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Abstract

In this note we associate a sequence of non-negative integers to any

convergent series of positive real numbers and study this sequence for the

series
∑

n≥1
n
−k where k is an integer ≥ 2.

1 Introduction

Let (xi)
∞
i=1 be a sequence of positive real numbers such that

∑∞

i=1 xi converges.

Given such a sequence one can associate a sequence of non-negative integers

(an)
∞
n=1 by defining

an =
[ 1
∑∞

i=n+1 xi

]

where [x] = the largest integer ≤ x, for a real number x.

This problem has been studied for some special class of sequences. For example,

Ohtsuka and Nakamura [1] derived a formula for xi =
1
Fi

, where Fi denotes the

ith Fibonacci number. Since then several results have been discovered about

the case in which xi s are reciprocals of a sequence given by linear recurrence

relations (for example see [2]).

In this note we consider the case xi = i−k where k is a positive integer ≥ 2.

The first theorem that we prove is following:

Theorem 1.1 : Let k be an integer ≥ 2. Then there is a polynomial f(X) ∈

Q[X ] of degree (k − 1) (unique upto the constant term) and an integer N0 (de-

pending on f) such that
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f(n) <
1

∑∞

i=n+1 i
−k

< f(n) + 1

holds for all n ≥ N0.

In section-2 we prove a lemma which is central to our treatment. In section-3

we prove theorem 1.1 and indicate how to compute a closed form formula for an

and compute it for k = 2, 3, 4, 5. In section-4 we prove a generalization which is

as follows :

Let P (X) be a polynomial over R of degree ≥ 2 such that the leading co-

efficient is positive. Let i0 ∈ R be large enough so that P (x) > 0 for all x > i0.

Put xi =
1

P (i+i0)
for all i ≥ 1. Clearly

∑

i≥0 xi < ∞. Then we have an analogus

result :

Theorem 1.2 : There is a polynomial f(X) ∈ R[X ] depending on P (unique

upto constant term), an integer N0 depending on f and i0 so that degree of f

is (k − 1) and

f(n+ i0) <
1

∑∞

i=n+1 xi

< f(n+ i0) + 1

holds for all n ≥ N0.

2 An Important Lemma

We begin by proving a useful lemma.

Lemma 2.1: Fix an integer k, k ≥ 2. Let x0, x1, · · · , xk−1 be k unknowns.

Consider F (X, x0, · · · , xk−1) = x0X
k−1 + x1X

k−2 + · · · + xk−2X + xk−1 ∈

R[X, x0, · · · , xk−1]. Let g(X) ∈ R[X ] be a polynomial of degree k. Assume that

g(X + 1) = a0X
k + · · ·+ ak.

Put

F ((X+1), x0, · · · , xk−1) = x0X
k−1+(x1+y1)X

k−2+· · ·+(xk−2+yk−2)X+(xk−1+yk−1),
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H(X) = F ((X+1), x0, · · · , xk−1)F (X, x0, · · · , xk−1) = p0X
2k−2+· · ·+p2k−3X+p2k−2,

G(X) = g(X+1)(F ((X+1), x0, · · · , xk−1)−F (X, x0, · · · , xk−1)) = q0X
2k−2+· · ·+q2k−3X+q2k−2

where yi, pj , ql ∈ R[x0, · · · , xk−1] for all 1 ≤ i ≤ k − 1, 0 ≤ j ≤ 2k − 2 and

0 ≤ l ≤ 2k − 2.

Consider the system of k equations

pi = qi, ∀ 0 ≤ i ≤ k − 1

in k unknowns x0, · · · , xk−1.

This system of equations has a unique solution (c0, · · · , ck−1) ∈ Rk with c0 6= 0.

Further, if g is defined over Q then (c0, · · · , ck−1) ∈ Qk.

Proof: First notice that the coefficient of Xk in F ((X + 1), x0, · · · , xk−1) is

indeed x0 and degrees of G(X), H(X) in X are indeed at most (2k− 2). Hence

the hypothesis of the lemma is justified.

Now an application of binomial theorem gives

yi =

(

k − i

1

)

xi−1 +

(

k − i+ 1

2

)

xi−2 + · · ·+

(

k − 1

i

)

x0 (2.1)

for each 1 ≤ i ≤ k − 1.

A direct calculation gives

pj =

j
∑

r=0

xr(xj−r + yj−r) (2.2)

for all 0 ≤ j ≤ k − 1 where y0 = 0.

Similarly,

ql =

l
∑

r=0

aryl−r+1 (2.3)

for all 0 ≤ l ≤ k − 1 where yk = 0.

Thus p0 = x2
0 and q0 = y1 = ao

(

k−1
1

)

x0 = a0(k − 1)x0.

Hence x0 = a0(k − 1) is a solution to p0 = q0. Clearly a0(k − 1) 6= 0.

Now notice that pi depends only on {x0, · · · , xi, y0, · · · , yi}.

By (2.1), this observation implies pi depends only on {x0, · · · , xi}. This holds

for all 0 ≤ i ≤ k − 1. Similarly qi depends only on {y1, · · · , yi+1} i.e. only on

{x0, · · · , xi}. This is true for all 0 ≤ i ≤ k − 1.
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So we can take an inductive approach to solve the system of equations.

We have already found a c0 (namely a0(k− 1)) such that x0 = c0 solves p0 = q0

and c0 6= 0. Note that this is the only non-zero solution to p0 = q0 and if a0 ∈ Q

then c0 ∈ Q.

Assume that we have found (c0, · · · , ci) ∈ Ri+1 such that c0 6= 0 and this is the

unique tuple solving the system of equations

p0 = q0, · · · , pi = qi

for some i in the range 0 ≤ i ≤ k − 2. Further if g is defined over Q then Qi+1.

Now the goal is to find a ci+1 ∈ R such that (c0, · · · , ci+1) solves pi+1 = qi+1.

We consider two cases:

Case I: i < k − 2

Here i+ 1 ≤ k − 2.

Coefficient of xi+1 in pi+1 is = 2x0 (one x0 arises from term x0(xi+1 + yi+1)

and other x0 arises from the term xi+1(x0 + y0)).(Follows from (2.1) and (2.2))

Coefficient of xi+1 in qi+1 is = a0(coefficient of xi+1 in yi+2) = a0
(

k−(i+2)
1

)

=

a0(k − (i + 2)) (follows from (2.1) and (2.2)).

Hence pi+1 = qi+1 can be rewritten as

{2x0 − a0(k − i− 2)}xi+1 = some polynomial in x0, · · · , xi (2.4)

Note that {2c0 − a0(k − i − 2)} = a0(k + i) 6= 0. Thus we can put x0 =

c0, · · · , xi = ci in (2.4) and solve for xi+1 to get a tuple (c0, · · · , ci+1) ∈ Ri+2

which is a solution for the system of equations

p0 = q0, · · · , pi+1 = qi+1.

Now if (d0, · · · , di+1) is another solution with d0 6= 0 then by induction hypoth-

esis (c0, · · · , ci) = (d0, · · · , di). From (2.4) it follows that di+1 = ci+1. Hence

the uniqueness.

If g is defined over Q then by induction hypothesis (c0, · · · , ci) ∈ Qi+1. Since

pi+1 and qi+1 are defined over Q using (2.4) we conclude that ci+1 ∈ Q.

So for this case we are done.
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Case II: i = k − 2

This is essentially similar to previous case. Only difference is coefficient of xk−1

in qk−1 is 0.

So pk−1 = qk−1 can be rewritten as 2x0xk−1 = some polynomial in x0, · · · , xk−2

and from here the arguments of previous case goes through since c0 6= 0.

Thus inductively we can find (c0, · · · , ck−1) ∈ Rk such that this tuple is the

unique solution to the system of equations under consideration with c0 6= 0.

Further if g is defined over Q then (c0, · · · , ck−1) ∈ Qk.

This completes the proof of lemma. �

3 Proof of theorem 1.2

At first we prove theorem 1.2 and deduce theorem 1.1 as a corollary.

We shall use lemma 2.1 with g(X) = P (X). Say, leading co-efficient of P is

a0 > 0.

Let k be an integer ≥ 2.

Let (c0, · · · , ck−1) ∈ Rk be the tuple as in lemma 2.1.

We continue to use notations from lemma 2.1.

Put f(X) = F (X, c0, · · · , ck−2, c) = c0X
k−1 + · · · + ck−2X + c where c is any

real number satisfying c < ck−1 < c+ k
k−1 .

Now

1

f(X)
−

1

f(X + 1)
−

1

g(X + 1)
=

g(X + 1)(f(X + 1)− f(X))− f(X)f(X + 1)

f(X)f(X + 1)g(X + 1)

Consider the expression on the numerator.

By choice of (c0, .., ck−2) the coefficients of X2k−2, · · · , Xk vanishes (i.e. pi = qi

holds for all 0 ≤ i ≤ k − 2).

Coefficient of Xk−1 is (qk−1(c0, · · · , ck−2, c)− pk−1(c0, · · · , c)).

From proof of lemma 2.1 we have qk−1 does not depends on xk−1.

Hence qk−1(c0, .., ck−2, c) = qk−1(c0, · · · , ck−2, ck−1) = pk−1(c0, · · · , ck−2, ck−1).

(By choice of the tuple(c0, · · · , ck−1))

Again from the proof of lemma 2.1 the coefficient of xk−1 in pk−1 is 2x0. Thus
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qk−1(c0, · · · , ck−2, c)− pk−1(c0, · · · , c)

= pk−1(c0, · · · , ck−2, ck−1)− pk−1(c0, · · · , ck−2, c)

= 2c0(ck−1 − c)

Hence the coefficient of the leading term of the polynomial in the numerator is

2c0(ck−1 − c). But c0 = a0(k − 1) > 0. So 2c0(ck−1 − c) > 0.

The coefficient of the leading term of the polynomial in the denominator is

c20 > 0.

Hence the is a large enough natural number N1 such that for all i ≥ N1

1

f(i+ i0)
−

1

f(i+ i0 + 1)
−

1

g(i+ i0 + 1)
> 0

i.e.
1

f(i+ i0)
−

1

f(i+ i0 + 1)
>

1

g(i+ i0 + 1)

From here telescoping we get

1

f(n+ i0)
>

∞
∑

i=n+1

1

g(i+ i0)
(3.1)

for all n ≥ N1 + i0. Now

1

f(X) + 1
−

1

f(X + 1) + 1
−

1

g(X + 1)

=
g(X + 1)(f(X + 1)− f(X))− (f(X) + 1)(f(X + 1) + 1)

(f(X) + 1)(f(X + 1) + 1)g(X + 1)

Note that (f(X)+1)(f(X+1)+1)−f(X)f(X+1) has degree equal to (k−1).

Hence co-efficient ofXk−1 in (f(X)+1)(f(X+1)+1) is pk−1(c0, · · · ck−2, c)+2a0.

Similar calculation suggests that the coefficient of the leading term in the nu-

merator is 2c0(ck−1 − c− 1)− 2a0 = 2c0(ck−1 − c− k
k−1 ) < 0.

But the coefficient of the leading term in the denominator is c20 > 0.

Thus there is a large enough integer N2 such that for all i ≥ N2

1

f(i+ i0) + 1
−

1

f(i+ i0 + 1) + 1
<

1

g(i+ i0 + 1)
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Again by telescoping

1

f(n) + 1
<

∞
∑

i=n+1

1

g(i+ i0)
(3.2)

for all n ≥ N2 + i0.

Put N0 = max{N1, N2}+ i0.

Then
1

f(n) + 1
<

∞
∑

i=n+1

1

g(i)
<

1

f(n)
(3.3)

for all n ≥ N0.

From (3.3) the theorem 1.2 follows. �

Remark 3.1: i) The proof of lemma 2.1 and proof of theorem 1.1 gives an

algorithm to compute the polynomial f(X) mentioned in the statement of the

theorem. Note that this polynomial is not unique. We can choose infinitely

many distinct values for the constant term. The integer N0 depends on the

choice of the polynomial f .

ii) It is natural to ask whether we can take c = ck−1.

Put

f1(X) = c0X
k−1 + c1X

k−2 + · · ·+ ck−2X + ck−1.

We consider three possible cases:

Case I: pi(c0, · · · , ck−1) = qi(c0, · · · , ck−1) for all 0 ≤ i ≤ 2k − 2.

Then
1

g(X + 1)
=

1

f1(X)
−

1

f1(X + 1)
.

Then by telescoping
∑∞

i=n+1
1

g(i+i0)
= 1

f1(n+i0)
holds for all positive integer n.

Since ck−1 < k
k−1+ck−1 arguments as in proof of the theorem implies

∑∞

i=n+1
1

g(n+i0)
>

1
f1(n+i0)+1 for large enough n.

Thus

f1(n+ i0) ≤
(

∑

i≥n+1

1

g(i+ i0)

)−1

< f1(n+ i0) + 1
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holds for large enough n.

Now say, case I does not hold. Then there is a i with 0 ≤ i ≤ 2k − 2 such

that pi 6= qi at the point (c0, · · · , ck−1).

Let i0 be the minimum of such i s. Note that here we must have i0 ≥ k. Now

Case II: qi0 (c0, · · · , ck−1) > pi0(c0, · · · , ck−1)

Then
∑∞

i=n+1
1

g(i+i0)
< 1

f1(n+i0)
for large enough n by arguments similar to the

proof of the theorem.

Since ck−1 < ck−1 + k
k−1 , so we have

∑∞

i=n+1
1

g(n+i0)
> 1

f1(n+i0)+1 for large

enough n.

Thus f1(X) satisfies the required property of f in the theorem.

Case III: qi0(c0, · · · , ck−1) < pi0(c0, · · · , ck−1)

Again by similar arguments
∑∞

i=n+1
1

g(i+i0)
> 1

f1(n+i0)
for large enough n.

Now since ck−1 − 1 < ck−1, so we have
∑∞

i=n+1
1

g(i+i0)
< 1

f1(n+i0)−1 for large

enough n. So we can not take c = ck−1 but can take c = ck−1 − 1.

Corollary 3.2 (Theorem 1.1): Put P (X) = Xk, i0 = 0. Using lemma-2.1

we conclude that (c0, · · · , ck−1) ∈ Qk. Clearly one can choose c to be rational.

Hence theorem 1.1. Note that considerations in remark 3.1 hold accordingly.

4 Computation of an

First we make a small observation:

Remark 4.1 : Let f be any polynomial given by theorem 1.2. Let N0 be the

corresponding integer. Then from the inequality in theorem 1.2 it follows that

for all n ≥ N0

i) an is either [f(n)] or [f(n)] + 1.

ii) If f(n) is an integer for some n then an = f(n).

iii) Conclusion in i) and ii) continue to hold if we replace the ‘<’ sign in the

inequality at the left hand side in the statement of the theorem by ‘≤’.
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For the rest of the section we shall assume that P is defined over Q. Fur-

ther, we shift the polynomial so that we can take i0 = 0. The polynomial Xk

satisfies these properties.

4.1 A general algorithm

Fix a polynomial P as above.

Calculate (c0, · · · , ck−1).

Write ci =
ui

vi
where ui, vi are integers with vi > 0 and gcd(ui, vi) = 1 for all

0 ≤ i ≤ k − 1.

Put V = lcm (v0, · · · , vk−2).

Now consider two cases:

Case I : vk−1 does not divide V .

Write ck−1 = [ck−1]+
rk−1

vk−1

where rk−1 is a positive integer. Since gcd(uk−1, vk−1) =

1, one has gcd(rk−1, vk−1) = 1. So
rk−1

vk−1

6= n
V

for any n ∈ Z.

Let r ∈ {0, · · · , V − 1} be fixed.

Then there is a unique integer n(r) such that n(r)− r
V

< ck−1 < n(r) + 1− r
V
.

Put

h(X) = c0X
k−1 + · · ·+ ck−2X =

h0(X)

V

where h0(X) ∈ Z[X ].

Let

fr(X) = h(X) + n(r)−
r

V
.

Now there is an integer N(r) such that

fr(n) <
1

∑∞

i=n+1
1

P (i)

< fr(n) + 1

for all n ≥ N(r). Choose such a N(r).

We do this for each r ∈ {0, · · · , V − 1}.

Put N = max {N(0), · · · , N(V − 1)}.

Let n ≥ N and r be such that r ∈ {0, · · · , V − 1} and h0(n) ≡ r (modV ).

Clearly such r exists and is unique.

Then using remark 4.1 (ii) we have an = fr(n).
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Now note that n1 ≡ n2 mod(V ) implies h0(n1) ≡ h0(n2) mod(V ).

Thus in this case we have a closed form formula for an depending on equivalence

class of n modulo V whenever n ≥ N .

Case II: Case I does not hold.

Fix r ∈ {1, · · · , V }.

If r
V

6= 1 + [ck−1]− ck−1, there is an unique integer n(r) such that n(r) − r
V

<

ck−1 < n(r) + 1− r
V
.

Otherwise there is an integer n such that n− r
V

= ck−1.

Now we need to do further calculation and find out which case of remark 3.1 ii)

holds. If case I or II holds then put n(r) = n. If case III holds put n(r) = n− 1.

Let

fr(X) = h(X) + n(r)−
r

V
.

Using previous arguments and the discussion in remark 3.1 ii), there is an integer

N(r) such that

fr(n) ≤
1

∑∞

i=n+1
1

P (i)

< fr(n) + 1

for all n ≥ N(r).

Due to remark 3.1 iii) the arguments of case I goes through from here.

4.2 Explicit formulae

Consider the polynomial P (X) = Xk, k ≥ 2.

For k = 2, (c0, c1) = (1, 1
2 ).

Here an = n for all n ≥ 1 (ie one can take N0 = 1).

For k = 3, (c0, c1, c2) = (2, 2, 1).

Here an = 2n(n+ 1) for all n ≥ 1.

For k = 4, (c0, c1, c2, c3) = (3, 9
2 ,

15
4 , 9

8 ).
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Here

an =



































3X3 + 9
2X

2 + 15
4 X + 1 if n ≡ 0(mod4),

3X3 + 9
2X

2 + 15
4 X + 3

4 if n ≡ 1(mod 4),

3X3 + 9
2X

2 + 15
4 X + 1

2 if n ≡ 2(mod 4),

3X3 + 9
2X

2 + 15
4 X + 1

4 if n ≡ 3(mod 4).

For k = 5, (c0, c1, c2, c3, c4) = (4, 8, 283 ,
16
3 ,−

2
9 ).

Here

an =























4X4 + 8X3 + 28
3 X

2 + 16
3 X − 1 if n ≡ 0(mod 3),

4X4 + 8X3 + 28
3 X

2 + 16
3 X − 2

3 if n ≡ 1(mod 3),

4X4 + 8X3 + 28
3 X

2 + 16
3 X − 1 if n ≡ 0(mod 3).

Remark 3.2 : Results above answer two questions due to Kotesovec [3].

5 Concluding remarks

We end with some questions associated to the system of equations which come

up in lemma 2.1 :

i) Consider the sequence of polynomials {Pk(X)}k≥2 given by Pk(X) = Xk.

With this sequence one can associate a sequence (c0, c1, · · · ) where ci is a func-

tion N−{1, · · · i+1} → R such that (c0(k), · · · , ck−1(k)) is the tuple associated

to Pk(X). From lemma 2.1 it follows that ci(k) must be a rational fuction of k.

Computing first few elements of (c0(k), c1(k), · · · ) one sees that it is actually a

polynomial in k. This leads to the question if ci is always a polynomial in k.

ii) One can consider a sequence qiven by Pk(X) = XkP0(X) for some fixed

polynomial P0(X) and ask similar question.

iii) Fix two polynomials P (X), Q(X). Construct a sequence by Pk(X) = P (X)Q(X)k.

In this case ci need not be a rational function but one may like to study the

behaviour of the associated sequence of functions.
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