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Abstract

Upper and lower bounds on the largest number of weights in a cyclic code of

given length, dimension and alphabet are given. An application to irreducible

cyclic codes is considered. Sharper upper bounds are given for cyclic codes

(called here strongly cyclic), all codewords of which have period the length.

Asymptotics are derived on the function Γ(k, q), the largest number of nonzero

weights a cyclic code of dimension k over Fq can have, and an algorithm to

compute it is sketched.
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1 Introduction

In a companion paper, we have studied the largest number of nonzero weights a

linear code of given length and dimension can have [12]. In the present paper we
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address the same type of questions for cyclic codes. Thus, we study the function

Γ(k, q), the largest number of nonzero weights a cyclic code of dimension k over Fq

can have. We derive upper bounds on that quantity by simple counting arguments

bearing on the cycle structure of the code. An alternative approach is to use weight

concentration theorems, derived first in [7] in the language of linear recurrences. In

the case of cyclic codes the nonzero codewords of which have period the length (called

strongly cyclic codes in the sequel) we obtain smaller upper bounds as for the class

of all cyclic codes. This suggests to study Γ0(k, q), the largest number of nonzero

weights a strongly cyclic code of dimension k over Fq can have. This discrepancy

in behaviour between Γ(k, q), and Γ0(k, q), is particularly evident in the asymptotic

upper bounds. We also derive lower bounds on these two functions, using special

codes, or the covering radius of the dual code. Showing that the Hamming code

is optimal for the number of nonzero weights requires so-called deficient numbers

(integers that are larger than the sum of their proper divisors) and the computations of

the Appendix. Exact enumeration of cyclic codes can require some deep techniques of

Number Theory [4]. In particular, the codes of Melas and Zetterberg give interesting

lower bounds for a wide range of parameters. The use of the celebrated Delsarte

bound on the covering radius of codes [1], leads us to define a new combinatorial

function (T [n, k]) of independent interest.

The material is organized as follows. The next section collects some background

material on linear codes and cyclic codes. Section 3 is dedicated to upper bounds

and Section 4 to lower bounds. Section 5 derives the asymptotic version of some

of the preceding bounds. Section 6 contains some numerical values for the main

combinatorial function of interest. Section 7 concludes the paper and mentions some

open problems. An appendix derives a difficult property of the Hamming code.

2 Definitions and Notation

2.1 Linear codes

A (linear) code C of length n over a finite field Fq is a Fq vector subspace of F
n
q .

The dimension of the code is its dimension as a Fq vector space, and is denoted by k.

The elements of C are called codewords.

The dual C⊥ of a code C is understood w.r.t. the standard inner product.
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The (Hamming) weight of x ∈ F
N
q is the number of indices i where xi 6= 0.

The minimum nonzero weight d of a linear code is called the minimum distance.

The dual distance of a code is the minimum distance of its dual. Every linear code

satisfies the Singleton bound [8, Th 11, Chap. 1] on its parameters

d ≤ n− k + 1.

A code meeting that bound is called MDS. See [8, Chap. 11] for general knowledge

on this family of codes.

2.2 Cyclic codes

A cyclic code of length n over a finite field Fq is a Fq linear code of length n

invariant under the coordinate shift. Under the polynomial correspondence such a

code can be regarded as an ideal in the ring Fq[x]/(x
n − 1). It can be shown that

this ideal is principal, with a unique monic generator g(x), called the generator

polynomial of the code. The check polynomial h(x) is then defined as the quotient

(Xn − 1)/g(x). A well-known fact is that the codewords are the periods of the linear

recurrence of characteristic polynomial the reciprocal polynomial of h(x) [8, p. 195].

Thus any codeword c can be continued into an infinite periodic sequence ĉ which is

periodic of period n. The period of a codeword c is understood to be the smallest

integer T such ĉi+T = ĉi for all integers i. Thus the period is always a divisor of n.

A cyclic code is irreducible over Fq if its check polynomial h(x) is irreducible over

Fq[x]. The period of a polynomial h(x) ∈ Fq[x] is the smallest integer T such that

h(x) divides xT −1 over Fq[x]. If C is a cyclic code, its codewords are partitioned into

orbits under the action of the shift. We call these orbits the cyclic classes of C.

2.3 Combinatorial functions

Define Γ(k, q) as the largest number of nonzero weights of a cyclic code of dimen-

sion k over Fq. Define Γ(n, k, q) as the largest number of nonzero weights of a cyclic

code of length n and dimension k over Fq, if such a code exists, and by zero otherwise.

The same functions for strongly cyclic codes (to be defined below) are denoted by

Γ0(k, q), and Γ0(n, k, q), respectively.
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3 Upper bounds

3.1 Cycle structure

If C is a cyclic code, denote by Bt the number of nonzero codewords of period t

it contains. A cyclic code such that Bt = 0 for 1 ≤ t < n shall be called strongly

cyclic.

Lemma 1. If C is an [n, k]q cyclic code with s nonzero weights, then

s ≤
∑

t|n

Bt

t
.

Proof. The number of cyclic classes of codewords of period t is at most Bt

t
. All code-

words in the same class share the same weight.

Example: Consider the code of dimension 2 over F5, with length 20 and check

polynomial x2 + x − 1. This code contains the Fibonacci numbers read mod 5 [9,

A082116]. It can be checked to contain 4 codewords of period 4 (namely 1, 3, 4, 2,

repeated five times) and 20 codewords of period 20. Thus, it is a two-weight code

satisfying B4

4
= B20

20
= 1. The bound of Lemma 1 is met with equality.

This simple counting lemma has two important applications. First, we improve

the upper bound on L(k, q) of [12, Prop. 2] by a factor n
q−1

for some large class of

cyclic codes.

Theorem 1. If C is a [n, k]q strongly cyclic code with s nonzero weights, then

s ≤ qk − 1

n
.

Thus Γ0(n, k, q) ≤ qk−1

n
.

Proof. We apply the lemma when Bt = 0 for t < n, so that the sum in the right

handside contains only one summand.

Next, in the general case several nonzero Bts we can prove the following.

Theorem 2. If C is an [n, k]q cyclic code with s nonzero weights, not containing the

all-one codeword, then

s2 ≤ (qk − 1)2
∑

1<t|n

1

t2
.
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Proof. Note that, by hypothesis, B1 = 0. Squaring the bound in the lemma, and

applying Cauchy-Schwarz inequality we obtain

s2 ≤
∑

1<t|n

B2

t

∑

1<t|n

1

t2
.

By definition of the Bt’s note that
∑

t|n Bt = qk − 1, implying
∑

t|n B
2
t ≤ (qk − 1)2.

The result follows.

Remark: Trivially, s ≤ qk − 1 for all linear codes, so we avoid B1 > 0 and the

summand on t to be ≥ 1.

3.2 Character sums

The following result can be derived by using the character sums techniques of [7,

Chapt. 8].

Theorem 3. If C is an [n, k]q strongly cyclic code with s weights, then

s ≤ 2(1− 1

q
)qk/2.

Thus

Γ0(n, k, q) ≤ 2(1− 1

q
)qk/2.

Proof. By [7, Cor. 8.83] we know that the weights w of C lie in the range

|n(1− 1

q
)− w| ≤ (1− 1

q
)qk/2.

The result follows by computing the length of that interval.

3.3 Irreducible cyclic codes

The weight structure of irreducible cyclic codes has been a research topic since

the first works of McEliece and others [7, 5, 2] due to their connection to Gauss sums

and L-functions, and its intrinsic complexity.

Theorem 4. If C is an [n = qk−1

N
, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights, then s ≤ N.
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Proof. Since the check polynomial h(x) is irreducible it generates the annihilating

ideal of each sequence attached to a codeword. If the period of such a sequence were

T < n, then h(x) would divide xT − 1, contradicting the hypothesis on the period of

h(x). Hence C is strongly cyclic, and we can apply Theorem 1. The result follows.

Example: Consider the case of N = 2, and q = p an odd prime. Such a code is

well-known to be a two-weight code [5].

A slightly sharper bound can be derived using the results in [2].

Theorem 5. If C is an [n = qk−1

N
, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then s ≤ Nk = GCD(N, q
k−1

q−1
).

Proof. Follows by [2, (9)] which involves Gaussian periods of order Nk.

This shows that Theorem 4 can only be tight when N = Nk, or, equivalently, N

divides qk−1

q−1
. Using Theorem 3, another bound can be derived.

Theorem 6. If C is an [n = qk−1

N
, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then s ≤ 2(1− 1

q
)
√
1 + nN.

Proof. As explained in the proof of Theorem 5 we know that all nonzero codewords

have period n. Thus the code C is strongly cyclic, and we can apply Theorem 3. We

get rid of k in Theorem 3 by writing qk = 1 + nN.

Remark: Depending on the relative values of n and N, either Theorem 6, or

Theorem 5 is sharper than the other.

A slight improvement on Theorem 6 can be derived for irreducible cyclic codes.

Theorem 7. If C is an [n = qk−1

N
, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then

s ≤ 2(1− 1

q
)(
n

h
− 1

N
)
√
1 + nN

where h = LCM(n, q − 1).

Proof. The proof follows the lines of Theorem 6 with [7, Th. 8.84, (8.37)] replacing

[7, Cor. 8.83]. We get rid of k by writing qk = 1 + nN.
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4 Lower bounds

4.1 Special values

We begin with an easy bound.

Proposition 1. For all prime powers q, we have Γ(k, q) ≥ k.

Proof. The universe code, the cyclic [k, k]q code with generator the zero polyno-

mial, has k nonzero weights. This shows that Γ(k, k, q) ≥ k. The result follows by

Γ(k, k, q) ≤ Γ(k, q).

The following result is immediate by [11]. The proof is omitted.

Proposition 2. For all prime powers q, we have Γ(2, q) = 2.

We recall now some classical cyclic codes. The repetition code R(n, q) is the

ideal of Fq[x]/(x
n − 1) with generator xn−1

x−1
. Its dual is P (n, q) = 〈(x − 1)〉. The

Hamming code Hm is the binary cyclic code of length n = 2m − 1 with generator

any primitive irreducible polynomial of F2[x] of degree m. Its dual the simplex code

Sm is a one-weight code.

Theorem 8. For all integers n ≥ 1 and all prime powers q with (n, q) = 1, we have

that Γ(n, 1, q) = 1, and that Γ(n, n−1, q) is the number of nonzero weights in P (n, q).

For all primes m ≥ 2, we have Γ(n, n − m, 2) = n − 4, and Γ(n,m, 2) = 1, where

n = 2m − 1.

Proof. The first statement follows by the unicity of cyclic codes with dimension (resp.

codimension) one. These are the repetition codes (resp. their duals). Their number

of weights are easy to compute. To prove the second statement, observe that x2m −x

is the product of all monic irreducible polynomials whose degree divides m [8, Chap.

4, Th. 11]. If m is a prime number, any divisor of x2m−1 − 1 of degree m will have

then to be irreducible. Thus, cyclic codes of dimension (resp. codimension) m will

have to be Sm (resp. Hm) or replicated versions of Sm′ (resp. Hm′) for m′ a proper

divisor of m. The result follows on observing that the number of nonzero weights of

Hm is 2m − 5 ([8, Chap. 6, Ex. (E2)], see Appendix for a proof), and the fact that

Sm is a one-weight code [8, Chap.1 §9 , Ex].

The next two theorems rely on some deep algebraic geometric enumeration of

cyclic codes [6, 10, 13]. See [4] for a survey.
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Theorem 9. For all integers m ≥ 3, we have

Γ(2m − 1, 2m, 2) ≥ ⌈2m/2⌉,

and

Γ(2m + 1, 2m, 2) ≥ ⌈2m/2⌉.

Proof. The dual of the binary Melas code is cyclic of parameters [2m − 1, 2m]. It is

proved in [6, Th. 6.3] that its nonzero weights are all the even integers w in the range

|w − 2m − 1

2
| ≤ 2m/2.

Similarly, the dual of the Zetterberg code is an irreducible cyclic code of parameters

[2m + 1, 2m]. It is proved in [6, Th. 6.6] that its nonzero weights are all the even

integers w in the range

|w − 2m + 1

2
| ≤ 2m/2.

The result follows after elementary calculations.

A ternary analogue is as follows.

Theorem 10. For all integers m ≥ 2 we have Γ(3m − 1, 2m, 3) ≥ ⌈4× 3
m−2

2 ⌉.

Proof. The dual of the ternary Melas code is cyclic of parameters [3m − 1, 3m]. It is

proved in [13] that its nonzero weights are of the form 3m−1+t
3

with t ∈ Z, satisfying

t ≡ 1 (mod 3), and t2 < 3m. The result follows after elementary calculations.

It is remarkable that the last two theorems imply lower bounds on Γ(k, 2) and

Γ(k, 3) that are exponential in the dimension. It would be desirable to extend these

results to Γ(k, q) with q a prime power > 3.

4.2 Covering radius

Recall that the covering radius ρ(C) of a code C is the smallest integer t such

that every point in F
n
q is at distance at most t from some codeword of C. A combina-

torial function that is, as far as we know, new, is T [n, k, q], the largest covering radius

of a cyclic code of length n and dimension k over Fq. Note that the closest classical

function in that context is, for q = 2, the quantity t[n, k], the smallest covering radius

of a binary linear code of length n and dimension k [1]. Trivially t[n, k] ≤ T [n, k, 2].

The Delsarte bound [8], stated for the dual of a linear code C, is ρ(C⊥) ≤ s(C) [8,

Chap. 6, Th. 21]. With the above definitions, we can state the following result.
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Proposition 3. For all integers n, k with 1 ≤ k ≤ n, we have

Γ(n, k, q) ≥ T [n, n− k, q].

Proof. Upon using Delsarte bound for the dual of an [n, k]q code with Γ(n, k, q)

nonzero weights, which is, in particular, an [n, n − k]q code we see that Γ(n, k, q) ≥
T [n, n− k, q].

Remark: This bound is tight when n = q − 1. By the Singleton bound Γ(q −
1, k, q) ≤ k. It is well-known that MDS codes of dimension k have exactly k weights

[3]. Thus, considering cyclic MDS codes shows that Γ(q − 1, k, q) = k. Further,

T [q − 1, k, q] ≤ q − 1− k by the so-called redundancy bound [1, Cor. 8.1.4], which is

known to be met by the Reed-Solomon codes by a nesting argument [1, Th. 10.5.7].

Thus T [q − 1, k, q] = q − 1 − k for all q ≥ k + 1. This shows that Γ(q − 1, k, q) =

T [q − 1, q − 1− k, q].

5 Asymptotics

Recall that the q-ary entropy function Hq(·) is defined for 0 < y < q−1

q
by

Hq(y) = y logq(q − 1)− y logq(y)− (1− y) logq(1− y).

To consider the number of weights of long codes of given rate, we study the behavior

of γq(R) defined for 0 < R < 1 as

γq(R) = lim sup
n→∞

Γ(n, ⌊Rn⌋, q).

Theorem 11. For all rates R ∈ (0, 1) we have

H−1

q (R) ≤ γq(R) ≤ R.

In particular, γq(R) ≤ t(q), the unique solution in (0, q−1

q
) of the equation Hq(x) = x.

Proof. The upper bound comes from the immediate inequalities Γ(n, k, q) ≤ Γ(k, q) ≤
qk − 1. The lower bound follows by combining the sphere-covering bound [1, 8] with

Proposition 3.
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Similarly for strongly cyclic codes we define

γ0

q (R) = lim sup
n→∞

Γ0(n, ⌊Rn⌋, q).

We obtain a different upper bound.

Theorem 12. For all rates R ∈ (0, 1) we have

H−1

q (R) ≤ γ0

q (R) ≤ R

2
.

In particular, γq(R) ≤ t0(q), the unique solution in (0, q−1

q
) of the equation Hq(x) =

x
2
.

Proof. The upper bound comes from the immediate inequalities Γ0(n, k, q) ≤ Γ0(k, q)

and Theorem 3. The lower bound follows by combining the sphere-covering bound

[1, 8] with Delsarte bound on the dual code.

6 Numerics

We conjecture, but cannot prove, based on the figures of Table 1, that the local

maxima of n 7→ Γ(n, k, 2), for fixed k are met for codes with check polynomials of

the form
∏s

i=1
hi(x), where hi is irreducible of degree i. Another motivation for the

conjecture is that cyclic codes with irreducible check polynomials are one-weight codes

in primitive length.

Table 1: lower bounds on Γ(k, q)

Γ(k, q) ≥ q k n h(x)

7 2 6 21 (1 + x)(1 + x+ x2)(1 + x+ x3)

15 2 10 105 (1 + x)(1 + x+ x2)(1 + x+ x3)(1 + x+ x4)

11 3 6 104 (x+ 1)(x2 + 1)(x3 + 2x+ 1)

20 3 10 1040 (x+ 1)(x2 + 1)(x3 + 2x+ 1)(x4 + x+ 2)

11 4 6 315 (x+ 1)(x2 + x+ w)(x3 + x+ 1)

18 4 8 315 (x+ 1)(x2 + x+w)(x2 + x+ w2)(x3 + x+ 1)

What can be noted from Table 1 is that the bound Γ(k, q) ≥ k of Proposition 1 is

weak.

A systematic algorithm to compute Γ(k, q) can be sketched as follows.
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(i) Find all polynomials h of degree k of Fq[x]

(ii) For each h compute its period Th

(iii) Count the number sh of nonzero weights of the cyclic code of length Th and

check polynomial h;

(iv) Maximize sh over all h’s in Step (i).

We illustrate this algorithm by the special case k = q = 2. The polynomials h can

take the following values

(i) x2 + x+ 1 when T = 3 and sh = 1 (Simplex code)

(ii) x2 + 1 when T = 2 and sh = 2 (Universe code)

(iii) x2GCD(xT + 1, x2) = 1 for any T ≥ 1 yielding T = 2 and sh = 0 (Null code)

(iv) x2 + x when GCD(xT + 1, x2 + x) = x + 1 for any T ≥ 1 yielding sh = 1

(Repetition code)

We conclude that Γ(2, 2) = 2.

7 Conclusion and open problems

In this paper, we have studied the largest number of distinct nonzero weights a

cyclic code of given length and dimension could have. We have derived some upper

bounds on that quantity that seem especially sharp for irreducible cyclic codes. Lower

bounds appear weak so far, being linear in k, when the upper bounds are exponential.

Even showing that the Hamming code is optimal for Γ(n, k) required to assume

n = 2m − 1 with m prime and the heavy claculations of the Appendix. Extending

this result to BCH codes either double-error correcting or triple-error correcting seems

possible at the price of calculations similar to, but more complicated than, those in

the Appendix.

So sharpening the lower bounds is the main open problem. Finding a pattern in

the local maxima of n 7→ Γ(n, k, q) by running extensively the algorithm of the last

section for large n’s might help. This programming effort could lead to a table of the

function Γ(k, q) for modest values of kq, let us say kq ≤ 100 for instance.
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8 Appendix

Theorem 13. The binary Hamming code Hm of length n = 2m − 1 has exactly

s = n− 4 nonzero weights.

Proof. Let (A0, A1, · · · , An) denote the weight distribution ofHm. Since the minimum

distance is 3 we have A1 = A2 = 0 and, because Hm contains the all-ones vector, it

follows that An−1 = An−2 = 0. Thus s ≤ n − 4. To prove s ≥ n − 4, we need an

explicit formula for the weight distribution. According to the MacWilliams identity

between the binary Hamming code and its dual code (the simplex code of parameters

[2m − 1, m, 2m−1]2), we can get the following generating function

2m
n∑

j=0

Ajx
n−jyj = (x+ y)n + n(x2 − y2)2

m−1−1(x− y),

and, from there, the following equations for Aj , with 3 ≤ j ≤ n− 4.

2mA2i =

(
n

2i

)
+ (−1)i

(
2m−1 − 1

i

)
n, where 4 ≤ 2i ≤ n− 3, (1)

2mA2i+1 =

(
n

2i+ 1

)
+ (−1)i+1

(
2m−1 − 1

i

)
n, where 3 ≤ 2i+ 1 ≤ n− 4 (2)

Note that A2i > 0 if and only if

(
n
2i

)
(
2m−1−1

i

)
n
> 1 with n = 2m − 1 and i = 2t+ 1

if and only if
(2m − 3)!!

(4t+ 2)!!(2m − 1− (4t+ 2))!!
> 1,

where the double factorial N !! of an integer N is

N !! =

⌊N/2⌋∏

j=0

(N − 2j).
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The last inequality is equivalent to

(2m − 4t− 1)× (2m − 4t + 1)× · · · × (2m − 3)

4× 6× · · · × (4t+ 2)
> 2.

The left handside is the product of 2t + 1 ratios and showing the first one > 2 is

enough, since then the remaining 2t will be ≥ 1. Now 2m−4t−1

4
> 2 is true when

m ≥ 4, (assuming 2i ≤ n−1

2
by symmetry), and can be checked numerically for

m = 2, 3. We can prove A2i+1 > 0 similarly.

The formulas (1) and (2) for the weight distribution of Hm can be found in [10,

p.176]. The proof given here solves Problem 1 of [8, Chap. 6] on the external distance

of Hadamard codes.
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