite normal subgroup of G, which is a direct product of non-abelian finite simple groups. Therefore, if $\operatorname{SocH}\left(\Gamma_{g}\right)$ were non-trivial, then it would contain a non-abelian mini-feet of G.

Since $\left.\pi\right|_{N}$ is faithful, i.e., since $N \cap \operatorname{Ker}(\pi)=\{e\}$, any mini-foot of G contained in $\operatorname{Ker}(\pi)$ is abelian. In particular any mini-foot of G contained in Γ_{g} is abelian.

It follows that $\operatorname{SocH}\left(\Gamma_{g}\right)=\{e\}$, so that the socle of $\Gamma_{g}=\langle\langle g\rangle\rangle_{G}$ is abelian.
We end this section with the following two subsidiary facts. Given an abelian group A, the symbol \widehat{A} denotes the Pontrjagin dual of A, namely the set of all unitary characters $A \rightarrow \mathcal{U}(1):=\{z \in \mathbf{C}| | z \mid=1\}$. Lemma 2.8 will be needed in Section 4.
Lemma 2.7. Let G be a discrete group, A an abelian normal subgroup of G, and χ a unitary character of A.

Then χ is G-faithful if and only if the subgroup generated by $\chi^{G}=\left\{\chi^{g} \mid g \in G\right\}$ is dense in \widehat{A}.

Proof. This follows from Pontrjagin duality: see the proof of the equivalence between (i) and (ii) in [BeHa-08, Lemma 14].
Lemma 2.8. Let G be a group and A be a finite normal subgroup of G contained in $\mathrm{MA}(G)$.

Then A has a G-faithful unitary character if and only if A is generated by a single conjugacy class.
Proof. We follow the arguments from the proof of Lemma 14 in BeHa -08 (whose formal statement is however insufficient for our purposes).

By (2) in Proposition 2.1, A is a finite abelian group and is therefore a direct sum $A=\bigoplus_{p \in P} A_{p}$, where P is the set of primes p for which A has elements of order p, and A_{p} is the p-Sylow subgroup of A. Moreover A_{p} is a p-elementary abelian group for each $p \in P$, by (1) of the same proposition. (For comparison with [BeHa-08, Lemma 14], note that it follows from Proposition 3.1 below applied to each A_{p} that there exists a finite set $\left\{A_{i}\right\}_{i \in E}$ of abelian mini-feet in G such that $A=\bigoplus_{i \in I} A_{i}$; each A_{i} is isomorphic to $\left(\mathbf{F}_{p}\right)^{n}$ for some $p \in P$ and some $n \geq 1$.) Observe that the Pontryagin dual of $A=\bigoplus_{p \in P} A_{p}$ is canonically isomorphic to $\bigoplus_{p \in P} \widehat{A}_{p}$.

We know by Lemma 2.7 that A has a G-faithful unitary character if and only if \widehat{A} is generated by one G-orbit. By the Chinese Remainder Theorem, the group $\widehat{A}=\bigoplus_{p \in P} \widehat{A}_{p}$ is generated by a single G-orbit if and only each of its p Sylow subgroups \widehat{A}_{p} is generated by a single G-orbit. Using Lemma 2.7 again, we deduce that A has a G-faithful unitary character if and only if A_{p} has a G-faithful character for each $p \in P$.

Consequently, it suffices to prove the Lemma when $A=A_{p}$ for one prime p. Notice that A_{p} is generated by a single conjugacy class if and only if A_{p} is cyclic as a $\mathbf{F}_{p}[G]$-module. Under the natural identification of \widehat{A}_{p} with A_{p}^{*}, the G-action on \widehat{A}_{p} corresponds to the dual (or contragredient) action of G on A_{p}^{*}. Thus we may identify \widehat{A}_{p} with A_{p}^{*} as $\mathbf{F}_{p}[G]$-modules. A finite semi-simple $\mathbf{F}_{p}[G]$-module is cyclic if and only if its dual is cyclic (see Lemma 3.2 in [Szec-16]). Since the dual A_{p}^{*} is canonically isomorphic to the Pontrjagin dual \widehat{A}_{p}, we deduce from Lemma 2.7 that A_{p} is generated by a single conjugacy class if and only if A_{p} has a G-faithful unitary character.

3. Cyclic semi-simple $\mathbf{F}_{p}[G]$-modules

Let R be a ring. The following classical result will be frequently used in the sequel, without further notice.

Proposition 3.1. For a R-module V, the following conditions are equivalent:
(i) V is generated by simple submodules.
(ii) V is a direct sum of a family of simple submodules.
(iii) Every submodule of V is a direct summand.

Proof. See [Bourb-A, $\S 3$, Proposition 7].
A module V satisfying those equivalent conditions is called semi-simple.
The following basic fact is the module version of a result often stated for groups and known as Goursat's Lemma. The module version appears, for example, in [Lamb-76, Page 171]; more on this lemma in [BaSZ-15].

Lemma 3.2. Let $A=A_{1} \oplus A_{2}$ be the direct sum of two R-modules, and for $i=1,2$, let $p_{i}: A \rightarrow A_{i}$ be the canonical projection. Let $M \leq A$ be a submodule such that $p_{i}(M)=A_{i}$ for $i=1,2$, and set $M_{i}=M \cap A_{i}$.

Then the canonical image of M in $A_{1} / M_{1} \oplus A_{2} / M_{2}$ is the graph of an isomorphism $A_{1} / M_{1} \rightarrow A_{2} / M_{2}$ of R-modules.

We say that a R-module V is cyclic if there exists $v \in V$ such that $V=R v$. Let now p be a prime and G a group. The goal of this section is to characterize when a finite semi-simple $\mathbf{F}_{p}[G]$-module is cyclic. This will be achieved in Proposition 3.8 below, after some preparatory steps. Proposition 3.8 is well-known to experts: see Lemma 3.1 in [Szec-16]. It can be seen as a version over \mathbf{F}_{p} of a result for
cyclic unitary representations of compact groups due to Greenleaf and Moskowitz [GrMo-71, Proposition 1.8].

Lemma 3.3. Let W be a finite simple $\mathbf{F}_{p}[G]$-module and let $\mathbf{F}_{q}=\mathrm{C}_{\operatorname{End}(W)}(G)$. Let V_{0}, V_{1} be two copies of W.

Every simple $\mathbf{F}_{p}[G]$-submodule M of $V_{0} \oplus V_{1}$ such that $M \cap V_{0}=\{0\}$ is of the form

$$
M=\left\{(\lambda x, x) \mid x \in V_{1}\right\}
$$

for some $\lambda \in \mathbf{F}_{q}$.
Proof. This is a straightforward consequence of Lemma 3.2,
The following extension to a direct sum of $m+1$ components will be useful.
Lemma 3.4. Let W be a finite simple $\mathbf{F}_{p}[G]$-module and let $\mathbf{F}_{q}=\operatorname{C}_{\operatorname{End}(W)}(G)$. Let $m \geq 0$; for each $i=0, \ldots, m$, let V_{i} be a copy of W. Set $V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{m}$.

Every maximal $\mathbf{F}_{p}[G]$-submodule $M \subsetneq V$ such that $M \cap V_{0}=\{0\}$ is the form

$$
M=\left\{\left(\sum_{i=1}^{m} \lambda_{i} x_{i}, x_{1}, x_{2}, \ldots, x_{m}\right) \mid\left(x_{1}, \ldots, x_{m}\right) \in V_{1} \oplus \cdots \oplus V_{m}\right\}
$$

for some $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbf{F}_{q}^{m}$.
Proof. Let $p: V \rightarrow V_{1} \oplus \cdots \oplus V_{m}$ be the canonical projection. Let $M \subsetneq V$ be a maximal $\mathbf{F}_{p}[G]$-submodule such that $M \cap V_{0}=\{0\}$. Then the restriction $\left.p\right|_{M}$ is injective. Since M is maximal, we have $V=V_{0} \oplus M$, so that $\left.p\right|_{M}: M \rightarrow$ $V_{1} \oplus \cdots \oplus V_{m}$ is an isomorphism of $\mathbf{F}_{p}[G]$-modules.

Given $i \in\{1, \ldots, m\}$, let $M_{i}=\left(\left.p\right|_{M}\right)^{-1}\left(V_{i}\right)$. Then M_{i} is isomorphic to V_{i}, hence it is a simple $\mathbf{F}_{p}[G]$-submodule of M contained in $V_{0} \oplus V_{i}$. Moreover $M_{i} \cap V_{0}=\{0\}$. By Lemma 3.3, there exists $\lambda_{i} \in \mathbf{F}_{q}$ such that $M_{i} \simeq\left\{\left(\lambda_{i} x_{i}, x_{i}\right) \mid x_{i} \in V_{i}\right\} \leq V_{0} \oplus V_{i}$. Since $\left.p\right|_{M}: M \rightarrow V_{1} \oplus \cdots \oplus V_{m}$ is an isomorphism, we deduce that

$$
\begin{aligned}
M & =M_{1} \oplus \cdots \oplus M_{m} \\
& =\left\{\left(\sum_{i=1}^{m} \lambda_{i} x_{i}, x_{1}, x_{2}, \ldots, x_{m}\right) \mid\left(x_{1}, \ldots, x_{m}\right) \in V_{1} \oplus \cdots \oplus V_{m}\right\}
\end{aligned}
$$

as required.
We can now characterize when a direct sum of copies of a given simple $\mathbf{F}_{p}[G]$ module is cyclic.

Lemma 3.5. Let W be a finite simple $\mathbf{F}_{p}[G]$-module and let $\mathbf{F}_{q}=\mathrm{C}_{\operatorname{End}(W)}(G)$. Let $m \geq 0$; for each $i=0, \ldots, m$, let V_{i} be a copy of W; set $V=V_{0} \oplus \cdots \oplus V_{m}$.

Then the $\mathbf{F}_{p}[G]$-module V is cyclic if and only if $m<\operatorname{dim}_{\mathbf{F}_{q}}(W)$.
Proof. Assume first that $m \geq \operatorname{dim}_{\mathbf{F}_{q}}(W)$. Let $\left(v_{0}, \ldots, v_{m}\right) \in V$. Since $V_{i}=W$ for all i, we may view v_{i} as an element of W. Then, upon reordering the summands
V_{0}, \ldots, V_{m}, we may assume that there exists $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbf{F}_{q}^{m}$ such that $v_{0}=$ $\sum_{i=1}^{m} \lambda_{i} v_{i}$. It follows that $\left(v_{0}, \ldots, v_{m}\right)$ belongs to

$$
\left\{\left(\sum_{i=1}^{m} \lambda_{i} x_{i}, x_{1}, x_{2}, \ldots, x_{m}\right) \mid\left(x_{1}, \ldots, x_{m}\right) \in V_{1} \oplus \cdots \oplus V_{m}\right\},
$$

which is a proper submodule of V. Hence V is not cyclic.
In order to prove the converse, we proceed by induction on m. In the base case $m=0$, we have $0=m<\operatorname{dim}_{\mathbf{F}_{q}}(W)$ and $V=V_{0}=W$ is simple, hence cyclic. We now assume that $0<m<\operatorname{dim}_{\mathbf{F}_{q}}(W)$. The induction hypothesis ensures that the module $V_{1} \oplus \cdots \oplus V_{m}$ is cyclic. Let $\left(v_{1}, \ldots, v_{m}\right)$ be a generator. Viewing all v_{i} as elements of W, the hypothesis that $m<\operatorname{dim}_{\mathbf{F}_{q}}(W)$ ensures the existence of an element $v_{0} \in W$ which does not belong to the \mathbf{F}_{q}-subspace of W spanned by $\left\{v_{1}, \ldots, v_{m}\right\}$. Let M be the submodule of V spanned by $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$. The image of M under the canonical projection $V \rightarrow V_{1} \oplus \cdots \oplus V_{m}$ is surjective, since it coincides with the submodule generated by $\left(v_{1}, \ldots, v_{m}\right)$. If $M \cap V_{0}=\{0\}$, then M is a maximal proper submodule. Lemma 3.4 then ensures that v_{0} is a \mathbf{F}_{q}-linear combination of $\left\{v_{1}, \ldots, v_{m}\right\}$, a contradiction. Therefore M contains V_{0} since V_{0} is simple. Hence $V=M$, so that V is indeed cyclic.

The following basic counting lemma will also be useful.
Lemma 3.6. Let W be a finite simple $\mathbf{F}_{p}[G]$-module and let $\mathbf{F}_{q}=\operatorname{Cond}(W)^{(G)}$. Let $m \geq 0$; for each $i=0, \ldots, m$, let V_{i} be a copy of W. Set $V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{m}$. The number of simple $\mathbf{F}_{p}[G]$-submodules of V is

$$
q^{m}+q^{m-1}+\cdots+q+1=\frac{q^{m+1}-1}{q-1}
$$

Proof. We proceed by induction on m. In case $m=0$, the module $V=V_{0}$ is simple, so the result is clear.

Assume now that $m \geq 1$. Let \mathcal{S} be the collection of all simple submodules of V. For each $S \in \mathcal{S}$ such that $S \cap V_{0}=\{0\}$, there is a simple submodule $S^{\prime} \leq V_{1} \oplus \cdots \oplus V_{m}$ and a scalar $\lambda \in \mathbf{F}_{q}$ such that $S \simeq\left\{(\lambda x, x) \mid x \in S^{\prime}\right\} \leq V_{0} \oplus S^{\prime}$ (see Lemma 3.2). By induction, there are $q^{m-1}+\cdots+q+1$ such modules S^{\prime}, and the scalar λ can take q different values. Since the only $S \in \mathcal{S}$ with $S \cap V_{0} \neq\{0\}$ is $S=V_{0}$, we deduce that

$$
|\mathcal{S}|=q\left(q^{m-1}+\cdots+q+1\right)+1=q^{m}+q^{m-1}+\cdots+q+1
$$

as required.
Given a semi-simple R-module V and a simple R-module W, the submodule of V generated by all simple submodules isomorphic to W is called the isotypical component of type W of V. Every semi-simple R-module is the direct sum of its isotypical components (see [Bourb-A, $\S 3$, Proposition 9]).

Lemma 3.7. A finite semi-simple $\mathbf{F}_{p}[G]$-module V is cyclic if and only if each of its isotypical components is cyclic.
Proof. The 'only if' part is clear since any quotient of a cyclic module is cyclic.
Let $V=M_{1} \oplus \cdots \oplus M_{\ell}$ be the decomposition of V as the direct sum of its isotypical components. Assume that M_{k} is cyclic for all $k \in\{1, \ldots, \ell\}$ and let $v_{k} \in$ M_{k} be a generator. We claim that $v=\left(v_{1}, \ldots, v_{\ell}\right)$ is a generator of V. We prove this by induction on ℓ. The base case $\ell=1$ is trivial. Assume now that $\ell \geq 2$ and let M be the submodule generated by v. The induction hypothesis ensures that the canonical projection of M to $A_{1}=\bigoplus_{k=1}^{\ell-1} M_{k}$ is surjective. Clearly, the projection of M to $A_{2}=M_{\ell}$ is surjective. Since A_{1} and A_{2} are disjoint (i.e., they do not contain any non-zero isomorphic summands), it follows from Lemma 3.2 that $M=A_{1} \oplus A_{2}=V$.

Proposition 3.8. Let V be a finite semi-simple $\mathbf{F}_{p}[G]$-module. The following assertions are equivalent:
(i) V is not cyclic.
(ii) There exist a simple $\mathbf{F}_{p}[G]$-module W of dimension $m \geq 1$ over $\mathbf{F}_{q}=$ $\mathrm{C}_{\operatorname{End}(W)}(G)$ and a submodule $V^{\prime} \leq V$ isomorphic to a direct sum of $m+1$ copies of W.

Proof. In view of Lemma 3.5, the module V^{\prime} afforded by Condition (ii) is not cyclic. Since that module is a direct summand of V, it follows that V is not cyclic.

Assume conversely that V is not cyclic. Then V has a non-cyclic isotypical component by Lemma 3.7. It then follows from Lemma 3.5 that Condition (ii) holds.

4. Proof of Theorem 1.1

The proof of $(1) \Rightarrow(2)$ rests on the following two lemmas.
Lemma 4.1. Let n be an integer, $n \geq 2$, and G a countable group with $P(n-1)$ but not $P(n)$.

For every irreducibly unfaithful subset F of size n of G and for every $x \in F$, the normal subgroup $\langle\langle x\rangle\rangle_{G}$ of G is finite and its socle is abelian. In particular all mini-feet of G contained in $\left\langle\langle x\rangle_{G}\right.$ are abelian.
Proof. We start with a preliminary observation. Let N be a finite normal subgroup of G. If the socle $\operatorname{Soc}(N)$ is abelian, then $\operatorname{Soc}(N)$ is a non-trivial finite abelian normal subgroup of G and thus contains an abelian mini-foot of G.

Similarly, if $\operatorname{Soc}(N)$ is non-abelian, then its semi-simple part $\operatorname{SocH}(N)$ is a non-trivial characteristic subgroup of N that splits as a direct product of nonabelian finite simple groups, and hence N contains a non-abelian minifoot of G. Conversely, if N contains a non-abelian minifoot of G, say M, then M is a normal subgroup of N that is a direct product of non-abelian finite simple groups. Thus
M contains a foot of N which is a fortiori a direct product of non-abelian finite simple groups. In particular the socle of N is non-abelian.

Let now F be an irreducibly unfaithful subset of G of size n. Note that $e \notin F$, otherwise G would contain an irreducibly unfaithful subset $F \backslash\{e\}$ of size $n-1$. We partition F into three subsets, $F=F_{A} \sqcup F_{H} \sqcup F_{\infty}$, where:

$$
\begin{aligned}
& F_{A}=\left\{x \in F \mid\langle\langle x\rangle\rangle_{G} \text { is finite with abelian socle }\right\}, \\
& F_{H}=\left\{x \in F \mid\left\langle\langle x\rangle_{G} \text { is finite with non-abelian socle }\right\},\right. \\
& F_{\infty}=\left\{x \in F \mid\langle\langle x\rangle\rangle_{G} \text { is infinite }\right\}=F \backslash\left(F_{A} \sqcup F_{H}\right) .
\end{aligned}
$$

By the preliminary observation above, we may, for each $x \in F_{A}$ [respectively F_{H}], choose an abelian mini-foot A_{x} of G inside $\langle\langle x\rangle\rangle_{G}$ and $y_{x} \neq e$ in A_{x} [respectively a non-abelian mini-foot H_{x} of G inside $\langle\langle x\rangle\rangle_{G}$ and $y_{x} \neq e$ in $\left.H_{x}\right]$. We have $A_{x}=\left\langle\left\langle y_{x}\right\rangle\right\rangle_{G}$ [respectively $\left.H_{x}=\left\langle\left\langle y_{x}\right\rangle\right\rangle_{G}\right]$. Define

$$
\begin{aligned}
& F_{A}^{\prime}=\left\{y_{x} \in G \mid x \in F_{A}\right\}, \quad G_{A}=\left\langle\left\langle F_{A}^{\prime}\right\rangle\right\rangle_{G}, \\
& F_{H}^{\prime}=\left\{y_{x} \in G \mid x \in F_{H}\right\}, \quad G_{H}=\left\langle\left\langle F_{H}^{\prime}\right\rangle\right\rangle_{G}, \\
& F^{\prime}=F_{A}^{\prime} \cup F_{H}^{\prime} \cup F_{\infty} .
\end{aligned}
$$

By Proposition 2.1, the finite normal subgroup G_{A} of G is abelian, the finite normal subgroup G_{H} of G is a direct product of non-abelian simple finite groups, and the subgroup of G generated by G_{A} and G_{H} is their direct product $G_{A} \times G_{H}$.

Observe that $\left|F^{\prime}\right| \leq|F|$. Moreover, by construction, for all $x \in F_{A} \cup F_{H}$, we have $\left\langle\left\langle y_{x}\right\rangle_{G} \leq\langle\langle x\rangle\rangle_{G}\right.$, so that F^{\prime} cannot be irreducibly faithful. Since G has $P(n-1)$, it follows that $\left|F^{\prime}\right|=|F|=n$.

We claim that $F^{\prime}=F_{A}^{\prime}$. Indeed, assume the contrary. Then $\left|F_{A}^{\prime}\right| \leq n-1$, and since G has $P(n-1)$ we may find an irreducible unitary representation π of G with $\pi\left(y_{x}\right) \neq \mathrm{id}$ for all $y_{x} \in F_{A}^{\prime}$. Set $K=G_{A} \cap \operatorname{Ker}(\pi)$ and $Q=G / K$. Observe that the image N of $G_{A} \times G_{H}$ in Q is a normal subgroup which is the direct product of the image G_{A} / K of G_{A} in Q, which is abelian, and the image of G_{H} in Q, which is isomorphic to G_{H} since $K \cap G_{H}=\{e\}$.

By construction, all elements of F_{A}^{\prime} have a non-trivial image in Q. Moreover, since $K \leq \operatorname{Ker}(\pi)$, we may view π as an irreducible unitary representation of Q, whose restriction to G_{A} / K is faithful. By Lemma 2.3, we know that G_{A} / K has a Q-faithful irreducible unitary representation. Since $N=\left(G_{A} / K\right) \times G_{H}$ is a normal subgroup of Q satisfying the hypothesis of Lemma [2.5, we see that N has a Q-faithful irreducible unitary representation. Hence, by Lemma [2.4, we conclude that Q has an irreducible unitary representation ρ such that every element in $\operatorname{Ker}(\rho)$ has a normal closure which is finite and intersects N trivially. We may view π as an irreducible unitary representation of G. Since K is finite, we have $\pi(z) \neq \mathrm{id}$ for all $x \in F_{\infty}$. Therefore $\pi(z) \neq \mathrm{id}$ for all $z \in F^{\prime}$, a contradiction because F^{\prime} is not irreducibly faithful.

It follows that $F^{\prime}=F_{A}^{\prime}$, and therefore $F=F_{A}$. By the preliminary observation above, this implies that for all $x \in F$, every mini-foot of G contained in $\langle\langle x\rangle\rangle_{G}$ is abelian.

Lemma 4.2. Let G be a countable group and $F \subset G$ be an irreducibly unfaithful subset of size n such that every non-trivial element of F is contained in an abelian mini-foot of G.

Then there exist a prime p, an integer $m \geq 1$, a finite abelian normal subgroup V of G of exponent p, and a simple $\mathbf{F}_{p}[G]$-module W of dimension m over $\mathbf{F}_{q}=$ $\mathrm{C}_{\operatorname{End}(W)}(G)$, enjoying the following properties:
(i) V is isomorphic to the direct sum of $m+1$ copies of W, as a $\mathbf{F}_{p}[G]$-module;
(ii) $q^{m}+q^{m-1}+\cdots+q+1 \leq n$.

Proof. Let A be the normal closure of F in G.
Let K be a maximal normal subgroup of G contained in A and such that $F \cap K \subseteq\{e\}$. Let $G^{\prime}=G / K$ and let A^{\prime} and F^{\prime} be the images of A and F in G^{\prime}. Notice that every abelian mini-foot of G^{\prime} contained in A^{\prime} must contain an element of F^{\prime}. In particular A^{\prime} contains at most n mini-feet of G^{\prime}.

Since every element of F^{\prime} is contained in an abelian mini-foot of G^{\prime}, and since any two feet commute, we see that A^{\prime} is a finite abelian normal subgroup of G^{\prime}. Since F is irreducibly unfaithful in G, it follows that F^{\prime} and A^{\prime} are irreducibly unfaithful in G^{\prime}. Therefore, by Lemma 2.4, it follows that no irreducible unitary representation of A^{\prime} is G^{\prime}-faithful. By Lemma 2.8, this implies that A^{\prime} is not generated by a single conjugacy class.

Let \mathcal{P} be the set of all prime divisors of $\left|A^{\prime}\right|$, and let A_{p}^{\prime} be the p-Sylow subgroup of A^{\prime}. Then A_{p}^{\prime} is G^{\prime}-invariant, and we have a G^{\prime}-equivariant decomposition $A^{\prime} \simeq \bigoplus_{p \in \mathcal{P}} A_{p}^{\prime}$. Each A_{p}^{\prime} may be viewed as a $\mathbf{F}_{p}\left[G^{\prime}\right]$-module. Moreover A_{p}^{\prime} is semi-simple since it is generated abelian by mini-feet, each of which is a simple $\mathbf{F}_{p}\left[G^{\prime}\right]$-module (see Proposition 3.1).

If each A_{p}^{\prime} were generated by a single conjugacy class, then A^{\prime} would have the same property. Thus there exists p such that A_{p}^{\prime} is not generated by a single conjugacy class. In other words the $\mathbf{F}_{p}\left[G^{\prime}\right]$-module A_{p}^{\prime} is not cyclic. We may therefore invoke Lemma 3.8. This yields a simple $\mathbf{F}_{p}[G]$-module W of dimension $m \geq 1$ over $\mathbf{F}_{q}=\mathrm{C}_{\operatorname{End}(W)}(G)$ and a submodule V^{\prime} of A_{p}^{\prime} which is isomorphic to a direct sum of $m+1$ copies of W.

Since A^{\prime} contains at most n mini-feet of G^{\prime}, it follows that V^{\prime} contains at most n simple submodules. In view of Lemma 3.6, we deduce that $q^{m}+q^{m-1}+\cdots+q+1 \leq$ n.

Let now A_{p} be the p-Sylow subgroup of A. Observe that the restriction of the G-equivariant surjective homomorphism $A \rightarrow A_{p}^{\prime}$ to A_{p} is still G-equivariant and surjective. We may view A_{p} as a $\mathbf{F}_{p}[G]$-module. Since A is generated by abelian mini-feet of G, the same holds for A_{p}, so that A_{p} is a semi-simple $\mathbf{F}_{p}[G]$-module. Therefore, the short exact sequence $0 \rightarrow K \cap A_{p} \rightarrow A_{p} \rightarrow A_{p}^{\prime} \rightarrow 0$, which is
G-equivariant, admits a G-equivariant section (see Proposition 3.1). Thus G has an abelian normal subgroup V of exponent p which is isomorphic to V^{\prime} as a $\mathbf{F}_{p}[G]$-module. The required conclusions follow.

Proof of Theorem 1.1. Let G be a group for which (1) of Theorem 1.1 holds, i.e., a group which does not have Property $P(n)$. Upon replacing n by a smaller integer, we may assume that G has Property $P(n-1)$. Let F be an irreducibly unfaithful subset of G of size n. We invoke Lemma 4.1. This ensures that for each $x \in F$ we may find a non-trivial element $y_{x} \in\langle\langle x\rangle\rangle_{G}$ such that $\left\langle\left\langle y_{x}\right\rangle\right\rangle_{G}$ is an abelian mini-foot of G. Since $\left\langle\left\langle y_{x}\right\rangle\right\rangle_{G} \leq\langle\langle x\rangle\rangle_{G}$ for all $x \in F$, it follows that the set $F^{\prime}=\left\{y_{x} \mid x \in F\right\}$ is irreducibly faithful. Notice that F^{\prime} satisfies Lemma 4.2, moreover we have $\left|F^{\prime}\right| \leq|F|=n$. We deduce that (2) indeed holds.

For the reverse implication $(2) \Rightarrow(1)$ in Theorem 1.1, we pick a non-trivial element in each of the $q^{m}+q^{m-1}+\cdots+q+1$ simple $\mathbf{F}_{p}[G]$-submodules of V (see Lemma (3.6). In that way we obtain a subset F of G of size $q^{m}+q^{m-1}+\cdots+q+1$. Since V is not cyclic as a $\mathbf{F}_{p}[G]$-module by Lemma 3.5, it follows that V is not generated by a single conjugacy class. In view of Theorem [2.2, for every irreducible unitary representation π of G, the restriction $\left.\pi\right|_{V}$ cannot be faithful. In particular $\operatorname{Ker}(\pi)$ contains at least one of the simple $\mathbf{F}_{p}[G]$-submodules of V. Hence F is irreducibly unfaithful. This shows that G does not have Property $P\left(q^{m}+\cdots+q+1\right)$, hence also not $P(n)$ since $n \geq q^{m}+\cdots+q+1$. The proof is complete.

5. Groups with $P(n)$ for all n

Proof of Corollary 1.6. That (i) implies (ii) is clear. That (ii) implies (iii) follows from Theorem 1.1.

Assume that (iii) holds. Let A be a finite abelian normal subgroup of G contained in the mini-socle. Let p be a prime dividing $|A|$ and A_{p} be the p-Sylow subgroup of A. Then A_{p} is a finite $\mathbf{F}_{p}[G]$-module, which is semi-simple because A, hence also A_{p}, is generated by mini-feet of G. Since (iii) holds, it follows from Lemma 3.8 that A_{p} is generated by a single conjugacy class. Since that holds for all p dividing $|A|$, it follows that A is generated by a single conjugacy class. Therefore G is irreducibly faithful by Theorem 2.2. Thus (i) holds.

6. Irreducibly injective sets

A subset F of a group G is called irreducibly injective if G has an irreducible unitary representation π such that the restriction $\left.\pi\right|_{F}$ is injective. We say that G has property $Q(n)$ if every subset of G of size $\leq n$ is irreducibly injective. Observe that $C_{2} \times C_{2}$ does not have $Q(2)$, yet has $P(2)$, as does any group.

Properties $P(n)$ and $Q(m)$ are clearly related; the following observations are straightforward:

- If G has $P\left(\binom{n}{2}\right)$, then G has $Q(n)$.
- If G has $Q(n+1)$, then G has $P(n)$.

Can we characterize $Q(n)$ by an algebraic property of G, in the same vein as in Theorem 1.1]?

In particular, we need to determine, for each prime p, the number n such that the group $C_{p} \times C_{p}$ (and more generally any group $G_{(q, m)}$ from Example 1.4) has $Q(n-1)$ but does not have $Q(n)$. This leads us to additive combinatorics, through the following questions:

Question 6.1. Let $G=C_{p} \times C_{p}$. What is the smallest size of a subset $F \subset G$ such that the set $\left\{x y^{-1} \mid x, y \in F\right\}$ contains a generator of each of the $p+1$ cyclic subgroups of G ?

Similarly, let $V \leq G_{(q, m)}$ as in Example 1.4. What is the smallest size of a subset $F \subset V$ such that the set $\{x-y \mid x, y \in F\}$ contains a non-zero vector in each of the $q^{m}+\cdots+q+1$ simple submodules of V ?

References

[BaSZ-15] K. Bauer, D. Sen, and P Zvengrowski, A generalized Goursat lemma. Tatra Mt. Math. Publ. 64 (2015), 1-19. 9
[BeHa-08] B. Bekka and P. de la Harpe, Irreducibly represented groups. Comment. Math. Helv. 83 (2008), 847-868. 2, 4, 5, 6, 7, 8
[Bhar-02] M. Bhargava, When is a group the union of proper normal subgroups? Amer. Math. Monthly 109 (2002), no. 5, 471-473. 5
[Bourb-A] N. Bourbaki, Algèbre, Chapitre VIII, Modules et anneau semi-simples. Hermann, 1958. 9 11
[Bourb-TS] N. Bourbaki, Théories spectrales, Chapitres 1 et 2. Hermann, 1967. 5
[Burn-11] W. Burnside, The theory of groups of finite order, 2nd Edition. Cambridge Univ. Press, 1911. Reprint, Dover, 1955. 3, 4
[BuSh-02] Y. Bugeaud and T.N. Shorey, On the Diophantine equation $\frac{x^{m}-1}{x-1}=\frac{y^{n}-1}{y-1}$. Pacific J. Math. 207 (2002), no. 1, 61-75. 4
[Gasc-54] W. Gaschütz, Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen. Math. Nach. 12 (1954),253-255. (4, 5
[GeRa-43] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups. Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 301-316. I.M. Gelfand, Collected papers, Volume II, 3-17. 1
[Goor-17] R. Goormaghtigh. L'intermédiare des Mathématiciens 24 (1917), 88. 4]
[GrMo-71] F. Greenleaf and M. Moskowitz, Cyclic vectors for representations of locally compact groups. Math. Ann. 190 (1971), 265-288. 10
[He-09] B. He, A remark on the Diophantine equation $\frac{x^{3}-1}{x-1}=\frac{y^{n}-1}{y-1}$. Glas. Mat. Ser. III $44(64)$, no. 1 (2009) 1-6. 4
[Hupp-98] B. Huppert, Character theory of finite groups. W. de Gruyter, 1998. 5]
[Isaa-76] I.M. Isaacs, Charater theory of finite groups. Academic Press, 1976. 3
[Lamb-76] J. Lambek, Lectures on rings and modules, Second Edition. Chelsea, 1976. [First Edition, Blaisdell, 1966.] 9
[OEIS] The On-Line Encyclopedia of Integer Sequences. On line: https://oeis.org 3
[Radu-17] N. Radu, A classification theorem for boundary 2-transitive automorphisms of trees. Invent. Math. 209 (2017), no. 1, 1-60. 3
[Rema-30] R. Remak, Über minimale invariante Ungtergruppen in der Theorie der endlichen Gruppen. J. reine angew. Math. 162 (1930), 1-16. ${ }^{5}$
[Sasv-91] Z. Sasvári, On a refinement of the Gel'fand-Raikov theorem. Math. Nachr. 150 (1991), 185-187. 2
[Sasv-95] Z. Sasvári, Positive definite and definitizable functions. Academic Verlag, 1994. 2
[Shod-31] K. Shoda, Bemerkungen über vollständig reduzible Gruppen. J. Fac. Sci., Univ. Tokyo, Sect. I 2 (1931), 203-209. [
[Szec-16] F. Szechtman, Groups having a faithful irreducible representation. J. Algebra 454 (2016), 292-307. 3 困 9
[Walt-74] M.E. Walter, A duality between locally compact groups and certain Banach algebras. J. Functional Analysis 17 (1974), 131-60. 2

Pierre-Emmanuel Caprace: UCLouvain - IRMP, Chemin du Cyclotron 2, box L7.01.02, B-1348 Louvain-La-Neuve.

E-mail address: pe.caprace@uclouvain.be
Pierre de la Harpe: Section de mathématiques, Université de Genève, C.P. 64, CH-1211 Genève 4.

E-mail address: Pierre.delaHarpe@unige.ch

