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Mertens Sums requiring Fewer Values of the Möbius Function

(dedicated to the memory of Yu. V. Linnik)

M. N. Huxley and N. Watt

1. Introduction

The sieve of Eratosthenes will find the prime numbers in N +1, . . . , N2 provided that
we know all the primes in 2, . . . , N . In particular the sieve gives a relation for the function
π(x) that counts the number of primes less than or equal to x:

π(N2) = π(N)− 1 +
∑

d≤N2

P (d)≤N

µ(d)

[
N2

d

]
, (1.1)

where µ(d) is the Möbius function (which is (−1)ν when d has ν prime factors, all different,
but 0 when d has any prime factor repeated), while P (d) is the greatest non-composite
divisor of d, and [x] = max{m ∈ Z : m ≤ x}. The numbers d in (1.1) are constructed as
products of the known primes in 2, . . . , N , so the values µ(d) can be read off. In general,
given a number n, it is very difficult to factorise n and so find µ(n). Thus the Mertens
sum

M(x) =
∑

n≤x

µ(n) (1.2)

is difficult to calculate from the definition. The Dirichlet series
∑
µ(n)/ns is 1/ζ(s) (the

reciprocal of the Riemann zeta function), and, according to folklore, the fastest method of
calculating M(x) is by Perron’s contour integral formula for the sum of the coefficients of
a Dirichlet series.

In this paper we discuss a family of identities which allow M(Nd) to be calculated
for each positive integer d as a sum of no more than Od

(
Nd(logN)2d−2

)
terms, each

a product of the form µ(n1) · · ·µ(nr) with r ≤ d and {n1, . . . , nr} ⊆ {1, . . . , N}. In
Theorem 1, below, we state a more complicated form of these identities, in which each
of the variables of summation nj (j = 1, . . . , r) can have its own independent range of
summation: 1, . . . , Nj (say).

We actually treat the more general Möbius sum

M(g, x) =
∑

n≤x

µ(n)g(n), (1.3)

where g(n) can be any totally multiplicative arithmetic function, that is, g(rs) = g(r)g(s)
holds for any positive integers r and s. The relevant identity when d = 1 is (of course) the
definition (1.3). The case d = 2 is the next simplest. Let m(g,N) be the column-matrix
(µ(1)g(1), . . . , µ(N)g(N))T, and let A(g,N) be the N ×N matrix with elements

amn(g,N) =
∑

k≤ N2

mn

g(k) (m,n ∈ {1, . . . , N}). (1.4)
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Then
M(g,N2) = 2M(g,N)− (m(g,N))

T
A(g,N)m(g,N) . (1.5)

In the general case, when d,K,N ∈ N satisfy d ≥ 2 and K ≥ N > K1/d − 1, we have:

M(g,K) = dM(g,N)

−
d∑

r=2

(−1)r dCr

∑

n1≤N

. . .
∑

nr≤N

∑

k1

. . .
∑

kr−1

n1n2...nrk1k2...kr−1≤K

g(k1 · · ·kr−1)
r∏

i=1

µ(ni)g(ni) , (1.6)

where dCr = d(d− 1) · · · (d− (r − 1))/(r!).
Note that (1.5) is just the special case d = 2, K = N2 of (1.6). Moreover, (1.6) is

itself a special case of another identity (that stated in Theorem 1, below), in which the
single range of summation 1, . . . , N is replaced by d independent ranges of summation. In
order to state this more general identity we require some more notation.

Let d be a positive integer greater than 1. Let V = v1v2 . . . vd be a word of length d
in the alphabet {0, 1}. The support of a word V is the set of indices i for which vi = 1.
The weight w(V ) of a word V is the size of the support, so that w(V ) =

∑
vi. The

combinatorial Möbius function, which we write as µ∗ to distinguish it from the number-
theoretic function µ, is µ∗(V ) = (−1)w(V ).

Let N1, . . . , Nd be positive integers. For each word V , and each L ∈ N, let the
notatation

∑L
1 (V ) signify summation over n1, . . . , nd in the ranges ni = 1, . . . , L when

vi = 0, but ni = 1, . . . , Ni when vi = 1. When L = 1 and vi = 0, the variable of
summation ni effectively becomes ‘frozen’, meaning that its range of summation is then
just the single-element set {1}.

Let K be a positive integer that is less than (1+N1)(1+N2) . . . (1+Nd). If n1, . . . , nd

are integers satisfying the condition n1n2 . . . nd ≤ K, then ni ≤ Ni holds for at least one
index i. It therefore follows by the inclusion-exclusion principle of combinatorics that if
f : Nd → C is such that one has |f(n1, . . . , nd)| > 0 only when n1n2 · · ·nd ≤ K, then

K∑

1

(00 . . .0)f(n1, . . . , nd) =

d∑

r=1

(−1)r−1
∑

V :ω(V )=r

K∑

1

(V )f(n1, . . . , nd) , (1.7)

or, to put it more elegantly,
∑

V µ
∗(V )

∑K
1 (V )f(n1, . . . , nd) = 0.

Theorem 1. When g(n) is a totally multiplicative arithmetic function, and d, N1, . . . , Nd

and K are as above, we have:

M(g,K) =

d∑

i=1

M(g,min{Ni, K})

−
∑

V :w(V )≥2

(−1)w(V )
1∑

1

(V )
∑

k1

. . .
∑

kω(V )−1

k1...kω(V )−1≤ K
n1...nd

g(k1 · · ·kω(V )−1)
d∏

i=1

µ(ni)g(ni) .

(1.8)
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Proof. We apply (1.7) with f given by:

f(n1, . . . , nd) =
∑

k1

. . .
∑

kd−1

k1...kd−1≤ K
n1...nd

µ(n1) . . . µ(nd)g(k1 . . . kd−1n1 . . . nd). (1.9)

For the word V = 11 . . .1 with w(V ) = d, we have

K∑

1

(11 . . .1) =

1∑

1

(11 . . .1).

All other words V have vj = 0 for at least one index j, so the corresponding summand
nj runs over the full range from 1 to K. For these words V we carry out the following
‘contraction step’. Take an index j for which vj = 0. We sum over nj and kd−1 first,
observing that by Möbius inversion we have:

K∑

nj=1

∑

kd−1≤ K
n1...ndk1...kd−2

µ(nj)g(njkd−1)

=
∑

m≤ K
n1...nj−1nj+1...ndk1...kd−2

g(m)
∑

nj|m
µ(nj)

=
{
g(1) = µ(1)g(1) if n1 . . . nj−1nj+1 . . . ndk1 . . . kd−2 ≤ K,
0 otherwise.

We thereby find that the value of the relevant sum over n1, . . . , nd and k1, . . . , kd−1 is
unchanged when we omit kd−1 and freeze nj as the fixed value nj = 1.

We repeat the contraction step for every index j with vj = 0, freezing the corre-
sponding variable as nj = 1, and removing the last variable ki. Exceptionally, when
V is 00 . . .0, we can remove kd−1, kd−2, . . . , k1, and freeze nd, nd−1, . . . , n2, but the sum
over n1 remains over the range 1, . . . , K, giving the term M(g,K) on the left of (1.8). The
summation identity (1.7), when applied with f given by (1.9), contracts to give (1.8). �

In (1.5), (1.6) and Theorem 1, we require the total multiplicativity of g only in order
to ‘separate variables’ (as, in (1.6) for example, we separate k1, . . . , kr−1 from n1, . . . , nr

by means of the identity g(k1 · · ·kr−1n1 · · · , nr) = g(k1 · · ·kr−1)g(n1) · · · g(nr)). Indeed,
(1.8) gives a formula for the Möbius function itself, for we can apply (1.8) to each term
in the difference M(g,K) −M(g,K − 1) = µ(K)g(K), and we can then divide through
by g(K) to obtain a formula for µ(K) that is independent of g. This formula for µ(K)
may also be deduced from the identity

1

ζ(s)

d∏

j=1

(
1− ζ(s)

Nj∑

n=1

µ(n)

ns

)
= ζd−1(s)

d∏

j=1

∞∑

n=1+Nj

µ(n)

ns
(Re(s) > 1), (1.10)
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through multiplying out the brackets on the left-hand side, and then computing the coef-
ficient of n−Ks on each side of the resulting identity, subject to the hypothesis that the
product (1 +N1) · · · (1 + Nd) be greater than K. This approach yields a second proof of
Theorem 1. We prefer the first proof due to its more obvious connection with Meissel’s
identity [8 p 303],

∑

n≤x

[x
n

]
µ(n) =

{
1 if x ≥ 1,
0 if 1 > x > 0,

(1.11)

which was the initial source of inspiration for our work.
Given any K ∈ N, any integer d ≥ 2, and any θ1, . . . , θd > 0 with θ1 + · · ·+ θd = 1, it

follows from Theorem 1 that (1.8) will hold when one has also Nj = [Kθj ], for j = 1, . . . , d.
Theorem 1 therefore offers considerably more flexibility of application than (1.6) does.
Although we believe Theorem 1 to be new (in respect of the flexibility in the choice
of N1, . . . , Nd), the special cases of it that are displayed in (1.5) and (1.6) are known
results. The result (1.5) is contained in Vaughan’s (slightly more complicated) identity
[13 equation (18)] (essentially the special case when u =

√
X , and so S3 = 0), and one can

find in equation (13.38) of [5], for example, a formula for µ(n) that is equivalent to what
we have in (1.6). It is, moreover, clear that even our identity in (1.8) is akin to formulae of
Heath-Brown for sums involving Λ(n), the von Mangoldt function: compare (1.10), from
which (1.8) may be deduced, with Lemma 1 of [2]. The earliest formula of this type is due
to Linnik himself in [6,7].

We shall refer to the case of (1.3) (or of (1.4), (1.5), (1.6), or (1.8)), where the func-
tion g(n) takes the constant value 1, as the principal case. The main focus of our work
has been on the principal case of the identity (1.5). Indeed, all subsequent sections of
this paper are exclusively devoted to matters connected with this single topic, such as (for
example) questions concerning certain properties of the N × N matrix A = A(N) that
occurs in the principal case of (1.5) and has, by (1.4), elements amn = [N2/(mn)] ∈ N.
In Section 2 we discuss matters related to the spectral decomposition of A = A(N). In
the third (and final) section we discuss decompositions (spectral and otherwise) of the
quadratic form mTAm, where m = m(N) is the column-matrix (µ(1), . . . , µ(N))T that
occurs in the principal case of (1.5).

We consider especially the principal case of (1.5), in the hope that it (modified as
necessary) might lead to a new proof of the prime number theorem, or even some new
upper bound for the Mertens sum |M(x)|. The following parts of this paper report what
we have discovered in the search for such an application of (1.5).

One of our findings is that the matrix A(N), which (clearly) is real and symmetric,
has one exceptionally large positive eigenvalue, approximately N2ζ(2), with eigenvector
approximately (1, 1/2, 1/3, . . . , 1/N)T. Calculations by the second author show that the
second-largest eigenvalue of A(N) lies in an interval of the form [d4N +o(N), c4N+o(N)],
where c4 and d4 are constants that are approximately −0.496 and −0.572, respectively:
for more details, see (2.7), (2.14), (2.20) and (2.21) below. Hence, for N sufficiently large,
the quadratic form on the right-hand side of (1.5) is neither positive definite nor negative
definite in the principal case.

By the principal case of (1.6), we have a sequence of formulae through which each
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of M(N2),M(N3),M(N4), . . . is expressed in terms of µ(1), . . . , µ(N). Although the first
of these formulae, the principal case of (1.5), may be considered analogous to the sieve
of Eratosthenes (1.1), there seems to be no version of (1.1) for π(N3), because unwanted
numbers of the form pq, where p and q are both primes greater than N , survive the sieve
process (“Gnoggensplatts” in Greaves’s lectures on Sieve Methods).

A connection between Mertens sums and certain symmetric matrices Un (n ∈ N), that
bear some resemblance to our matrices A(N) (N ∈ N) has previously been established by
Cardinal [1]. To define Cardinal’s matrix Un, one first takes σ1 < σ2 < · · · < σs to be
the elements of the set S = R∪{[n/ρ] : ρ ∈ R}, where R = {ρ ∈ N : ρ ≤ √

n} (it follows
that 0 ≤ 2[

√
n ]− s ≤ 1). Then Un is the s × s matrix with elements uij = [n/(σiσj)]. In

Propositions 21 and 22 of [1], it is shown that one has TnU
−1
n Tn = Vn, where Tn and Vn

are the s×s matrices with elements tij = |[2, s+1]∩{i+j}| and vij =M(uij), respectively.
In the cases where n is a perfect square, so that n = N2 for some integer N , then

|R| = N , and the N×N principal submatrix of Un consisting of the array of elements from
the first N rows and first N columns of Un is our matrix A(N): since 2N − 1 ≤ s ≤ 2N ,
we can say that A(N) constitutes (exactly, or approximately) the top left-hand quarter of
Cardinal’s matrix Un. In these same cases, Cardinal’s identity TnU

−1
n Tn = Vn implies that

v11, which is M(N2), will be equal to the sum of all s2 of the elements of the inverse of
the matrix Un = UN2 : we obtain a formula for M(N2) thereby that seems quite different
from what we see in the principal case of (1.5).

As Cardinal observes in Theorem 24 and Remark 25 of [1], information about small
eigenvalues of the matrix V −1

n = T−1
n UnT

−1
n might lead to new upper bounds on M(x). In

this respect, the connection that we have found between M(x) and A(N) is quite different
from Cardinal’s connection between M(x) and Un, for it is the larger eigenvalues of A(N)
and their eigenvectors that matter most in the principal case of (1.5): see, for example,
equation (3.3), below.

We have scarcely considered non-principal cases of (1.5), (1.6), or (1.8). Certain non-
principal cases of (1.5) may merit further investigation. The first case is when g(n) = χ(n),
a non-principal Dirichlet character to some modulus q > 1. The sums

∑
ℓ≤x χ(ℓ) that we

use to construct the matrix elements amn(χ,N) in (1.4) are periodic step functions of x,
whose period is q or some proper factor of q. In contrast to the principal case, when the
set of elements of the matrix A(N) in (1.5)) contains at least N dirrerent integers, namely
[N2/1], [N2/2], . . . , [N2/N ], there is a single finite set, {

∑
0<ℓ≤L χ(ℓ) : L ∈ (0, q] ∩ Z},

that contains all the elements of all the matrices A(χ, 1), A(χ, 2), A(χ, 3), . . . . For χ real,
A(χ,N) will, of course, be real and symmetric just like A(N).

A case of (1.3) known to be related to the prime number theorem is when g(n) = 1/n
(see page 248 of [9], for example). More generally, when g(n) = n−s for some fixed complex
number s, then the sum M(g, x) in (1.3) becomes a partial sum for the Dirichlet series
for 1/ζ(s). If, for some σ0 ∈ [1/2, 1), the only zeros of ζ(s) with real parts greater than
σ0 are a pair of simple zeros, ρ and ρ (say), and if we put g(n) = n−ρ (n ∈ N), then the
sum M(g, x) in (1.3) will grow logarithmically in x.

Another interesting case of (1.3) to (1.5) is when g(n) = λ(n), the Liouville function,
which is the projection of the Möbius function µ onto the space of totally multiplicative
arithmetic functions. In this case M(g, x) grows like x/ζ(2).
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2. Elementary Estimates for Eigenvalues and an Eigenvector

Let N be a given positive integer. Since the matrix A = A(N), in the principal
case of (1.5), is both real and symmetric, it has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN with
corresponding eigen-(column-)vectors of unit length e1, . . . , eN that form an orthonormal
basis of RN . When v ∈ RN , one has

vTAv =

N∑

k=1

λk (ek · v)2 (2.1)

as a consequence of the spectral decomposition A =
∑N

k=1 λkeke
T
k , and Parseval’s identity

gives
N∑

k=1

(ek · v)2 = v · v = ‖v‖2. (2.2)

In order to study the terms appearing in (2.1) and (2.2), we estimate:

(a) Tr(A) =
∑
ann (the trace of the matrix A),

(b) Tr(A2) = Tr(ATA) =
∑∑

a2mn,

(c) fTAf , where f = (1, 12 ,
1
3 , . . . ,

1
N )T ,

(d) wTAw, where w = u− ‖f‖−2(f · u)f , with u = (1, 1, . . . , 1)T ∈ RN .

We use the following notation:

ζj =

N∑

m=1

m−j , δ =
∑

m≤N

∑

n≤N

{
N2/(mn)

}

mn
and φ =

1

N2

∑

m≤N

∑

n≤N

{
N2

mn

}2

,

where {t} = t− [t] (the fractional part of t). Taking (b) first, we simply observe that

Tr
(
A2
)
=
∑

m≤N

∑

n≤N

[
N2

mn

]2
=
∑

m≤N

∑

n≤N

(
N2

mn
−
{
N2

mn

})2

= ζ22N
4+(φ− 2δ)N2 . (2.3)

Since Tr(A2) = λ21+ · · · +λ2N , and since δ ≥ 0 and φ < 1, the identity (2.3) shows already
that λN < ζ2N

2 + (2ζ2)
−1.

Regarding (c), we are content to note that

fTAf =
∑

m≤N

∑

n≤N

[
N2/(mn)

]

mn
=
∑

m≤N

∑

n≤N

(
N2/(mn)−

{
N2/(mn)

})

mn
= ζ22N

2− δ . (2.4)

We have here ‖f‖2 = ζ2, so by Rayleigh’s Principle it follows from (2.4) that

ζ2N
2 − δ

ζ2
≤ λN . (2.5)
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By (2.5) and the point noted immediately below (2.3), we conclude that

−(1 + logN)2

ζ2
< λN − ζ2N

2 <
1

2ζ2
. (2.6)

As 0 ≤ δ < ζ21 ≤ ζ0ζ2 = Nζ2 ≤ N2ζ22 , the lower bound on λN in (2.5) is non-negative,
and so we may deduce from it that λ2N ≥ (ζ2N

2 − δζ−1
2 )2 = ζ22N

4 − 2δN2 + δ2ζ−2
2 : this,

together with the evaluation of Tr(A2) in (2.3), is enough to show that

λ21 + · · · + λ2N−1 ≤ φN2 − δ2ζ−2
2 < N2 . (2.7)

From the way we have ordered the eigenvalues, the bound (2.7) implies:

|λk| <
N√

min{k,N − k}
(k = 1, 2, . . . , N − 1). (2.8)

In view of (2.6) and (2.8), it is clear that for N large, λN will be exceptionally large,
compared with all other eigenvalues of A. Accordingly we consider first the corresponding
eigenvector eN , before discussing the estimation (a) of Tr(A). Putting FN = eN · f̂ , where
f̂ = ‖f‖−1f , we find by (2.4) and (2.6), and (2.1), (2.8) and (2.2), that

λN −
(
1
2 + (1 + logN)2

)
< f̂TAf̂ < λNF

2
N +N

(
1− F 2

N

)
.

For N > 1 we have λN > N (this follows by (2.6) when N ≥ 3), and so, by comparison of

the upper and lower bounds for f̂TAf̂ that were just obtained, we deduce that

1 ≥ F 2
N > 1−

(
1
2 + (1 + logN)2

)

(λN −N)
.

Choosing the ±-sign so that ±FN = |FN |, we therefore find from (2.6) that

∥∥∥eN −
(
±f̂
)∥∥∥ =

√
2 (1− |FN |) =

√
2 (1− F 2

N )

1 + |FN | = O

(
logN

N

)
. (2.9)

We now come to the task mentioned in (a) above, which is the estimation of the sum
S = Tr(A) =

∑
ann. We pick a positive integer K, and we divide the original sum S into

two parts: S1, which has the terms with n2 ≤ N2/(K + 1), and S2, which has the terms
with N2 ≥ n2 > N2/(K + 1) (so that ann = [N2/n2] = k for some k ∈ {1, . . . , K}). We
have

S1 =
∑

n2≤N2/(K+1)

ann =
∑

n≤N/
√
K+1

(
N2

n2
+O(1)

)

= N2

(
ζ2 −

∫ N

N/
√
K+1

x−2 dx+O

(
K

N2

))
+O

(
N√
K

)

= ζ2N
2 −N

√
K +N +O

(
K +

N√
K

)
.
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The sum S2 is more complicated. We have

S2 =

K∑

k=1

∑

N√
k+1

<n≤ N
√

k

k =
∑∑

1≤ℓ≤k≤K

([
N√
k

]
−
[

N√
k + 1

])

=
K∑

ℓ=1

([
N√
ℓ

]
−
[

N√
K + 1

])
=

K∑

ℓ=1

N√
ℓ
− KN√

K + 1
+O(K).

Let

g(ℓ) = 2
√
ℓ− 2

√
ℓ− 1− 1√

ℓ
=

1√
ℓ(
√
ℓ+

√
ℓ− 1)2

(ℓ ∈ N) and α =

∞∑

ℓ=1

g(ℓ).

Then
K∑

ℓ=1

1√
ℓ
=

K∑

ℓ=1

(
2
√
ℓ− 2

√
ℓ− 1− g(ℓ)

)
= 2

√
K − α+O

(
1√
K

)
.

Hence

S2 = 2N
√
K − αN − NK√

K + 1
+O

(
N√
K

+K

)
= N

√
K − αN +O

(
N√
K

+K

)
,

and so, putting K = [N2/3], we get:

Tr(A) = S1 + S2 = ζ2N
2 − (α− 1)N +O

(
N2/3

)
. (2.10)

By (2.10) and (2.6), it follows that

λ1 + · · · + λN−1 = −(α− 1)N +O
(
N2/3

)
. (2.11)

By equations (1.11) to (1.13) of [4] and the case K = 1 of of equation (B.24) of [9] (itself an
application of the Euler-Maclaurin summation formula), we find that for σ ∈ (0, 1)∪(1,∞)
and K ∈ N,

K∑

ℓ=1

1

ℓσ
=
K1−σ

1− σ
+ ζ(σ) +

θ(K, σ)

Kσ
(2.12)

=
θ(K, σ)

Kσ
+
K1−σ − 1

1− σ
+ γ +

∞∑

j=1

γj(σ − 1)j , (2.13)

where ζ(s) is Riemann’s zeta function, each of γ, γ1, γ2, ... is a certain (real valued) absolute
constant (the first of these, γ, being Euler’s constant) and θ(K, σ) is a number lying in
the interval (0, 1). By (2.12), we have α = −ζ(1/2) in (2.10), and we can calculate that
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α − 1 = −(ζ(1/2) + 1) = 0.4603545 . . . . Given that ζ(2) = π2/6, we find (similarly) that
ζ2 = (π2/6)−N−1+O(N−2) in (2.3) to (2.7). We also note that ζ1 = logN +γ+O(1/N)
(as follows, for example, by letting σ → 1 in (2.13)).

We remark that, by combining methods similar to those used to obtain (2.10) with
certain applications of the Euler-Maclaurin summation formula, we have been able to
determine that the variable φ ∈ [0, 1) in (2.3) and (2.7) satisfies

φ = β +O

(
1 + logN

N1/7

)
, (2.14)

where β = 1− π2

24 − 1
2 (log(2π)−1)2+ 1

2(1−γ)2 = 0.32712 . . . . We omit our proof of (2.14),
which shows no features that are truly novel (and would require more than just a few
pages). By (2.14), we can sharpen (2.8) somewhat, for large values of N .

Finally we consider the estimation problem (d), stated earlier. Noting firstly that
w = u− (ζ1/ζ2)f , we are able to deduce that

‖w‖2 = N − ζ21
ζ2

= N +O
(
(1 + logN)2

)
(2.15)

and that
wTAw = uTAu− 2 (ζ1/ζ2)u

TAf + (ζ1/ζ2)
2
fTAf . (2.16)

We have, moreover,

uTAu =
∑

m≤N

∑

n≤N

[
N2

mn

]
=
∑

m

∑

n

[
N2

mn

]
−2

∑

m>N

∑

n

[
N2

mn

]
= D1−2D2 (say). (2.17)

Here

D1 =
∑

ℓ≤N2

τ3(ℓ) =

(
1

2
log2

(
N2
)
+ (3γ − 1) log

(
N2
)
+ c1

)
N2 +O

(
Nε+43/48

)
, (2.18)

where c1 = 3γ2 − 3γ + 3γ1 + 1; see pages 352-4 of [4] for the second equality in (2.18).
Regarding the sum D2 in (2.17), we have:

D2 =
∑

m>N

∑ ∑

n k
(nk)m≤N2

1 =
∑

ℓ<N

(∑

n|ℓ
1

) ∑

N<m≤N2/ℓ

1

= N2
∑

ℓ<N

τ2(ℓ)

ℓ
−N

∑

ℓ<N

τ2(ℓ) +O

(
∑

ℓ<N

τ2(ℓ)

)
.

By partial summation and Huxley’s estimate on page 593 of [3] for the remainder term
in Dirichlet’s divisor problem (namely ∆(x) =

∑
ℓ≤x τ2(ℓ)− (log x+ 2γ − 1)x), we deduce

from the above that

D2 =

(
1

2
log2N + (2γ − 1) logN + c2

)
N2 +O

(
N547/416(logN)3.26

)
,
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where

c2 =

∫ ∞

1

∆(x)dx

x2
= lim

σ→2+

(
ζ2(σ − 1)

σ − 1
− 1

(σ − 2)2
− 2γ − 1

σ − 2

)
= γ2 − 2γ + 2γ1 + 1

(with γ and γ1 as in (2.13)). Using this,(2.17), and (2.8), we have

uTAu =
(
log2N + 2γ logN + c3

)
N2 +O

(
N547/416(logN)3.26

)
, (2.19)

where c3 = c1 − 2c2 = γ2 + γ − γ1 − 1. Trivial estimates show that one has uTAf =
ζ1ζ2N

2+O((1+logN)N): using this, (2.4), (2.19), (2.16), and estimates already obtained
for ζ1 and ζ2, we find that

wTAw =
(
log2N + 2γ logN + c3 − ζ21

)
N2 +O

(
N547/416(logN)3.26

)

= c4N
2 +O

(
N547/416(logN)3.26

)
, (2.20)

where c4 = c3 − γ2 = γ − γ1 − 1 = 0.57721566 . . . − 0.07281584 . . . − 1 = −0.495600 . . .
(see [10].

Since (2.15) implies N > ‖w‖2 ≥ N/10, then for N ≥ 2, using (2.15), (2.20), and
Rayleigh’s principle shows that:

λ1 ≤ wTAw

‖w‖2 < c4N +O
(
N131/416(logN)3.26

)
(N ≥ 2). (2.21)

The coefficient of N in this upper bound may well be close to optimal: when N =
10321, for example, computations done with the ‘GNU Octave’ software package re-
turned −0.493678 . . . as an estimate of the value of λ1/N in this case. By reasoning
similar to that which gives (2.9), we may deduce from (2.7), (2.14) and (2.21) that, as
N → ∞, we have |λ2|/N < (1 + o(1))(β − c24)

1/2 ∼ 0.2855539 . . . and (e1 · ŵ)2 ≥
(0.5 + o(1))(1 + (2c24β

−1 − 1)1/2) ∼ 0.8540699 . . . . Therefore, for N sufficiently large, the
lines {tw : t ∈ R} and {te1 : t ∈ R} will meet at an angle of less than π/8 radians.

We end this section with some speculations driven by certain numerical evidence,
gathered with the help of ‘GNU Octave’. We omit the detailed evidence, but instead
just summarise what it suggests. Let k be any fixed non-zero integer, and let N now be
free to vary in the range N > |k|. Our numerical evidence suggests that λ{−k/N}N ∼
ΛkN as N → ∞, where Λk is a real number that depends only on k, and where each
of the two associated sequences, Λ1,Λ2,Λ3, . . . and −Λ−1,−Λ−2,−Λ−3, . . . , decreases
monotonically, and converges to 0. Further numerical evidence suggests that if θ ∈ (0, 1)
is fixed, and if ej,ℓ denotes the ℓ-th component of the normalised eigenvector ej, so that
ej = (ej,1, ej,2, . . . , ej,N )T for j = 1, . . . , N , then as N → ∞ we appear to see that

e{−k/N}N,ℓ ∼ (−1)b(N,k)N−1/2Ek(ℓ/N) for ℓ = [θN ] + 1, [θN ] + 2, . . . , N ,

with Ek here being a certain real function independent of ℓ and N that is continuous
on (0, 1], and with an integer exponent b(N, k) independent of ℓ. The occurrence of the
functions E±1, E±2, E±3, . . . in this might be explained if they were eigenfunctions of a
suitable linear operator A : L2[0, 1] → L2[0, 1].
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3. Various Decompositions of mTAm in the principal case

It is our hope (as yet unrealised) that a study of the quadratic form vTAv (particularly
when v is the vector m = (µ(1), . . . , µ(N))T ), in the principal case of (1.5), might lead
to new results about the Mertens function M(x). In this section we briefly describe (and
compare) several different approaches to such an investigation, each involving a different
decomposition of the quadratic form. We find it convenient to modify the earlier notation
M(g, x) in (1.3): we use M(s, x), where s is a complex number, (rather than a function),
to mean M(g, x) for the power function g(n) = n−s.

We consider firstly (2.1) with v = m. We assume throughout that N is large. As the
eigenvalue λN is exceptionally large among all the eigenvalues of A, we handle the term
λN (eN ·m)2 with some care. As substitution of −eN for eN does not alter this term, we
can take the ambiguous sign in (2.9) to be +. We note that

(eN ·m)2 =
(
(eN − f̂) ·m

)2
+ 2

(
(eN − f̂) ·m

)
(f̂ ·m)2 + (f̂ ·m)2 . (3.1)

Here

f̂ ·m = ‖f‖−1f ·m =
1√
ζ2

∑

n≤N

µ(n)

n
=
M(1, N)√

ζ2
≪ logN

and, by the Cauchy-Schwarz inequality and (2.9),

|(eN − f̂) ·m| ≤ ‖eN − f̂‖ · ‖m‖ = O

(
logN

N

)
·
√∑

n≤N

µ2(n) ≪ logN√
N

.

By these results, together with (3.1) and (2.6), we have:

λN (eN ·m)2 = O
(
N log2N

)
+O

(
N3/2(logN)|M(1, N)|

)
+N2(M(1, N))2 . (3.2)

Small eigenvalues make a relatively insignificant contribution here, for (2.2) and (2.8)
imply that if 1 ≤ K ≤ N/2, then

N−K∑

k=K

|λk| (ek ·m)
2
<

N√
K

N∑

n=1

(ek ·m)
2
=

N√
K

‖m‖2 ≤ N2

√
K

.

By this, and by (3.2) and (2.1) (for v = m), we find that

mTAm

N2
= (M(1, N))2 +

(
‖m‖2/N

) ∑

1≤k<N
min{k,N−k}<K

(λk/N) (ek · m̂)
2

+O
(
K−1/2 +N−1/2(logN)|M(1, N)|+N−1 log2N

)
,

(3.3)

for K = 1, 2, . . . , N2. We remark that, if the second of the three terms on the right-
hand side of (3.3) is considered in isolation, then we observe trivially from (2.8) that the
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absolute value of this term is O(
√
K ). Taking account of the context here (the relation

(3.3) and the principal case of (1.5) and (1.3)), and noting also that |M(1, N)| ≤ ‖m‖2/N
(a consequence of (1.11), the trivial bound |[y]−y| < 1, and the fact that [N/1]−(N/1) = 0,
it is clear that this term is a bounded function of the pair (N,K) ∈ N2. This gives some
idea of the gap that must be bridged if (3.3) is to help in the study of M(x).

To reach (3.3) we have used the work of Section 2, on λN and eN . Our next decom-
position of mTAm avoids such results, but nevertheless has much in common with (3.3).

First we use [x] = x− 1
2
− ψ(x), where ψ(x) = {x} − 1

2
. We have

A = N2 f fT − 1
2
uuT + Z , (3.4)

where Z is the N × N matrix of elements zmn = −ψ(N2/(mn)), whilst f and u are as
in Section 2. We have trivially Tr(Z2) < N2/4; with the help of (2.14), (2.19), and an
estimate for ζ1, we obtain the sharper result that Tr(Z2) ∼ c5N

2 as N → ∞, where
c5 = β + 1

4
+ c3 − γ2 = 0.0815206 . . . . Reasoning as in the derivation of (3.3), we see

from (3.4) that, for K = 1, 2, . . . , N2 (say), one has

mTAm

N2
= (m · f)2 − (m · u)2

2N2
+

mTZm

N2
(3.5)

= (M(1, N))2 − (M(N))2

2N2

+
(
‖m‖2/N

) ∑

1≤k≤N
min{k,N+1−k}<K

(
λ̃k/N

)
(ẽk · m̂)

2
+O

(
K−1/2

)
, (3.6)

where λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N are the eigenvalues of Z, while ẽ1, . . . , ẽN form the correspond-
ing orthonormal basis of eigenvectors. We note the presence of the term −1

2
N−2(M(N))2

in (3.6), which is not apparent in (3.3): in view of our results on Problem (d) of Section 2,
one may regard this term as being an approximation to the term (‖m‖2/N)(λ1/N)(e1 ·
m̂)2 = N−2λ1(e1 ·m)2, which is present in (3.3) for K > 1.

We remark that (3.5) permits an alternative, non-spectral, decomposition of mTAm,
through substituting the usual truncated Fourier expansion of the function ψ into each
element of the matrix Z in (3.5):

−ψ(x) =
∑

0<h≤H

sin(2πhx)

πh
+O

(
η

η +min{|x− ℓ| : ℓ ∈ Z}

)
(H = 1/η ≥ 1).

This leads (via estimates from [11]) to the decompositions

mTZm =

H∑

h=1

mTZ(h)m

πh
+O

(
N2(logN)2 logH

H

)
(for H = 1, 2, . . . , N (say)),

where Z(h) is the N ×N matrix with elements zmn(h) = sin(2πhN2/(mn)). We have yet
to explore making proper use of this truncation idea.
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One further approach to the decomposition of mTAm uses Perron’s formula, Theo-
rem 5.1 of [9], equation (A.8) of [4]. We apply Perron’s formula as in Lemma 3.12 of [12],
adapting the proof to sharpen certain error terms (parts of the improvement are results of
Shiu [11]). We find that if, whenever Re(s) > 1, one has

F (s) =

∞∑

ℓ=1

aℓ
ℓs

=



∑

m≤y

αm

ms





∑

n≤z

βn
ns


 ζ(s) = A(s)B(s)ζ(s) (say), (3.7)

where y, z ≥ 1 and αm, βn denote complex constants of modulus less than or equal to 1,
then, for any fixed ε > 0, when x = yz, in the ranges 1 < c ≤ 2 and 3 ≤ T ≤ x1−ε, we
have

1

2πi

c+iT∫

c−iT

F (s)xs
ds

s
=
∑

ℓ≤x

aℓ +O

(
xc log2 x

(c− 1)T

)
+Oε

(
x(log x)2(logT )

T

)
. (3.8)

To link this to our matrix A, we observe that (3.7) implies
∑

ℓ≤x

aℓ =
∑

ℓ≤x

∑ ∑ ∑

m≤y n≤z k
mnk=ℓ

αmβn =
∑ ∑ ∑

m≤y n≤z k
mnk≤x

αmβn =
∑

m≤y

∑

n≤z

[ x

mn

]
αmβn .

Setting c = 1+(log x)−1 in (3.8), we shift the contour of integration there until it aligns
with the line Re(s) = 1

2 : in so doing, we pick up a contribution from the residue of ζ(s) at
its pole, s = 1, and also some remainder terms, which are integrals along the line segments
joining 1

2 + iT to c+ iT , and 1
2 − iT to c− iT . By Theorem 7.2 (A) of Titchmarsh [12], we

deduce that these remainder term integrals are of size O(x(logx)2
√
log T/T ) for almost all

values of T (in a certain sense) lying in any given ‘dyadic interval’ [T0, 2T0] ⊆ [3, 2x1−ε].
Hence we arrive at the conclusion that, for any given ε > 0 when x = yz and 3 ≤ T0 ≤ x1−ε,
we have

∑

m≤y

∑

n≤z

[ x

mn

]
αmβn = A(1)B(1)x+

1

2πi

1
2+iT∫

1
2−iT

A(s)B(s)ζ(s)xs
ds

s
+Oε

(
x log3 x

T

)
,

for some T ∈ [T0, 2T0]. We specialise this to the case ε = 1/2, y = z = N , where N is a
positive integer, so that x = N2, and αn = βn = µ(n) . We find that when 3 ≤ T0 ≤ N ,
there exists some T ∈ [T0, 2T0] such that

mTAm

N2
= (M(1, N))2 +

‖m‖2
N

∫ T

−T

ζ1N
2itζ

(
1
2 + it

)

(π + 2πit)

(
M
(
1
2 + it, N

)
√
ζ1‖m‖

)2

dt

+O
(
T−1
0 log3N

)
.

(3.9)

If we put E(s) = (1−s, 2−s, . . . , N−s)T for a fixed complex number s, then the factor

M( 1
2
+ it, N)/(

√
ζ1‖m‖) here may be written as Ê( 1

2
+ it) · m̂: the decomposition in (3.9)

may therefore be considered similar in form to that in (3.3), although (3.9) involves an
integration over the range [−T, T ], instead of the summation over a subset of the (discrete)
spectrum of A that we had in (3.3).
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