Every square can be tiled with T-tetrominos and no more than 5 monominos

Jack Grahl

July 25, 2018

Abstract

If n is a multiple of 4 , then a square of side n can be tiled with T-tetrominos, using a well-known construction. If n is even but not a multiple of four, then there exists an equally well-known construction for tiling a square of side n with T-tetrominos and exactly 4 monominos. On the other hand, it was shown by Walkup in [3] that it is not possible to tile the square using only T-tetrominos. Now consider the remaining cases, where n is odd. It was shown by Zhan in [4] that it is not possible to tile such a square using only one monomino. Hochberg showed in [2] that no more than 9 monominos are ever needed. We give a construction for all odd n which uses exactly 5 monominos, thereby resolving this question.

1 Introduction

The sequence [1] gives the maximal number of T-tetrominos which can be used to tile the $n \times n$ square with t-tetrominos and monominos. Theorem [2.1] shows that this sequence is trivially given by $\frac{n^{2}}{4}, \frac{\left(n^{2}-1\right)}{4}-1, \frac{n^{2}}{4}-1, \frac{\left(n^{2}-1\right)}{4}-1$, depending on the value of n modulo 4 .

2 Tiling every square

Theorem 2.1. Every square can be tiled with T-tetrominos and at most 5 monominos.

This theorem follows immediately from propositions 2.2, 2.3 and 2.4
Proposition 2.2. Every square of side $n=4 m$ can be tiled with T-tetrominos.
Proposition 2.3. Every square of side $n=4 m+2$ can be tiled with T tetrominos and 4 monominos, and 4 monominos are always needed.

For $n=2$ this is the same as pointing out that a single T-tetromino will not fit in the $2 x 2$ square.

Figure 1: Extending the 4×4 tiling to 6×6, adding 4 monominos and 4 Ttetrominos.

Figure 2: A_{5}, the 5×5 square with four lattice squares removed, A_{7} and A_{9}.

For $n=4 m+2$, where m is a positive integer, we can extend the tiling of the $4 m$-square without monominos to a tiling of the $4 m+2$-square, adding only 4 monominos. The tiling of the the L-shaped strip which extends the 4×4 square to a 6×6 square is given in figure 1. We can increase the length of the arms of the strip, by replacing the two T-tetrominos with a longer sequence taken from the 'frieze', or tiling of a strip of width 2 .

Proposition 2.4. Every square of side $n=2 m+1$ can be tiled with T tetrominos and 5 monominos, and 5 monominos are always needed (except for $n=1$).

Zhan's (4) Theorem 2 states that it is not possible to tile any rectangle with T-tetrominos and only one monomino. It must therefore be the case that at least 5 are needed. We show that exactly 5 are sufficient.

Definition 2.5. Call A_{n} the set of lattice squares given by the square of side n, with the lattice squares at $(0,0),(0,1),(1,0)$ and $(0, n-1)$ removed. This shape has area $n^{2}-4=4\left(m^{2}+m-1\right)+1$.
Lemma 2.6. For all $m \in \mathbb{N}, A_{2 m+1}$ can be tiled with $m^{2}+m-1 T$-tetrominos and one monomino.

Figure 3: Tiling of A_{5} with a single monomino.

Figure 4: A tiling of $A_{4 k+1}$ can be extended to a tiling of a reflected copy of $A_{4 k+3}$.

Proof. The proof is by induction on n. In figure 3 we show how A_{5} can be tiled by 5 tetrominos and a single monomino. (It is trivial to tile A_{3} with a single tetromino and a single monomino, but it is slightly clearer to start the induction with $n=5$.) If A_{n} can be tiled with one monomino, then so can A_{n+1}. There are two constructions for the cases $n=4 k+1$ and $n=4 k+3$.

References

[1] Jack Grahl. Sequence A256535 of the Online Encyclopedia of Integer Sequences. http://oeis.org/A256535, 2015.
[2] Robert Hochberg. The gap number of the T-tetromino. 2014.
[3] D. W. Walkup. Covering a rectangle with T-tetrominos. The American Mathematical Monthly, 72(9), November 1965.
[4] Shuxin Zhan. Tiling a deficient rectangle with T-tetrominos. 2012.

Figure 5: A tiling of $A_{4 k+3}$ can be extended to a tiling of a reflected copy of $A_{4(k+1)+1}$.

