
ar
X

iv
:1

80
7.

08
07

9v
1

 [
m

at
h.

C
O

]
 2

1
Ju

l 2
01

8

How to Build a Graph in n Days: Some Variants on

Graph Assembly

Aria Dougherty, Nick Mayers, and Robert Short

Department of Mathematics, Lehigh University, Bethlehem, PA, 18015

July 24, 2018

Abstract

In a recent article by M. Bona and A. Vince, the authors introduced the concept of
an assembly tree for a graph. Assembly trees act as record keeping devices for the
construction of a given graph from its vertices. In this paper we extend the work
initiated by M. Bona and A. Vince as well as define and examine a more generalized
definition of assembly tree.

Contents

1 Introduction 1

2 Preliminaries 2

3 Enumeration of Assembly Trees 5

4 Time Dependent Assembly Trees 8

4.1 Connected Gluing Rule . 10
4.2 Edge Gluing Rule . 12

5 Questions 14

1 Introduction

As the title suggests, the subject matter of this paper is graph-theoretic, but the motivation
for our objects of interest, in fact, comes from the study of viruses. A detailed discussion on
viruses and their connection to graph theory can be found in a paper by Bona et al [1].

http://arxiv.org/abs/1807.08079v1

Encouraged by the behavior of viruses, Bona et al [1] introduced the notion of an assembly
tree of a graph. An assembly tree for a graph, G, can be thought of as a record of how G
can be “assembled” starting from the set of its vertices. But what rules should dictate how
a graph is assembled from its vertices?

Bona and Vince [2] answer this question by defining “gluing rules”. They focus on one
such rule, requiring a graph to be assembled in such a way that two groups of vertices
are combined as long as they are connected by an edge. Using this restriction the authors
determine explicit formulas or generating functions for the number of assembly trees for
many classical families of graphs. In concluding their results, Bona and Vince offer a few
reasonable alternative “gluing rules”.

In this paper we begin by analyzing one of the alternative “gluing rules” which they
call the connected gluing rule. Given a graph G, using the connected gluing rule, at each
stage of construction each specified grouping of vertices of G must form a connected induced
subgraph of G. Investigating various classical families of graphs, we determine formulas and
recursive relations for the number of such assembly trees. For some of these families our
formulas are related to classic integer sequences in combinatorics, while for the others these
sequences are new to the literature.

In the case of star graphs, the resulting integer sequence forms what is known as the
sequence of Fubini numbers1. Curiously, this sequence was studied by Cayley ([3],1859)
while enumerating a certain family of trees. In this particular case, Cayley was studying a
family of trees which could be realized as a generalization of assembly trees on paths where
a notion of time or order is also tracked. In Section 4 we define such a generalized assembly
tree and enumerate them for various families of graphs with both the edge and connected
gluing rules. As before, we encountered a mix of both old and new integer sequences.

This paper is organized as follows. In Section 2 the preliminaries of graph theory needed
for this paper are given along with a formal treatment of assembly trees and gluing rules. In
Section 3 we prove our main results on the enumeration of assembly trees for the classical
families of stars, paths, cycles, and complete graphs with the connected gluing rule. Following
this, in Section 4 we introduce the notion of a time-dependent assembly tree and enumerate
such trees for the same four families of graphs with the addition of both the edge and
connected gluing rule. We conclude in Section 5 by discussing further research directions.

2 Preliminaries

Throughout this paper all graphs G are assumed to be simple, i.e., will have no loops or
multiple edges. Let G = (V,E) be the graph with vertex set V and edge set E. In the
definition of an assembly tree T for a graph G, each vertex of T is labeled by a subset of V .
No distinction will be made between a vertex and its label. For a vertex U in a rooted tree,
c(U) denotes the children of U .

1The Fubini numbers (A000670), so named by Louis Comtet, count the number of different ways to
rearrange the orderings of sums or integrals in Fubini’s Theorem.

2

Definition 2.1. Let G be a connected graph on n vertices. An assembly tree for G is a
rooted tree, each vertex of which is labeled by a subset U ⊆ V such that

1. the label of the root is [n] = {1, 2, . . . , n},

2. each internal vertex U has at least two children and (the label of) U =
⋃

c(U),

3. there are n leaves which are labeled 1, 2, 3, . . . , n, respectively.

The following Figure 1 illustrates an assembly tree on a graph of seven vertices. Here,
there are three internal nodes: U1 = {1, 3, 5, 7}, U2 = {4, 2, 6}, and U3 = {2, 6}.

{1,2,3,4,5,6,7}

{1,3,5,7} {4,2,6}

{2,6}

1 3 5 7 4 2 6

Figure 1: An assembly tree on a graph of seven vertices

Evidently, all graphs with the same number of vertices have the same set of assembly
trees. Thus, it seems beneficial to add additional constraints which force properties of the
graph to have an impact on the structure of the corresponding assembly tree. For this reason
Bona and Vince [2] defined additional “gluing rules” which dictate the pairs of subsets of
vertices that can be combined.

Bona and Vince focused on what they called the “edge gluing rule”. Given a graph
G = (V,E), an assembly tree T for G satisfies the edge gluing rule if each internal vertex
v ∈ T has exactly two children U1 and U2 such that there is an edge v1v2 ∈ E, called the the
gluing edge, such that v1 ∈ U1 and v2 ∈ U2. In Figure 2, the assembly trees of the complete
graph on 3 vertices, K3, are given assuming the addition of the edge gluing rule.

1 2

3

K3

1 2 3

{1,2}

{1,2,3}

T1

1 3 2

{1,3}

{1,2,3}

T2

2 3 1

{2,3}

{1,2,3}

T3

Figure 2: Edge Gluing Assembly Trees for K3

While focusing their investigation on assembly trees satisfying the edge gluing rule, in
their conclusion Bona and Vince offer some alternative reasonable options of “gluing rules”.

3

Among these alternative rules is the “connected gluing rule”. If G = (V,E) is a graph, then
V ′ ⊆ V defines an induced subgraph consisting of V ′ and the set of all edges defined by
elements of V ′. We say that an assembly tree satisfies the connected gluing rule if for each
internal node, the graph induced by the vertices in the label is connected. In Figure 3, the
assembly trees of K3 are given, this time assuming the addition of the edge gluing rule.

1 2

3

K3

1 2 3

{1,2,3}

T1

1 2 3

{1,2}

{1,2,3}

T2

1 3 2

{1,3}

{1,2,3}

T3

2 3 1

{2,3}

{1,2,3}

T4

Figure 3: Connected Gluing Assembly Trees for K3

The connected gluing rule is far less restrictive than the edge gluing rule. The edge gluing
rule produces only binary trees whereas the connected gluing rule allows for non-binary trees.

In the next section assembly trees with the addition of the connected gluing rule will be
enumerated for the families of star, path, cycle, and complete graphs illustrated below for
1-5 vertices:

n = 1, 2 for all:

n = 1 n = 2

n = 3, 4, 5:

Star Graphs:

n = 3 n = 4 n = 5

Path Graphs:

n = 3 n = 4 n = 5

4

Cycle Graphs:

n = 3 n = 4 n = 5

Complete Graphs:

n = 3 n = 4 n = 5

We denote the star graph on n vertices by Sn, the path graph on n vertices by Pn, the cycle
graph on n vertices by Cn, and the complete graph on n vertices by Kn.

Throughout this paper we assume that the vertices of Pn are labeled by the elements of
[n] in increasing order from left to right. We also assume that the vertices of Cn are labeled
by the elements of [n] in increasing clockwise order. Given the structure of Kn there is no
need to force any particular labeling for these graphs.

3 Enumeration of Assembly Trees

For a graph G, define aC(G) to be the number of assembly trees associated to G satisfying
the connected gluing rule. We start our enumeration of assembly trees by first focusing on
graphs with relatively simple connectivity structure. In particular we consider star, path,
and cycle graphs.

We begin with star graphs, Sn+1. For our treatment of star graphs we label the middle
vertex by 0, and the others by [n] as illustrated in Figure 4. Let S2(n, k) denote the Stirling
numbers of the second kind.

0

1
2

3
4

5

Figure 4: Labeled S6

Theorem 3.1. The number of assembly trees for Sn+1 is aC(Sn+1) =
∑n

k=1 k!S2(n, k).

5

Proof. For a subset of vertices of Sn+1 to correspond to a connected induced subgraph, the
subset must contain the vertex labeled 0. Thus, given an appropriate labeling of the the
non-leaf vertices of an assembly tree U1, . . . , Uk we have U1 ⊂ U2 ⊂ . . . ⊂ Uk. Therefore,
U1 − {0}, (U2\U1) − {0}, . . . , (Uk\

⋃k−1
i=1 Ui) − {0} forms an ordered partition of [n]. Hence,

assembly trees of Sn+1 are in bijection with ordered partitions of [n] which are enumerated
by

∑n
k=1 k!S2(n, k).

As stated in the introduction, this sequence of values is known as the sequence of Fubini
numbers. Cayley [3] determined a generating function for this sequence of values given in
the corollary below.

Corollary 3.2. Let sn = aC(Sn+1), then
∑∞

k=1
sk
k!
xk = x

2−ex
.

Interestingly, when Cayley derived this generating function he was counting assembly trees
satisfying the connected gluing rule for Sn. We return to this realization at the end of this
section.

Next, we focus on path graphs. For the following result let SC(n) denote nth super
Catalan number (A001003).

Theorem 3.3. The number of assembly trees for the path graph Pn is aC(Pn) = SC(n).

Proof. Note, we can always arrange the leaves of an assembly tree of Pn to be in increasing
order from left to right; this follows from the fact that two vertices in Pn are connected by
an edge if and only if they are labeled by consecutive integers in our fixed labeling. Thus,
there exists a bijection between assembly trees for Pn and plane trees with n leaves and with
all internal vertices having two or more children. The latter is counted by the super Catalan
numbers.

The generating function for the SC(n), and thus the aC(Pn), is also well-known and given
below as a corollary.

Corollary 3.4. Let pn = aC(Pn), then
∑∞

k=1 pkx
k = 1+x−

√
1−6x+x2

4x
.

Now, since the cycle graph Cn is just the path graph Pn with an extra edge connecting
its vertices of degree 1, we consider assembly trees for Cn next.

Theorem 3.5. The number of assembly trees for Cn is

n
∑

k=2

[

∑

i1+...+ik=n

i1

k
∏

j=1

SC(ij)

]

.

Proof. Given the fixed labeling of the vertices of Cn by [n], connected components consist of
either a consecutive block of [n] or a consecutive block ending in n and a consecutive block
beginning with 1.

Let U1 through Uk for 2 ≤ k ≤ n be the vertices adjacent to the root of an assembly tree
of Cn. Now, assume that U1 contains 1, U2 contains the least element of [n]\U1,. . ., and Uk

6

contains the least element of [n]\
⋃k−1

i=1 Ui. Note, that |U1| + . . . + |Uk| forms a composition
of n. Now, fix each |Ui|. Given the structure of Cn, the induced subgraphs of the Ui will
be paths. By Theorem 4.3, the number of assembly trees for the induced subgraph of Ui is
SC(|Ui|). Notice that with |U1| fixed, there are |U1| choices for the subset U1. Furthermore,
once U1 has been fixed, all other Ui get fixed as well. Thus, given a fixed U1 there are
∏k

i=1 SC(|Ui|) such assembly trees. Hence, there are |U1|
∏k

j=1 SC(|Uj|) assembly trees of
Cn with the given values for the |Ui|. Summing over all compositions with at least 2 parts
the result follows.

All choices of families of graphs up to this point have had simple connectivity structure
in the sense that the number of edges was relatively minimal. For the final family of graphs
we consider complete graphs, which also have simple connectivity structure. In the complete
case, the simplicity derives from the fact that all vertices are adjacent and so the number
of edges is maximal. To do this we use an approach similar to that of Cn. In this case we
obtain a recursive relation.

Theorem 3.6. For the complete graph on n vertices, Kn, we have

aC(Kn) =

n
∑

k=2









∑

i1+...ik=n
i1≥i2≥...≥ik

(

n
i1,...,ik

)

Q!

k
∏

j=1

aC(Kij)









where Q is the number of 1’s in our partition i1 ≥ i2 ≥ ... ≥ ik.

Proof. Begin by considering the vertices adjacent to the root of a given assembly tree of Kn,
say V1, . . . , Vk. Given the structure of Kn, any subset of the vertices produces a connected
induced subgraph. In fact, for each Vj the induced subgraph is K|Vj |. Now, let’s assume
that |V1| ≥ . . . ≥ |Vk| with |V1| + . . . + |Vk| = n. Since the induced subgraph of Vj must be
K|Vj |, we know that there are aC(K|Vj |) choices of assembly tree for the induced subgraph

of Vj. Thus, there are
∏k

j=1 a
C(K|Vj |) choices of assembly trees for the induced subgraphs

of V1, . . . , Vk. Furthermore, there are
(n

|V1|,...,|Vk|)
Q!

choices of V1, . . . , Vk with |V1| ≥ . . . ≥ |Vk|.

Replacing |Vj| by ij the result follows.

Returning to star graphs, in determining the generating function for the sequence of
values aC(Cn) Cayley was enumerating a different variety of trees with certain restrictions
on the degree of each node. This includes the enumeration of trees with n leaves – “knots”
in Cayley’s terminology – recursively constructed from such trees on < n leaves by adjoining
branches emanating from the old leaves to the new leaves [3]. Examples for n = 1, 2, 3 are
illustrated below in Figure 5.

7

n = 1 n = 2

n = 3

Figure 5: Cayley’s recursive trees

One can view this family of trees as a generalization of assembly trees on path graphs where
there is a notion of time or order. In the next section we define such a generalization and
enumerate the number of such assembly trees with both the edge and connected gluing rules
for the same four families of graphs considered above.

4 Time Dependent Assembly Trees

In this section a generalization of the assembly tree defined in Section 2 is defined where
the order or time at which vertices of G are grouped is taken into account. Recall that for
a vertex U in a rooted tree, c(U) denotes the children of U .

Definition 4.1. A time-dependent assembly tree for a connected graph G on n vertices is a
rooted tree, each node of which is labeled by a subset U ⊆ V and a nonnegative integer i
such that

1. there are leaves labeled (v, 0), for each vertex v ∈ V ,

2. each internal (non-leaf) node has at least two children,

3. the label on the root is (V,m) for 1 ≤ m ≤ n− 1,

4. for each node (U, i) with i < m, U =
⋃

{v} for all (v, 0) ∈ c((U, i)),

5. if (U, i) and (U ′, i′) are adjacent nodes with U ⊆ U ′, then i < i′,

6. for each 0 ≤ i ≤ m, there exists a node (U, i) with U ⊆ V .

8

An example of a time-dependent assembly tree is given below for an arbitrary graph on seven
vertices.

({1,2,3,4,5,6,7},3)

({1,3,5,7},1)

({4,2,6},2)

({2,6},1)

1 3 5 7 4 2 6

Figure 6: A time-dependent assembly tree

To be clear, when we use the term assembly graph without the prefix time-dependent, we
are referring to the object defined in Section 2.

Note, that a time-dependent assembly tree of a graph G is a mechanism which records
not only the sequence in which the vertices are combined but also the time or stage at which
they are combined in a given assembly of G. Thus, one assembly tree can correspond to
multiple time-dependent assembly trees. This is illustrated in Figure 7 where the assembly
tree drawn above corresponds to all three time-dependent assembly trees drawn below it.
To unclutter the assembly trees in Figure 7 the labels have been removed from the internal
nodes and it is assumed that the leaves are labeled in increasing order from left to right;
thus, the subsets corresponding to each node should be clear. Furthermore, the time integer
labels for the time-dependent assembly trees are given by the horizontal dashed line on which
the given node rests.

0

1

2

0
1

2

3

0
1

2

3

Figure 7: Assembly Trees v. Time-Dependent Assembly Trees

Just as in the case of assembly trees without additional gluing rules any two graphs
with the same number of vertices have the exact same collection of time-dependent assembly
trees. In the next few sections time-dependent assembly trees with the addition of the edge
and connected gluing rules are enumerated for the families of star, path, cycle, and complete

9

graphs. We will adopt the following helpful notation: Given a time-dependent assembly tree
T of a graph G = (V,E) with n vertices let

Uj(T) = {Ui ⊆ V | for s ≤ j, (Ui, s) is assigned to a node of T}.

Observe that Uj(T) consists of all subsets of V assigned to a vertex of T corresponding to a
nonnegative integer i ≤ j. Now, we can define

Pj(T) = Uj(T)\{Ui ∈ Uj(T) | ∃Us ∈ Uj,T such that Ui ⊆ Us}.

Thus, Pj(T) contains all of the maximal subsets contained in Uj(T) under inclusion. Note
that Pj(T) forms a set partition of [n].

As an example, consider the time-dependent assembly tree illustrated in Figure 6, call it
T . For T ,

U2(T) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {1, 3, 5, 7}, {2, 6}, {2, 4, 6}}

so that

P2(T) = {{1, 3, 5, 7}, {2, 4, 6}}.

4.1 Connected Gluing Rule

For a graph G, define aCt (G) to be the number of time-dependent assembly trees associ-
ated to G satisfying the connected gluing rule.

As in Section 3, star graphs are investigated first. Given the structure of star graphs,
it is clear that time-dependent assembly trees satisfying the connected gluing rule corre-
spond exactly to assembly trees satisfying the connected gluing rule. We state the following
proposition for completeness.

Proposition 4.2. aCt (Sn+1) =
∑n

k=1 k!S2(n, k).

For completeness we also state the associated generating function result.

Corollary 4.3. If sn = aCt (Sn), then
∑∞

k=1
sk
k!
xk = x

2−ex
.

Remark : It is important to note that if we are given a time-dependent assembly tree, say
T , of a graph G with |G| = n, then by Part 1 of the definition of time-dependent assembly
trees we must have 1 ≤ |P1(T)| < n.

As in Section 3, we now consider path graphs. We begin with a recurrence result for such
time-dependent assembly trees.

Proposition 4.4. aCt (Pn) =
∑n−1

j=1

(

n−1
j−1

)

aCt (Pj) where aCt (P1) = aCt (P2) = 1.

10

Proof. As stated in Theorem 3.3, connected components of Pn correspond to sets of con-
secutive integers. Thus, the collection of set partitions P1(T) for time-dependent assembly
trees T of Pn with |P1(T)| = j is in bijection with the set of compositions of n into j parts;
this can be seen by mapping the set partition {{1, ..., n1}, . . . , {n − nj + 1, ..., n}} to the
composition n1 + . . . + nj = n. The number of such compositions is

(

n−1
j−1

)

. Now, given the

connectivity structure of the subsets in P1(T), there are a
C
t (Pj) ways to complete the assem-

bly of Pn. Thus, the number of time-dependent assembly trees T of Pn with |P1(T)| = j is
(

n−1
j−1

)

aCt (Pj).

As mentioned earlier, Cayley [3, 4] derived a generating function for the sequence aCt (Pn),
given in Corollary 4.3. In the vernacular of assembly trees: the number of time-dependent
assembly trees satisfying the connected gluing rule for path graphs is also the number of
time-dependent assembly trees satisfying the connected gluing rule for star graphs. This is
not an obvious result.

Next we examine the family of cycle graphs.

Proposition 4.5. aCt (Cn) = 1 +
∑n−1

j=2

(

n
j

)

aCt (Cj) where aCt (C1) = aCt (C2) = 1.

Proof. Note that connected components of Cn correspond to non-crossing partitions of [n]
under our fixed labeling of the vertices of Cn by [n]. Now, if all vertices of Cn are not
assembled at once, then 2 ≤ |P1(T)| = j ≤ n − 1. Using our bijection with non-crossing
partitions we find that the number of choices for such P1(T) is

(

n
j

)

. Now, given the connec-

tivity structure of the subsets in P1(T), there are aCt (Cj) ways to complete the assembly of
Cn. Thus, the number of such time-dependent assembly trees T of Cn with |P1(T)| = j is
(

n
j

)

aCt (Cj). The result follows by noting that there is only one way to assemble all vertices
of Cn at once.

The fact that the coefficients in the recursive relation of Proposition 4.5 all have numer-
ator n! suggests that an exponential generating function for aCt (Cn) is existent. Indeed, this
is so:

Corollary 4.6. Let cn = aCt (Cn), then
∑∞

k=1
ck
k!
xk = x−xex+ex−1

2−ex
.

Proof. Let A(x) denote the desired generating function. Translating the recursive relation
of Proposition 4.5 into a relation satisfied by A(x) gives the following:

A(x)− x−
x2

2
= (A(x)− x)(ex − 1) + ex − x−

x2

2
− 1.

Solving for A(x) completes the proof.

Finally, we consider complete graphs. The next proposition provides a recursive relation
for the aCt (Kn).

Proposition 4.7. aCt (Kn) =
∑n−1

j=1 S2(n, j)a
C
t (Kj) where aCt (K1) = aCt (K2) = 1.

11

Proof. Note that any subset of vertices of Kn forms a connected component. Thus, the
the collection of P1(T) with |P1(T)| = j for a time dependent assembly tree of T for Kn

is in bijective correspondence with the collection of partitions of [n] into j parts which is
enumerated by S2(n, j). Now, given the connectivity structure of the subsets in P1(T), there
are aCt (Kj) ways to complete the assembly of Kn. Therefore, the number of time-dependent
assembly trees T of Kn with |P1(T)| = j is S2(n, j)a

C
t (Kj).

4.2 Edge Gluing Rule

For a graph G, define aEt (G) to be the number of time-dependent assembly trees associ-
ated to G with the addition of the edge gluing rule.

So we begin with star graphs. Due to a star graphs structure it is easy to see that the
time-dependent assembly trees satisfying the edge gluing rule correspond exactly to assembly
trees satisfying the edge gluing rule. The following proposition is essentially Proposition 1
of Vince and Bona [2].

Proposition 4.8. aEt (Sn) = n!.

The following corollary is immediate.

Corollary 4.9. Let sn = aEt (Sn), then
∑∞

k=1
sk
k!
xk = 1

1−x
.

Next, the family of path graphs are analyzed.

Proposition 4.10. aEt (Pn) =
∑⌊n/2⌋

j=1

(

n−j
n−2j

)

aEt (Pn−j) where aEt (P1) = aEt (P2) = 1.

Proof. Given our fixed labeling of the vertices of Pn, there exists a bijection between P1(T)
for time dependent assembly trees T of Pn with |P1(T)| = n − j and compositions of n
consisting of n − j 1’s and j 2’s where j > 1. The bijection is as follows: a 2 occurs as
the ith part of the composition if and only if ({i, i+ 1}, 1) is a node in the time-dependent
assembly tree; otherwise, the ith part is a 1. Thus, the number choices for P1(T) satisfying
|P1(T)| = n− j is

(

n−j
n−2j

)

. Any choice of P1(T) for a time-dependent assembly tree T of Pn

with |P1(T)| = n− j can be completed to a full time-dependent assembly tree in aEt (Pn−j)
ways.

Considering the bijection used in the proof of the recursion in Proposition 4.10, one is
led to the following relation satisfied by the generating of the aEt (Pn).

Corollary 4.11. Let P (x) be the generating function for the aEt (Pn), then P (x) = x+P (x+x2)
2

.

Proof. Replacing x by x+x2 in P (x) produces a series of terms of the form aEt (Pk)x
n, where n

is the weight of a composition of length k consisting of 1’s and 2’s. Collecting the coefficients
of xn we get

∑n
k=1C1,2(k, n)a

E
t (Pk)x

n, where C1,2(k, n) is the number of compositions of n

12

into k parts consisting of 1’s and 2’s; note that C1,2(n, n) = 1 and for ⌈n/2⌉ ≤ k < n we
have C1,2(k, n) =

(

k
2k−n

)

. Thus, at n = 1 we get the term aEt (P1)x. For k > 1, we get

n
∑

k=1

C1,2(k, n)a
E
t (Pk)x

n =

n−1
∑

k=⌈n/2⌉

(

k

2k − n

)

aEt (Pk)x
n + aEt (Pn)x

n

=

⌊n/2⌋
∑

j=1

(

n− j

n− 2j

)

aEt (Pn−j)x
n + aEt (Pn)x

n = aEt (Pn)x
n + aEt (Pn)x

n.

The result follows.

Interestingly, in the OEIS the sequence of values formed by the aEt (Pn) are listed (A171792)
only as the coefficients of the generating function satisfying the relation given in Corol-
lary 4.11. Thus, Corollary 4.11 gives a previously unknown counting realization to the
sequence A171792.

Now, just as before, given their similar structure to path graphs, cycle graphs are con-
sidered next.

Proposition 4.12. aEt (Cn) =
∑⌊n/2⌋

j=1

(

(

n−j
n−2j

)

+
(

n−j−1
n−2j

)

)

aEt (Cn−j) where a
E
t (C1) = aEt (C2) =

1.

Proof. Note that the only difference between cycles Cn and paths Pn is the edge {1, n}. If
({1, n}, 1) is not a node, then as in the proof of Proposition 4.10 the number of such time-

dependent assembly trees is
∑⌊n/2⌋

j=1

(

n−j
n−2j

)

aEt (Cn−j). On the other hand, if ({1, n}, 1) is such

a node, then applying similar reasoning we get
(

n−j−1
n−2j

)

choices of P1(T) with |P1(T)| = j

for a time-dependent assembly tree T of Cn. Thus, there are
∑⌊n/2⌋

j=1

(

n−j−1
n−2j

)

aEt (Cn−j) such
time-dependent assembly trees. Putting these two cases together, the result follows.

Finally, we investigate complete graphs.

Proposition 4.13. aEt (Kn) =
∑⌊n

2
⌋

i=1
n!

2ii!(n−2i)!
aEt (Kn−i) where aEt (K1) = aEt (K2) = 1.

Proof. Given the structure of Kn, the collection of set partitions formed by the P1(T) for
time-dependent assembly trees T of Kn with |P1(T)| = i are in bijection with set partitions
of [n] into blocks of size 1 or 2 with i blocks of size 2. The number of such blocks is

∏i−1
j=0

(

n−2j
2

)

i!
=

n!

2ii!(n− 2i)!
.

Given |P1(T)| = i, the number of ways to complete such a time-dependent assembly tree of
Kn is aEt (Kn−i).

13

5 Questions

In this preliminary investigation we find generating functions for the sequences aC(Sn),
aC(Pn), a

C
t (Sn), a

C
t (Pn), a

C
t (Cn), and aEt (Sn). What about generating functions for aC(Cn),

aC(Kn), a
C
t (Kn), a

E
t (Pn), a

E
t (Cn), and aEt (Kn)? All recurrence relations determined involve

some form of binomial coefficient which suggest a product of exponential generating functions
(see Corollary 4.6).

Further research might also include the enumeration of both regular and time-dependent
assembly trees for families of graphs with more complex structure. Of particular interest [2,
p.15] is the enumeration of both regular and time-dependent assembly trees for caterpillar
graphs (see Figure 8) for which no recurrence relation is known.

Figure 8: A caterpillar

References

[1] M. Bóna, M. Sitharam, and A. Vince. Enumeration of viral capsid assembly pathways:
tree orbits under permutation group action. Bulletin of mathematical biology, 73(4):726–
753, 2011.

[2] M. Bóna and A. Vince. The number of ways to assemble a graph. In Proceedings of the
Meeting on Analytic Algorithmics and Combinatorics, pages 8–17. Society for Industrial
and Applied Mathematics, 2013.

[3] A. Cayley. Lviii. on the analytical forms called trees.–part ii. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 18(121):374–378, 1859.

[4] A. Cayley. A theorem on trees. Quartery Journal of Mathematics, 23:376–378, 1889.

14

