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TWO ALGORITHMS TO FIND PRIMES IN PATTERNS

JONATHAN P. SORENSON AND JONATHAN WEBSTER

Abstract. Let k ≥ 1 be an integer, and let (f1(x), . . . , fk(x)) be k
admissible linear polynomials over the integers. We present two algo-
rithms that find all integers x where max {fi(x)} ≤ n and all the fi(x)
are prime.

• Our first algorithm takes at most O(nk/(log log n)k) arithmetic
operations using O(k

√
n) space.

• Our second algorithm takes slightly more time, O(nk/(log log n)k−1)
arithmetic operations, but uses only expO(log n/ log log n) space.
This result is unconditional for k > 6; for 2 < k ≤ 6, the proof of
its running time, but not the correctness of its output, relies on an
unproven but reasonable conjecture due to Bach and Huelsbergen.

We are unaware of any previous complexity results for this problem
beyond the use of a prime sieve.

We also implemented several parallel versions of our second algorithm
to show it is viable in practice. In particular, we found some new Cun-
ningham chains of length 15, and we found all quadruplet primes up to
1017.

1. Introduction

Mathematicians have long been interested in prime numbers and how they
appear in patterns. (See, for example, [12, ch. A].) In this paper, we are
interested in the complexity of the following algorithmic problem:

Given a pattern and a bound n, find all primes ≤ n that fit
the pattern.

To address this, first we will discuss and define a pattern of primes, then we
will look at what is known about the distribution of primes in patterns to
see what we can reasonably expect for the complexity of this problem, and
finally we will discuss previous work and state our new results.

1.1. Prime Patterns. Perhaps the simplest of patterns of primes are the
twin primes, which satisfy the pattern (x, x+2) where both x and x+2 are
prime. Examples include 59,61 and 101,103.

We can, of course, generalize this to larger patterns. For example, prime
quadruplets have the form (x, x + 2, x + 6, x + 8), and examples include
11,13,17,19 and 1481,1483,1487,1489.

Larger patterns of primes are called prime k-tuples. If the k-tuple has the
smallest possible difference between its first and last primes (its diameter),

1991 Mathematics Subject Classification. 11A41,11Y11,11Y16,68Q25.

1

http://arxiv.org/abs/1807.08777v1


2 JONATHAN P. SORENSON AND JONATHAN WEBSTER

it is also called a prime constellation. See, for example, [7, §1.2.2] or [25, ch.
3].

Sophie Germain studied the pattern (x, 2x+ 1), which was later general-
ized to Cunningham chains of two kinds. Chains of the first kind have the
pattern (x, 2x + 1, 4x + 3, 8x + 7, . . .), and chains of the second kind have
the pattern (x, 2x− 1, 4x− 3, 8x − 7, . . .).

Chernick [6] showed that any prime pattern of the form (6x + 1, 12x +
1, 18x+1), which is admissible, gives a Carmichael number composed of the
product of these three primes.

Let k > 0 be an integer. A prime pattern of size k is a list of k linear poly-
nomials over the integers with positive leading coefficients, (f1(x), . . . , fk(x)).
A pattern of size k is admissible if for every prime p ≤ k, there is an integer
x such that p does not divide any of the fi(x).

We restrict our notion of pattern to linear polynomials in this paper.

1.2. The Distribution of Primes in Patterns. The unproven twin prime
conjecture states there are infinitely many twin primes. Yitang Zhang [31]
recently showed that there is a positive integer h < ∞ such that the pattern
(x, x+ h) is satisfied by infinitely many primes.

The Hardy-Littlewood k-tuple conjecture [14] implies that each pattern,
with leading coefficients of 1, that is admissible, will be satisfied by primes
infinitely often. Further, the conjecture implies that the number of primes
≤ n in such a pattern of length k is roughly proportional to n/(log n)k.

For twin primes, then, the Hardy-Littlewood conjecture gives an estimate
of

2C2
n

(log n)2

for the number of twin primes ≤ n, where C2 ≈ 0.6601 . . . is the twin
primes constant. Brun’s theorem gives an O(n/(log n)2) upper bound for
the number of twin primes ≤ n.

Dickson’s conjecture [8] states that there are infinitely many primes satis-
fying any fixed admissible pattern, even with leading coefficients ≥ 1. Thus,
it applies to Cunningham chains as well.

We have the following upper bound, due to Halberstam and Richert [13,
Theorem 2.4].

Lemma 1. Given an admissible pattern (f1(x), . . . , fk(x)) of length k, the
number of integers x such that the fi(x) are all simultaneously prime and
max{fi(x)} ≤ n is at most O(n/(log n)k).

Here the implied constant of the big-O can depend on k, but does not
depend on the coefficients of the fi.

1.3. Previous Work. For previous computational work on finding primes
in patterns, see the work of Günter Löh [19] and Tony Forbes [9]. Both
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authors described their algorithms, but gave no runtime analysis. In par-
ticular, Forbes outlined an odometer-like data structure that mimicks the
wheel data structure we employ.

But to get a complexity measure, the best previous work is to find all
primes ≤ n, and then scan the resulting list of primes to see how many
match the pattern. In other words, this is basically a prime number sieve.

The Atkin-Bernstein sieve [2] does this using at most O(n/ log log n) arith-
metic operations and

√
n space. Galway [10] showed how to reduce space

further to roughly n1/3, but this version could not use the wheel data struc-
ture and requires O(n) arithmetic operations.

We follow the convention of not charging for space used by the output of
the algorithm.

Of course, by the prime number theorem, there are only about n/ log n
primes ≤ n, so the current best prime sieves use log n/ log log n arithmetic
operations per prime on average. We do not know if anything smaller is
possible. Applying this average cost to the results of Lemma 1, we can hope
for an algorithm that takes O(n/(log log n)k) arithmetic operations to find
all primes in a fixed pattern of length k.

In essence, this is what we prove as our main result.

1.4. New Results. Our contribution is the following.

Theorem 1. Given a list of k distinct linear polynomials over the inte-
gers, with positive leading coefficients, (f1(x), . . . , fk(x)) (the pattern), and
a search bound n, there is an algorithm to find all integers x such that
max {fi(x)} ≤ n and all the fi(x) are prime. This algorithm uses at most
O(nk/(log log n)k) arithmetic operations and O(k

√
n) bits of space.

This algorithm extends the Atkin-Bernstein prime sieve with our space-
saving wheel sieve. See [27, 28, 29].

The
√
n space needed by this algorithm limits its practicality. By re-

placing the use of the Atkin-Bernstein sieve with the sieve of Eratosthenes
combined with prime tests, we can greatly reduce the need for space.

Theorem 2. Given a list of k > 6 distinct linear polynomials over the
integers, with positive leading coefficients, (f1(x), . . . , fk(x)) (the pattern),
and a search bound n, there is an algorithm to find all integers x such that
max {fi(x)} ≤ n and all the fi(x) are prime. This algorithm uses at most
O(nk/(log log n)k−1) arithmetic operations and expO(log n/ log log n) bits
of space.

This second version requires k > 6 to be unconditional. We use the sieve
of Eratosthenes with primes up to a bound B = expO(log n/ log log n),
after which we apply a base-2 pseudoprime test and then a version of the
AKS prime test [1] that takes (log n)6+o(1) time. The algorithm works for
2 < k ≤ 6, but to keep the cost of prime testing low enough, we replace the
AKS prime test with the the pseudosquares prime test of Lukes, Patterson,
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and Williams [20]. This prime test takes only O((log n)2) time under the
condition of an unproven but reasonable conjecture on the distribution of
pseudosquares due to Bach and Huelsbergen [3]. Note that correctness does
not rely on any unproven conjectures.

The pseudosquare Lp is the smallest positive integer that is not a square,
Lp ≡ 1 mod 8, and for every odd prime q ≤ p, we have (Lp/q) = 1, where
(x/y) is the Legendre symbol.

Conjecture 1 (Bach and Huelsbergen [3]). Let Lp be the largest pseu-
dosquare ≤ n. Then p = O(log n log log n).

Theorem 3. Given a list of k > 2 distinct linear polynomials over the
integers, with positive leading coefficients, (f1(x), . . . , fk(x)) (the pattern),
and a search bound n, there is an algorithm to find all integers x such
that max {fi(x)} ≤ n and all the fi(x) are prime. If Conjecture 1 is true,
this algorithm uses at most O(nk/(log log n)k−1) arithmetic operations and
expO(log n/ log log n) bits of space.

We performed a few computations with this last version of our algorithm
to show its practicality. A couple of these computations are new.

The rest of this paper is organized as follows. In §2 we present our proof
of Theorem 1, including our model of computation in §2.1, a description
of our first algorithm in §2.2, and its running time analysis in §2.3. In §3
we discuss our second algorithm in §3.1, and its analysis in §3.2, thereby
proving Theorems 2 and 3. We present our computational results in §4,
including our work on twin primes in §4.1, our work on prime quadruplets
in §4.2, and our results on Cunningham chains in §4.3. We wrap up with a
discussion of possible future work in §5.

2. Theory

2.1. Model of Computation. Our model of computation is a standard
random access machine with infinite, direct-access memory. Memory can be
addressed at the bit level or at the word level, and the word size is Θ(log n)
bits, if n is the input. Arithmetic operations on integers of O(log n) bits
take constant time, as do memory/array accesses, comparisons, and other
basic operations.

We count space used in bits, and we do not include the size of the output.

2.2. The Algorithm. In this section we present the version of our algo-
rithm with the smallest running time; we perform the analysis in the next
section.

The input to the algorithm is the search bound n and the pattern, which
consists of the value of k and the list of linear polynomials (f1(x), . . . , fk(x)).
We write ai for the multiplier and bi for the offset for each form fi. For sim-
plicity, we often assume that a1 = 1 and b1 = 0, but this convenience is not
required to obtain our complexity bound. So for example, for Cunningham
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chains of the first kind we would have a1 = 1, a2 = 2, a3 = 4, . . . , ak = 2k−1

and b1 = 0, b2 = 1, b3 = 3, . . . , bk = ak − 1.

(1) We begin by finding the list of primes up to ⌊√n⌋ and choosing a
subset to be the wheel primes W. Define W :=

∏

p∈W p. We put
as many small primes into W as possible, with the constraint that
W ≤ √

n. If y is the largest prime in W, we have

W =
∏

p∈W

p =
∏

p≤y

p = expϑ(y),

where ϑ(x) =
∑

p≤x log p (see [15]), and so y ∼ ϑ(y) = logW ∼
(1/2) log n. This implies

√
n/ log n ≪ W ≤ √

n.
(2) Next, we construct the wheel data structure so that it will generate

all suitable residues modulo W .
The data structure is initialized with a list of pairwise coprime

moduli, and for each such modulus m, a list of acceptable residues
modm, encoded as a bit vector of length m. The wheel modulus
W is then the product of these moduli. Once initialized, the wheel
has the ability to enumerate suitable residues modulo W in amor-
tized constant time per residue. The residues do not appear in any
particular order.

Therefore, for each prime p ∈ W we compute a bit vector (ones[])
that encodes the list of acceptable residues. For any integral x, we
want fi(x) = aix+bi to not be divisible by p. So if p divides aix+bi,
or equivalently if x ≡ −bi · a−1

i mod p, then x’s bit position must be
a zero.

vector<bool> ones(p,1); // length p, all 1s to start

for(i=0; i<k; i++)

ones[ (-bi · a−1
i mod p) ]=0;

Continuing the example above, for Cunningham chains of the first
kind, p = 3 gives the vector 001, and p = 7 gives the vector 0010111.

We then construct the wheel data structure as described in [28,
§4].

(3) For each residue r mod W generated by the wheel, we sieve k arith-
metic progressions for primes up to n, fi(r) = air + bi mod W , or
(air + bi) + j · aiW for j = 0, . . . , ⌊n/(aiW )⌋.

We do this using the Atkin-Bernstein sieve. (See [2, §5] for how to
use the sieve to find primes in an arithmetic progression.) This yields
k bit vectors of length ≤ n/W which are combined using a bitwise
AND operation to obtain the bit positions for where the pattern is
satisfied by primes.

2.3. Complexity Analysis. We’ll look at the cost for each step of the
algorithm.

(1) We can use the Atkin-Bernstein sieve to find the primes up to
√
n

in O(
√
n/ log log n) arithmetic operations using n1/4 space.
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(2) Recall that the largest wheel prime is roughly (1/2) log n. Con-
structing the bit vector ones[] for one prime takes O(log n) time to
initially write all ones, and then O(k) time to mark the zeros. Sum-
ming over all wheel primes gives O((log n)2/ log log n) operations.

From [28, Theorem 4.1] the total cost to build the wheel isO((log n)3)
operations and it occupies O((log n)3/ log log n) space.

(3) The Atkin-Bernstein sieve finds all primes in an arithmetic progres-
sion in an interval of size

√
n or larger in time linear in the length of

the interval using space proportional to
√
n [2, §5]. Therefore, siev-

ing for primes takes O(n/W ) operations for each of the k residue
classes fi(r) mod W , for a total of O(kn/W ). The cost to generate
each value of r using the wheel is negligible in comparison. The
space used is O(k

√
n) bits.

Next we show that the total number of residues is asymptotic to
W/(log log n)k. For a pattern of size k, all but finitely many primes
p will have p − k possible residues. So the total number of residues
r mod W will be asymptotic to

∏

p∈W

(p− k) = W
∏

p∈W

p− k

p

= W
∏

p∈W

(

1− k

p

)

.

By Bernoulli’s inequality we have 1− k/p ≤ (1− 1/p)k, so that

W
∏

p∈W

(

1− k

p

)

≤ W
∏

p∈W

(

1− 1

p

)k

.

As shown above, if y is the largest prime in W, we have y ∼
(1/2) log n. Asymptotically, y ≥ (1/10) log n is a very safe under-
estimate. Applying Mertens’s theorem we obtain

W
∏

p∈W

(

1− 1

p

)k

≪ W
∏

p≤(1/10) logn

(

1− 1

p

)k

∼ W

(

e−γ

log log n

)k

.

Multiplying the sieving cost by the number of residues gives O(nk/(log log n)k)
operations.

We have proved Theorem 1.

3. Practice

The primary difficulty in reaching large values of n with our first algorithm
is the amount of space it requires. One way to address this is to create a
larger wheel, sieve more but shorter arithmetic progressions for primes, and
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rely less on sieving and more on primality tests (in the style of [28]) when
searching for k-tuples.

We use the sieve of Eratosthenes instead of the Atkin-Bernstein sieve for
the arithmetic progressions, and this is the source of the log log n factor
slowdown. The gain here is less space needed by a factor of k, and the
effective trial division performs a quantifiable filtering out of non-primes.

Instead of sieving by all primes up to
√
n, we sieve only by primes up to a

bound B := expO(log n/ log log n). In practice, we choose B so everything
fits in CPU cache. We then use a base-2 pseudoprime test, followed by a
prime test. For smaller k, we use the pseudosquares prime test of Lukes,
Patterson, and Williams [20], which is fast and deterministic, assuming a
sufficient table of pseudosquares is available, and importantly it takes ad-
vantage of the trial division effect of the sieve of Eratosthenes. For larger k,
we can simply use the AKS prime test [1].

This change means we can get by with only O(B) space. Choosing B
larger or smaller through its implied constant makes a tradeoff between the
cost of sieving and the cost of performing base-2 pseudoprime tests.

3.1. Our Second Algorithm.

(1) Choose B := expO(log n/ log log n) (this can be 2⌊c logn/ log logn⌋ for
a small positive constant c). We begin by finding the list of primes
up to B and dividing them into the two sets W and S. Small primes
go into W and the remainder go in S. We want W :=

∏

p∈W p to be

as large as possible with the constraint that W ≤ n/B. This implies
that the largest prime in W will be roughly log n in size.

(2) If k ≤ 6, we will need to perform the pseudosquares prime test, so
in preparation, find all pseudosquares Lp ≤ n/B (see [20]).

(3) Next, as before, we construct the wheel data structure so that it will
generate all possible correct residues modulo W .

(4) For each residue r mod W generated by the wheel, we construct
a bit vector v[] of length n/W . Each vector position v[j], for
j = 0, . . . , ⌊W/n⌋, represents the x = x(j) value x(j) = r+ j ·W for
the k-tuple (f1(x(j)), f2(x(j)), . . . , fk(x(j))). We initialize v[j]=1,
but clear it to 0 if we find a prime p ∈ S where p | fi(x(j)) for some
i.

for( p∈ S)
winv=W−1 mod p;

for(i=0; i<k; i++)

j=winv*(−bia
−1
i -r) mod p;

while(j<n/W)

v[j]=0;

j=j+p;



8 JONATHAN P. SORENSON AND JONATHAN WEBSTER

Once this sieving is complete, the only integers j with v[j]= 1
that remain, satisfy the property that all the fi(x(j)) have no prime
divisors less than B.

(5) For each such x(j) remaining (that is, v[j]= 1), we first do a base-2
strong pseudoprime test on f1(x(j)). If it fails, we cross it off (set
v[j]= 0). If it passes, we try f2(x) and so forth, keeping v[j]= 1
only if all k values fi(x(j)) pass the pseudoprime test. We then
perform a full prime test on the fi(x(j)) for all i. If k ≤ 6, we use
the Lukes, Patterson, and Williams pseudosquares prime test [20]
as done in [28]. For larger k, we use the AKS prime test [1]. (This
is for the purposes of the theorem; in practice, the pseudosquares
prime test is faster, so we use that instead.) If all the fi(x(j)) pass
the prime tests, the corresponding k-tuple is written for output.

In practice, this version of the algorithm works best for k ≥ 4. For very small
k, the prime tests become the runtime bottleneck, and so we recommend
using B =

√
n so that the base-2 pseudoprime tests and the pseudosquares

prime test are not needed, as the sieving will leave only primes.

3.2. Complexity Analysis. Finding the primes up to B takes at most
O(B) time using O(

√
B) space, well within our bounds. See [28] for a

sublinear time algorithm to find all needed pseudosquares. In practice, all
pseudosquares up to 1025 are known [29]. The cost in time and space to
build the wheel is, up to a constant factor, the same. So we now focus on
steps (4) and (5).

As shown above, the number of residues to check modW is

∏

p∈W

(p− k) = W
∏

p∈W

p− k

p
≪ W

(

e−γ

log log n

)k

.

The time to sieve each interval of length n/W using primes up to B is at
most proportional to

∑

p≤B

kn

pW
≪ kn log logB

W
∼ kn log log n

W
.

Here the multiplier k is required because we cross off k residues modulo all
but finitely many primes p ≤ B.

By Mertens’s theorem, at this point an average of at most

n

W

∑

p≤B

(

1− 1

p

)

≪ n

W logB
≪ n log log n

W log n

vector locations remain to be prime tested. (Note that we cannot make any
assumptions about the relative independence of the primality of the fi(x)
values for different i, and so we cannot use a (1 − k/p) factor here.) A
single base-2 strong pseudoprime test takes at most O(log n) operations to
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perform, for a total cost proportional to

kn log log n

W log n
log n ∼ kn log log n

W

arithmetic operations to do the base-2 strong pseudoprime tests for each
value of r mod W . This matches the sieving cost of O(kn log log n/W ) from
above. (Note that if we deliberately choose a larger value forB, the increased
sieving will decrease the number of pseudoprime tests needed. This tradeoff
can be used to fine-tune the running time of the algorithm.)

Thus, the total cost for sieving and base-2 pseudoprime tests is

O

(

kn

(log log n)k−1

)

,

which we obtain by multiplying by the number of residuesO(W/(log log n)k).
Next we need to count integers that pass the base-2 strong pseudoprime

test. Such integers are either prime, or composite base-2 pseudoprimes. We
switch to counting across all residues r mod W to obtain an overall bound.

Lemma 1 tells us that at most O(n/(log n)k) integers are prime that
fit the pattern, so this is an upper bound on primes that pass the base-2
pseudoprime test.

Pomerance [23] showed that the number of composite base-2 pseudoprimes
is bounded by

ne
−
√

log n log log log n

log log n ≪ n

(log n)k+1

which is negligible. This plus the bound for primes above gives us the
O(n/(log n)k) bound we desire for all integers that pass the base-2 pseudo-
prime test.

Next, to bound the cost of prime tests, we have two cases: k > 6, or
2 < k < 6.

For k > 6, we use the AKS prime test [1, 18] which takes timeO((log n)6+o(1)).
The cost of applying the AKS prime test to all the integers fi(x) after they
all pass a base-2 pseudoprime test is at most proportional to

k · (log n)6+o(1) · n

(log n)k
≪ kn

(log n)k−6+o(1)

which is o(kn/(log log n)k) for k > 6.
Note that when k is large, in practice we might only do the base-2 pseu-

doprime tests, and then run full prime tests on the output afterwards, since
the amount of output will be rather small.

For 2 < k ≤ 6, Conjecture 1 implies that the pseudosquares prime test
takes O((log n)2) arithmetic operations to test integers ≤ n for primality,
given a table of pseudosquares ≤ n. If n has no prime divisors below B,
then pseudosquares up to n/B suffice. See [20, 28].

So, under the assumption of Conjecture 1, the cost of applying the pseu-
dosquares prime test to all the integers fi(x) after they all pass a base-2
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pseudoprime test is at most proportional to

k · (log n)2 · n

(log n)k
≪ kn

(log n)k−2

and this is o(kn/(log log n)k) for k > 2.
The space used is dominated by the length of the sieve intervals and the

space needed to store the primes in S, which is O(B) bits.
This completes the proof of Theorems 2 and 3.

4. Computations

As mentioned previously, we implemented several versions of our second
algorithm to see what we could compute. We looked for new computational
records that were within reach of our university’s nice but aging hardware.
Below we discuss some of the results of those computations. Some of the
implementation details are specific to a particular computation. Here are a
few remarks about implementation details that these computations had in
common.

• We wrote our programs in C++ using the Gnu compiler under linux.
GMP was used for multiprecision arithmetic when necessary. Note
that it is fairly easy to write the code such that GMP was needed
only on occasion and for prime tests.

• We used MPI and ran our code on Butler University’s cluster Big
Dawg. This machine has 16 compute nodes with 12 cores (2 CPUS)
each at optimal capacity; our average utilization was around 150 of
the 192 cores due to compute nodes going down from time to time.
The CPU is the Intel Xeon CPU E5-2630 0 @ 2.30GHz with 15 MB
cache, with 6 cores per CPU.

To parallelize the algorithm, we striped on the residues r mod W ;
all processes stepped through all the r mod W residues, but only
sieved for primes for their chosen residues. This meant there was very
little communication overhead except for when periodic checkpoints
were done, about every 15-30 minutes.

• We usually chose our wheel size (W ) and sieve intervals so that the
size of each interval (n/W ≈ B) was at most a few megabytes so
that it would fit in the CPU cache. We used a vector<bool>, which
packs bits.

• For larger values of k, we observed that when sieving by smaller
primes p by each of the k residues, we might find that almost all the
bits of the current interval were cleared long before we reached the
sieving limit B, so we created a simple early-abort strategy that was
able to save time.

The very few remaining bits were tested with the base-2 strong
pseudoprime test even though we had not sieved all the way to B.
We also, then, replaced the use of the pseudosquares prime test with
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the Miller-Rabin test [21, 24] with the results from [27], due to the
spotty trial-division information.

4.1. Twin Primes and Brun’s Constant. Let π2(X) count the twin
prime pairs (p, p + 2) with p < X and S2(X) be the sum of the reciprocals
of their elements. Thomas Nicely computed these functions up to 2 · 1016
(See http://www.trnicely.net/#PI2X). We verified his computations and
extended the results to X = 1017. A portion of our computational results
are in the table below.

X π2(x) S2(X)

1 · 1016 10304195697298 1.83048442465833932906
2 · 1016 19831847025792 1.83180806343237985727
3 · 1016 29096690339843 1.83255992186282759050
4 · 1016 38196843833352 1.83308370147757159450
5 · 1016 47177404870103 1.83348457901336613822
6 · 1016 56064358236032 1.83380868220200440399
7 · 1016 64874581322443 1.83408033035537994465
8 · 1016 73619911145552 1.83431390342560497644
9 · 1016 82309090712061 1.83451860315233433306
10 · 1016 90948839353159 1.83470066944140434160

The last section of Klyve’s PhD Thesis [17] describes how to use this infor-
mation to derive bounds for Brun’s constant.

We have a few remarks on our algorithm implementation:

• As mentioned above, for small k like k = 2, it is more efficient to set
B =

√
n so that sieving also determines primality, thereby avoiding

base-2 strong pseudoprime tests and primality tests.
• We computed S2 using Kahan summation [16] with the long double

data type in C++, which gave us 17 digits of accuracy; Thomas
Nicely has data with 53 digits of accuracy. The partial sums were
accumulated in 10,000 buckets for each process, and then the buckets
were in turn added up across processes using Kahan summation.

• Our computation took roughly 3 weeks of wall time, which included
at least one restart from a checkpoint. Our verification of Nicely’s
work to 1016 took 42 hours.

• We used a wheel with W = 6469693230. Note that this is roughly

20 ·
√
1017. There were 214708725 residues r mod W to sieve.

See OEIS.org sequence A007508.

4.2. Quadruple Primes. A related sum involves the reciprocals of the el-
ements of the prime tuple (p, p + 2, p + 6, p + 8). Let π4(X) count these
tuplets up to X, and let S4(X) be the sum of the reciprocals of their ele-
ments. Thomas Nicely computed these functions up to 2·1016. We extended
this computation and partial results are in the table below. The first two
lines are Thomas Nicely’s own results, which we verified.
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X π4(x) S4(X)

1 · 1016 25379433651 0.87047769123404594005
2 · 1016 46998268431 0.87048371094805250092
3 · 1016 67439513530 0.87048703104321483993
4 · 1016 87160212807 0.87048930200258802756
5 · 1016 106365371168 0.87049101694672496876
6 · 1016 125172360474 0.87049238890880442047
7 · 1016 143655957845 0.87049352884516002359
8 · 1016 161868188061 0.87049450175556017194
9 · 1016 179847459283 0.87049534891720052192

10 · 1016 197622677481 0.87049609811047504740

This computation took about 4 days, and we used a separate program rather
than looking for pairs of twin primes in the first program. Even though k = 4
is large enough to use prime tests, we found that sieving to

√
n was faster

in practice.
We used a wheel with W = 200560490130 which gave 472665375 residues.
See OEIS.org sequence A050258.

4.3. Cunningham Chains. We have two computational results for Cun-
ningham chains.

(1) We found the smallest chain of length 15 of the first kind, and it
begins with the prime

p = 90616 21195 84658 42219.

The next few chains of this length of the first kind are
1 13220 80067 50697 84839
1 13710 75635 40868 11919
1 23068 71734 48294 53339
1 40044 19781 72085 69169

This computation took roughly a month of wall time. Here we used
wheel size W = 19835154277048110, with 12841500672 residues to
sieve.

See OEIS.org sequence A005602.
(2) In 2008 Jaroslaw Wroblewski found a Cunningham chain of length

17 of the first kind, starting with

p = 27 59832 93417 13865 93519,

and we were able to show that this is in fact the smallest such chain
of that length.

This computation took roughly three months of wall time. We
used W = 1051263176683549830 with 35864945424 residues to sieve.
With roughly three times as many residues as the previous compu-
tation, it took roughly three times as long to complete.
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5. Discussion and Future Work

In summary, we have described and analyzed two algorithms for finding
primes in patterns, and then shown that the second of these algorithms is
quite practical by performing a few computations.

We have some ideas for future work.

• In the Introduction, we mentioned that our algorithms could be used
to find Charmichael numbers by finding prime triplets that satisfy
the pattern (6x+1, 12x+1, 18x+1), but we have not yet done that
computation [6].

• Does it make sense to use Bernstein’s doubly-focused enumeration
to attempt to further reduce the running time? See [5, 29, 30]

• A natural extension to our algorithms here is to allow the linear
polynomials fi to potentially be higher degree, irreducible polyno-
mials. See Schinzel’s Hypothesis H (See [26] and [7, §1.2.2]) and the
Bateman-Horn conjecture [4].
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