On L-shaped point set embeddings of trees: first non-embeddable examples*

Torsten Mütze ${ }^{\dagger} \quad$ Manfred Scheucher ${ }^{\dagger}$

Abstract

An L-shaped embedding of a tree in a point set is a planar drawing of the tree where the vertices are mapped to distinct points and every edge is drawn as a sequence of two axisaligned line segments. There has been considerable work on establishing upper bounds on the minimum cardinality such that any point set of that size admits an L-shaped embedding of any n-vertex tree with maximum degree 4 . However, no non-trivial lower bound is known to this date, i.e., no known n-vertex tree requires more than n points to be embedded.

In this paper, we present the first examples of n-vertex trees for $n \in\{13,14,16,17,18$, $19,20\}$ that require strictly more points than vertices to admit an L-shaped embedding. Moreover, using computer help, we show that every tree on $n \leq 12$ vertices admits an L-shaped embedding in every set of n points.

We also consider embedding ordered trees, where the cyclic order of the neighbors of each vertex in the embedding is prescribed. For this setting, we determine the smallest non-embeddable ordered tree on $n=10$ vertices, and we show that every ordered tree on $n \leq 9$ or $n=11$ vertices admits an L-shaped embedding in every set of n points. We also construct an infinite family of ordered trees which do not always admit an L-shaped embedding, answering a question raised by Biedl, Chan, Derka, Jain, and Lubiw.

1 Introduction

An L-shaped embedding of a tree in a point set is a planar drawing of the tree where the vertices are mapped to distinct points of the set and every edge is drawn as a sequence of two axis-aligned line segments; see Figure 1. Here and throughout this paper, all point sets are such that no two points have the same x - or y-coordinate. The investigation of L-shaped embeddings was initiated in [KS11, $\mathrm{FHM}^{+} 12, \mathrm{DGFF}^{+} 13$. In particular, di Giacomo et al. $\mathrm{DGFF}^{+} 13$ showed that $O\left(n^{2}\right)$ points are always sufficient to embed any n-vertex tree. Note that an L-shaped embedding requires that the maximum degree of the tree is at most 4 . Moreover, if the maximum degree is 2 , then the tree is a path and can be embedded greedily on any point set of the same size. Formally, let $f_{d}(n)$ denote the minimum number N of points such that every n-vertex tree with maximum degree $d \in\{3,4\}$ admits an L-shaped embedding in every point set of size N.

The second author's master's thesis Sch15] proposed a method to recursively construct an Lshaped embedding of any n-vertex tree in any point set of size $O\left(n^{1.58}\right)$ (see also AHS16). Biedl et al. $\mathrm{BCD}^{+} 18$ gave a more precise analysis of this method, proving that $f_{3}(n)=O\left(n^{1.22}\right)$ and $f_{4}(n)=O\left(n^{1.55}\right)$ points are enough. To this date, no lower bound besides the trivial

[^0]

Figure 1: An L-shaped embedding of a tree in a point set.
bound $f_{d}(n) \geq n$ is known, i.e., no known n-vertex tree requires more than n points to be embedded. Di Giacomo, Frati, Fulek, Grilli, and Krug DGFF $\left.{ }^{+} 13\right]$ specifically asked for a tree and point set that would prove $f_{4}(n)>n$. The same question was reiterated by Fink, Haunert, Mchedlidze, Spoerhase, and Wolff $\mathrm{FHM}^{+} 12$, and by Biedl, Chan, Derka, Jain, and Lubiw $\mathrm{BCD}^{+} 18$. Kano and Suzuki KS11 even conjectured that $f_{3}(n)=n$.

However, Biedl et al. $\mathrm{BCD}^{+} 18$ also considered a more restricted setting of embedding ordered trees, where the cyclic order of the neighbors of each vertex in the embedding is prescribed. They presented a single 14 -vertex ordered tree which does not admit an L-shaped embedding in a particular point set of size 14^{17}, and they raised the problem to find an infinite family of such non-embeddable ordered trees.

1.1 Our results

We begin presenting our results for the setting where there are no constraints on the cyclic order in which the neighbors appear around each vertex of the tree. With brute-force computer search, we verified that all trees on $n \leq 12$ vertices can be embedded in every point set of size n.

Theorem 1 (Computer-based). Every tree on $n \leq 12$ vertices admits an L-shaped embedding in every set of n points.

We also formulated a SAT instance to test a given pair of tree and point set for embeddability. This way, we found a 13-vertex tree that does not admit an embedding in a particular point set.

Theorem 2. The tree T_{13} in Figure 2 does not admit an L-shaped embedding in the point set S_{13} shown in the figure.

Even though the 13 -vertex tree T_{13} was found using the help of a SAT solver, a humanverifiable proof of Theorem 2 is not hard to obtain.

Besides the pair $\left(T_{13}, S_{13}\right)$, we also found pairs of trees and point sets that do not admit an embedding for larger values of n. Overall, we found pairs of n-vertex trees and point sets of size n for $n \in\{13,14,16,17,18,19,20\}$. For $n=15$, however, our computer search did not yield any non-embeddable example (the search was not exhaustive). We remark that all known non-embeddable trees contain T_{13} as a subtree.

We now focus on the more restricted setting of ordered trees introduced in $\left[\mathrm{BCD}^{+} 18\right]$, where the cyclic order of the neighbors of each vertex in the embedding is prescribed.

Theorem 3 (Computer-based). Every ordered tree on $n \leq 9$ vertices or on $n=11$ vertices admits an L-shaped embedding in every set of n points.

[^1]

Figure 2: The tree T_{13} (left) does not admit an L-shaped embedding in the (2, 2, 2, 1, 2, 2, 2)-staircase point set S_{13} (right). The boxes B_{-3}, \ldots, B_{3} are highlighted by dashed frames.

Figure 3: The ordered tree T_{10} (left) does not admit an L-shaped embedding in the point set S_{10} (right).

We also found a 10 -vertex tree that does not admit an embedding in a particular point set. This is a smaller non-embeddable instance than the one for $n=14$ previously presented in BCD^{+18}.

Theorem 4. The ordered tree T_{10} in Figure 3 does not admit an L-shaped embedding in the point set S_{10} shown in the figure.

Remarkably, the pair $\left(T_{10}, S_{10}\right)$ is the only one on $n=10$ vertices/points not admitting an L-shaped embedding.

Moreover, we construct an infinite family of ordered trees that do not admit an L-shaped embedding on certain point sets, answering a question raised by Biedl, Chan, Derka, Jain, and Lubiw in BCD^{+18}. As it turns out, the point sets that appear to be difficult for embedding have a regular staircase shape as shown in Figure 4 (see also Figure 2).

Definition 5 (Staircase point set). For a partition $n=a_{1}+\cdots+a_{k}$ with $k, a_{1}, \ldots, a_{k} \in \mathbb{N}$, the $\left(a_{1}, \ldots, a_{k}\right)$-staircase is the point set consisting of a sequence of k boxes, ordered from top-left to bottom-right, and the ith box contains a sequence of a_{i} points with increasing x - and y-coordinate.

Theorem 6. For any even $r \geq 10$, the ordered tree T_{r}^{*} on $n=9 r+8$ vertices in Figure 4 does not admit an L-shaped embedding in the n-point $(2, \ldots, 2)$-staircase.

We conjecture that T_{r}^{*} does not admit an embedding in the same point set, even when considered as an unordered tree, i.e., in the original unrestricted setting.

Figure 4: The family of ordered trees T_{r}^{*} (left) does not admit an L-shaped embedding in the n-point $(2, \ldots, 2)$-staircase (right), where $n=9 r+8$. The boxes of the point set are highlighted.

1.2 Related work

Besides the problem of finding L-shaped embeddings of arbitrary trees in arbitrary point sets, various special classes of trees and point sets have also been studied. For instance, perfect binary and perfect ternary n-vertex trees can be embedded in any point set of size $O\left(n^{1.142}\right)$ or $O\left(n^{1.465}\right)$, respectively $\mathrm{BCD}^{+} 18$. Moreover, trees with pathwidth k can be embedded in any set of $2^{k} n$ points Sch15, Chapter 3.3.2] (see also AHS16) ${ }^{2}$ Specifically, any n-vertex caterpillar with maximum degree 3 can be embedded in any point set of size n [DGF ${ }^{+} 13$. A caterpillar is a tree with the property that all leaves are in distance 1 of a central path. For maximum degree 4 caterpillars, the currently best known upper bound is $4 n / 3+O(1)$ many points [Sch15, Chapter 5.2.1]. Biedl et al. $\mathrm{BCD}^{+} 18$ showed that any ordered caterpillar can be embedded in any point set of size $O(n \log n)$.

When point sets are chosen uniformly at random, i.e., the y-coordinates are a random permutation, it is known that $O\left(n \log n(\log \log n)^{2}\right)$ and $O\left(n^{1.332}\right)$ points are sufficient to embed any tree with maximum degree 3 or 4 , respectively, with probability at least $1 / 2$ Sch15, Chapter 4] (see also AHS16]).

Another known setting are non-planar L-shaped point set embeddings, where L-shaped edges are allowed to cross properly, but edge-segments must not overlap. For this setting, it is known that n points are sufficient to embed any n-vertex tree with maximum degree 3 FHM ${ }^{+} 12$, DGFF $^{+} 13$, or any n-vertex caterpillar with maximum degree 4 [Sch15, Theorem 21]. For n vertex trees with maximum degree 4 the currently best upper bound on the required number of points is $7 n / 3+O(1)$ Sch15, Theorem 7].

1.3 Outline of this paper

In Sections 2 and 3 we present the proofs of Theorems 2 and 4 respectively. Section 4 is devoted to proving Theorem 6. We describe our computational approach to proving Theorems 1 and 3 by exhaustive search in Section 5 . More non-embeddable small trees are presented in Section 6 , together with our SAT model which is used to verify non-embeddability. We conclude in Section 7 with some challenging open problems.

[^2]
2 Proof of Theorem 2

Consider the (unordered) tree T_{13} and the ($2,2,2,1,2,2,2$)-staircase point set S_{13} depicted in Figure 2. We label the degree 3 vertex of T_{13} by Y and the three degree 4 vertices of T_{13} as X_{1}, X_{2}, X_{3}, respectively. Moreover, we label the boxes in the staircase point set S_{13} from left to right by $B_{-3}, B_{-2}, \ldots, B_{3}$. Note the symmetry of T_{13}, as the vertex Y joins three isomorphic subtrees. Moreover, S_{13} has reflection symmetries along both diagonals of the grid.

For the sake of contradiction, we assume that an L-shaped embedding of T_{13} in S_{13} exists. We first derive three lemmas that capture to which boxes the vertices X_{1}, X_{2}, X_{3}, Y can be mapped in such an embedding, and we then complete the proof by distinguishing two main cases.
Lemma 7. Neither of the four vertices X_{1}, X_{2}, X_{3}, Y is mapped to B_{-3} or to B_{3}.
Proof. All points in B_{-3} and B_{3} lie on the bounding box of the point set, so if one of the X_{i} is mapped to such a point, then one of the four edges incident with X_{i} would leave the bounding box, which is impossible. Moreover, Y cannot be mapped to one of these two boxes, as otherwise one of the X_{i}, which are the only neighbors of Y in T_{13}, would be mapped to the other point of that same box.

Lemma 8. Each of the degree-4 vertices X_{i} is mapped to a distinct box.
Proof. Assume that X_{i} and X_{j} are mapped to the same box. By symmetry, we may assume that X_{j} is right above X_{i}, and that Y is right below of X_{i} and X_{j}; see Figure 5(a) Note that the edge $Y X_{i}$ enters X_{i} from below and the edge $Y X_{j}$ enters X_{j} from the right. As X_{i} and X_{j} both have degree 4 , and their box only contains two points, the edge leaving X_{i} to the right and the edge leaving X_{j} to the bottom must cross, a contradiction.

(a)

(b)

Figure 5: Illustration of the proofs of (a) Lemma 8 and (b) Lemma 9 . Crossing edges are highlighted.

Lemma 9. Not all three points X_{1}, X_{2}, X_{3} lie on the same side (above, below, left, or right) of Y.

Proof. It suffices to prove one of the statements, then the others follow by symmetry. Suppose for the sake of contradiction that X_{1}, X_{2}, X_{3} all lie above Y. As one edge leaving Y has to go right, one of the X_{i}, say X_{3}, is mapped to the same box, and Y is left below of X_{3} in that box; see Figure 5(b). Moreover, $Y X_{3}$ is an --edge. As X_{3} has degree 4, and each box contains at most two points, the edge leaving Y on the top towards X_{1} or X_{2} crosses the edge that leaves X_{3} to the left, a contradiction.

By Lemma 7 and Lemma 9, Y is mapped to one of the boxes B_{-1}, B_{0}, or B_{1}. By Lemma 8 we may assume that X_{1}, X_{2}, X_{3} appear in distinct boxes in exactly this order from left to right and also from top to bottom, and none of them is in B_{-3} or B_{3}. Moreover, from Lemma 9 we conclude that X_{1} and X_{3} are in other boxes than Y, so at most Y and X_{2} are in the same box. We now distinguish two cases.

Case 1: Y and X_{2} are mapped to the same box. By symmetry, we may assume that they are mapped to B_{1} and that X_{2} lies right above Y. Then the vertex X_{3} must be mapped to the box B_{2}; see Figure 6(a). If $Y X_{3}$ would be a 7 -edge, then it would cross the edge leaving X_{2} at the bottom. It follows that $Y X_{3}$ is a L-edge. Note that the edge that leaves X_{2} to the right can only connect to a leaf L that is mapped to $B_{2} \cup B_{3}$, and L must be mapped to the right of X_{3}, as otherwise the edges $X_{2} L$ and $Y X_{3}$ would cross. The edges leaving X_{3} at the bottom and right can only connect to points from $B_{2} \cup B_{3}$, so together with X_{3} and L we already have four vertices that are mapped to $B_{2} \cup B_{3}$. Consequently, the edge leaving X_{3} at the top must connect to a point outside of $B_{1} \cup B_{2} \cup B_{3}$, and therefore this edge crosses the edge $X_{2} L$, a contradiction.

Figure 6: Illustration of the proof of Theorem 2

Case 2: $\quad Y$ and X_{2} are mapped to distinct boxes, so all four points X_{1}, X_{2}, X_{3}, Y are in different boxes. By symmetry, we assume that X_{1} and X_{2} both lie above and left of Y, and X_{3} lies below and right of Y. Moreover, we assume that $Y X_{1}$ us a L-edge and that $Y X_{2}$ is a ᄀ-edge; see Figure 6(b). Note that X_{2} cannot connect to any points right of Y, and X_{1} can only connect to such points by the edge leaving it to the right. As Y is either mapped to B_{0} or B_{1}, there are at most 7 points left above of Y. Therefore, as X_{1} and X_{2} together with their leaves form a set of 8 points, Y must be mapped to B_{1}, and exactly one leaf L of X_{1} is mapped to a point right of Y, connected to X_{1} via a 7 -edge. Note that X_{2} cannot be mapped to B_{0}, as then the edge leaving X_{2} at the bottom could not connect to any point without either crossing $Y X_{1}$ or $Y X_{2}$. Consequently, X_{2} is mapped to B_{-1}. However, as B_{-1} and B_{0} together contain only 3 points, and X_{2} together with its leaves form a set of 4 vertices, at least one of the two edges that leave X_{2} to the left or top must connect to a point above or left of X_{1}, and this edge will cross either the edge $Y X_{1}$ or $X_{1} L$, again a contradiction.

In both cases we obtain a contradiction to the assumption that T_{13} admits an L-shaped embedding in the point set S_{13}. This completes the proof of Theorem 2,

3 Proof of Theorem 4

Consider the ordered tree T_{10} and the point set S_{10} depicted in Figure 3. We label the two degree 4 vertices of T_{10} by X_{1}, X_{2} and the two degree 2 vertices by I_{1}, I_{2}. Moreover, we label the leaves adjacent to X_{1} and X_{2} by $L_{1}, L_{1}^{\prime}, L_{2}, L_{2}^{\prime}$, and the leaves adjacent to I_{1} and I_{2} by $L_{1}^{\prime \prime}$ and $L_{2}^{\prime \prime}$, as shown in the figure. We label the points of the point set S_{10} from left to right by P_{1}, \ldots, P_{10}. Note the symmetry of T_{10}, and observe that S_{10} has reflection symmetries along both diagonals of the grid.

Figure 7: Illustration of the proof of Theorem 4

For the sake of contradiction, we assume that an order-preserving L-shaped embedding of T_{10} in S_{10} exists. Clearly, none of the degree 4 vertices X_{1}, X_{2} can be mapped to any of the four points $P_{1}, P_{2}, P_{9}, P_{10}$ which lie on the bounding box of the point set S_{10}. We also claim that X_{1}, X_{2} cannot be mapped to P_{3} or P_{8}. By symmetry, it suffices to exclude the case that X_{1} is mapped to P_{3}. In this case, we may assume by symmetry that X_{2} is connected to X_{1} from the right. Consequently, due to the cyclic order of the neighbors of X_{1}, I_{1} must be mapped to P_{1} and L_{1} must be mapped to P_{2}. Then $L_{1}^{\prime \prime}$ cannot be mapped to any point, a contradiction.

It follows that X_{1} and X_{2} are mapped to one of the points $P_{4}, P_{5}, P_{6}, P_{7}$. By symmetry, we may assume that X_{1} is mapped to P_{4}. We now distinguish six cases, illustrated in Figure 7

- Case 1a: X_{2} is mapped to P_{5} and $X_{1} X_{2}$ is a 7 -edge. In this case, the edge leaving X_{1} at the bottom and the edge leaving X_{2} to the left must cross, a contradiction.
- Case 1b: X_{2} is mapped to P_{5} and $X_{1} X_{2}$ is a L-edge. In this case, the edge leaving X_{1} to the right and the edge leaving X_{2} to the top must cross, a contradiction.
- Case 2a: X_{2} is mapped to P_{6} and $X_{1} X_{2}$ is a 」-edge. In this case, the edge leaving X_{1} to the top and the edge leaving X_{2} to the left must cross, a contradiction.
- Case 2b: X_{2} is mapped to P_{6} and $X_{1} X_{2}$ is a Γ-edge. Clearly, none of the four vertices L_{1}^{\prime}, L_{2}^{\prime}, I_{1}, and I_{2} can be mapped to P_{1}, P_{2}, or P_{3}. We claim that $L_{1}^{\prime \prime}$ and $L_{2}^{\prime \prime}$ cannot be mapped to any of these points either. Indeed, $X_{1} I_{1}$ is an L-edge, and I_{1} can only be mapped to one of P_{5}, P_{8}, P_{9}, or P_{10}. If $L_{1}^{\prime \prime}$ is mapped to one of P_{1}, P_{2}, or P_{3}, then I_{1} and $L_{1}^{\prime \prime}$ must be joined via an 7-edge and either the first of the two edges $X_{1} I_{1}$ and $I_{1} L_{1}^{\prime \prime}$ intersects the edge $X_{1} X_{2}$ or these two edges prevent one or both of the points P_{9}, P_{10} from being reachable from X_{2} via one or two L-shaped edges. Consequently, only two vertices, namely L_{1} and L_{2} can be mapped to the three points P_{1}, P_{2}, P_{3}, a contradiction.
- Case 3: X_{2} is mapped to P_{7}. The subcases where $X_{1} X_{2}$ is an Γ-edge or an \rfloor-edge are symmetric, so it suffices to consider the first one. In this case we can argue as in Case 2b that only L_{1} and L_{2} can be mapped to the three points P_{1}, P_{2}, P_{3}, a contradiction.
In each case we obtain a contradiction, so this completes the proof of Theorem 4 .

4 Proof of Theorem 6

We label the degree 4 vertices of the ordered tree T_{r}^{*} along the central path by X_{0}, \ldots, X_{r+1}, and for any vertex $X_{i}, 1 \leq i \leq r$, we label its two neighbors of degree 4 not on the central path by X_{i}^{\prime} and $X_{i}^{\prime \prime}$, as shown in Figure 8 . For our later arguments it will be convenient to orient the edges of T_{r}^{*} which are not on the central path. Edges incident to a leaf are oriented away from the leaf and edges $X_{i}^{\prime} X_{i}$ and $X_{i}^{\prime \prime} X_{i}$ are oriented towards X_{i}.

Figure 8: Labeling of vertices of the ordered tree T_{r}^{*} for the proof of Theorem 6

Lemma 10. Each of the degree-4 vertices X_{i}, X_{i}^{\prime}, and $X_{i}^{\prime \prime}$ is mapped to a distinct box of the n-point ($2, \ldots, 2$)-staircase.

Proof. Assume that two degree 4 vertices P, Q of T_{r}^{*} are mapped to the same box, such that Q is right above P. As P and Q have degree 4, there are edges in all four directions leaving both P and Q. The edges leaving P to the top and Q to the left, or the edges leaving P to the right and Q to the bottom will cross, unless one pair of them forms a single L-shaped edge, which may happen only if P and Q are neighbors in the tree. In any case, at least the remaining pair of edges must cross, a contradiction.

We refer to the sequence of 7 or L-edges connecting the central path vertices X_{0}, \ldots, X_{r+1} as the spine. By symmetry, we may assume w.l.o.g. that X_{0} is mapped to a box left of X_{1}. In the following we distinguish two main cases, depending on whether $X_{0} X_{1}$ is an 7 -edge or an L-edge.

4.1 Case 1: $X_{0} X_{1}$ is an 7-edge

Throughout this section, we assume that $X_{0} X_{1}$ is an 7-edge. Lemma 10 and the cyclic order of neighbors around each of the vertices $X_{i}, i=0, \ldots, r+1$, now enforce a particular shape of all tree edges that connect two degree- 4 vertices, as captured by the following lemma; see Figure 9 .

Lemma 11. The vertices X_{0}, \ldots, X_{r+1} appear exactly in this order from left to right, and any two consecutive such vertices are connected by an \urcorner-edge. Moreover, for $i=1, \ldots, r$,

- the vertices X_{i}^{\prime} and X_{i} are connected by an \llcorner-edge;
- the vertices $X_{i}^{\prime \prime}$ and X_{i} are connected by an \uparrow-edge;
- the three edges directed from the leaves towards the vertices $X_{i}^{\prime}, X_{i}^{\prime \prime}, X_{0}$, and X_{r+1} form $a \rightarrow{ }_{\rightarrow+}$, $\stackrel{*}{+}{ }^{*}$, and ${ }^{+}$, respectively.

By Lemma 10, each box containing one of the $X_{i}, 1 \leq i \leq r$, contains a second point to which a leaf is mapped. We denote this point by P_{i}. Combining Lemmas 10 and 11 yields the following lemma, which is illustrated in Figure 10.

Figure 9: Illustration of Lemma 11

Figure 10: Illustration of Lemma 12 The corresponding ι^{-}, 2^{-}, and \square-blockers are highlighted with bold lines.

Lemma 12. For every point P_{i} below the spine exactly one of the following four conditions holds:

- P_{i} is connected to X_{0} by an \downarrow-edge;
- P_{i} is connected to X_{r+1} by an \llcorner-edge;
- there is an index $j, 1 \leq j<i$, such that $P_{i}, X_{j}^{\prime \prime}, X_{j}$ are joined by two consecutive \uparrow-edges;
- there is an index $j, i<j \leq r$, such that $P_{i}, X_{j}^{\prime}, X_{j}$ are joined by two consecutive \rightarrow-edges.

For every point P_{i} above the spine exactly one of the following two conditions holds:

- there is an index $j, 1 \leq j \leq r$, such that P_{i}, X_{j}^{\prime} and X_{j}^{\prime}, X_{j} are joined by an 7 -edge and an $\left\llcorner_{-}\right.$-edge, respectively, wrapping around the top left end of the spine;
- there is an index $j, 1 \leq j \leq r$, such that $P_{i}, X_{j}^{\prime \prime}$ and $X_{j}^{\prime \prime}, X_{j}$ are joined by an \downarrow-edge and an \downarrow-edge, respectively, wrapping around the bottom right end of the spine.

Consider any pair of points P_{i}, X_{0} as in Lemma 12 connected by an \uparrow-edge. We refer to this edge together with the short diagonal line joining the points X_{i} and P_{i} in the same box (this line is not part of the tree embedding), as a $\left\llcorner\right.$-blocker starting at X_{i} and ending at X_{0}, see Figure 10 Similarly, given any triple of points $P_{i}, X_{j}^{\prime \prime}, X_{j}$ as in Lemma 12 joined by two consecutive \uparrow-edges, we refer to these two edges together with the line joining X_{i} and P_{i}, as a

Figure 11: Illustration of Lemma 13

Lemma 12 joined by a 7 -edge followed by L-edge wrapping around the top left end of the spine, we refer to these two edges together with the line joining X_{i} and P_{i}, as a \rightarrow-blocker starting at X_{i} and ending at X_{j}. The terms \rightarrow_{-}-blocker, -blocker and $\boldsymbol{D}^{\boldsymbol{D}}$-blocker are defined analogously. Observe that no other tree edge can cross a blocker.

For every index $i_{1}, 1 \leq i_{1} \leq r$, we define a finite sequence of blockers as follows: For $j=1,2, \ldots$ we consider the point $X_{i_{j}}$ and the blocker starting at $X_{i_{j}}$. The endpoint $X_{i_{j+1}}$ of this blocker defines the next index i_{j+1}. If $i_{j+1} \notin\left\{i_{1}, \ldots, i_{j}\right\} \cup\{0, r+1\}$, we repeat this process, otherwise we stop. This yields a finite sequence of indices $i_{1}, i_{2}, \ldots, i_{\ell}$, such that any two consecutive points $X_{i_{j}}$ and $X_{i_{j+1}}$ are joined by a blocker starting at $X_{i_{j}}$ and ending at $X_{i_{j+1}}$. Moreover, we either have $i_{\ell} \in\left\{i_{1}, \ldots, i_{\ell-1}\right\}$ if the blockers close cyclically, or $i_{\ell} \in\{0, r+1\}$ if the last blocker ends at X_{0} or X_{r+1} (the terminal index is included in the sequence). We refer to the sequence of blockers generated in this fashion as the blocker sequence starting at $X_{i_{1}}$.

The statement and proof of the following key lemma are illustrated in Figure 11.
Lemma 13. Let $1 \leq a<b \leq r$ be such that P_{a} and P_{b} are two consecutive points above the
 Then there are indices c, d with $k<c<d \leq \ell$ such that P_{c} and P_{d} are above the spine.
Symmetrically, if P_{a} and $P_{b}, 1 \leq a<b \leq r$, are two consecutive points above the spine both contained in $a \rightarrow$-blocker, then there are indices c, d with $k \leq c<d<\ell$ such that P_{c} and P_{d} are above the spine.

Observe that this lemma does not make any assertions about the relative positions of the points in $\left\{X_{a}, X_{b}\right\}$ and $\left\{X_{k}, X_{\ell}\right\}$. In particular, it does not make any assertions about the disjointness of the sets $\left\{P_{a}, P_{b}\right\}$ and $\left\{P_{c}, P_{d}\right\}$.

Proof. It suffices to prove the first part of the lemma where P_{a} and P_{b} are both contained in a blocker. The second part follows by symmetry. Let h denote the horizontal line segment slightly above the box containing $X_{\ell}^{\prime \prime}$ between the two vertical segments of the \downarrow-edges leaving P_{a} and P_{b}. Let v denote the vertical line segment slightly left of the box containing $X_{\ell}^{\prime \prime}$ between the two horizontal segments of the \uparrow-edges leaving $X_{k}^{\prime \prime}$ and $X_{\ell}^{\prime \prime}$. Let Ω denote the region enclosed by the two 匂-blockers starting at X_{a} and X_{b} and between the segments h and v, without the point $X_{k}^{\prime \prime}$. Note that Ω contains $X_{\ell}^{\prime \prime}$ and also the second point in its box, but neither $X_{k}^{\prime \prime}$ nor the second
point in its box, so Ω contains an even number of points from the ($2, \ldots, 2$)-staircase. Observe also that no edge crosses the segment h, as P_{a} and P_{b} are consecutive points above the spine. Consider an edge crossing the segment v. By Lemma 11, this can only be an t-edge starting at a leaf L in Ω and ending at a vertex $X_{m}^{\prime \prime}$ for some $m, k<m<\ell$ (type 1), or an \uparrow-edge starting at some $X_{m}^{\prime \prime}$ in $\Omega, k<m<\ell$, and ending at X_{m} (type 2). Figure 11 gives an illustration of both types of edges. In the case of a type 2 edge as before, all three leaves adjacent to $X_{m}^{\prime \prime}$ must also be in Ω. Therefore, every type 1 edge contributes 1 to the number of vertices in Ω, and every type 2 edge contributes 4 to the number of vertices in Ω. Note that the other two leaves adjacent to $X_{\ell}^{\prime \prime}$ apart from P_{b} must also be in Ω, so $X_{\ell}^{\prime \prime}$ together with these two leaves contributes 3 to the number of vertices in Ω. As the number of points from the $(2, \ldots, 2)$-staircase in Ω is even, there must be at least one type 1 edge starting at a leaf L in Ω and ending at a vertex $X_{m}^{\prime \prime}$, $k<m<\ell$.

By Lemma 11, $X_{m}^{\prime \prime}$ is connected to X_{m} by another \uparrow-edge. Now consider the blocker sequence starting at X_{m}. We prove that it must contain a \square-or Δ-blocker. For the sake of contradiction
 blocker would lead to X_{0}, which is impossible because of the \uparrow-edge between $X_{k}^{\prime \prime}$ and X_{k} that shields this blocker sequence from the left. Moreover, an L_{-}or ζ_{-}-blocker would force one of the points $X_{i}, 1 \leq i \leq r+1$, to lie inside Ω, which is impossible. However, if the blocker sequence
 claim that the blocker sequence starting at X_{m} contains a \square or $\boldsymbol{\Delta}$-blocker, and the first such blocker in the sequence will contain the desired point $P_{c}, k<c \leq m$ (if the very first blocker is of this type then $c=m$).

An analogous argument applies to the blocker sequence starting at X_{ℓ}. As the \uparrow-edge between L and $X_{m}^{\prime \prime}$ shields this blocker sequence from the left, the first \rightarrow or \boldsymbol{t}-blocker in this sequence contains the desired point $P_{d}, m<d \leq \ell$. This completes the proof of the lemma.

We will later use the following corollary of Lemma 13.
Corollary 14. Suppose there are $\alpha \geq 2$ points $P_{i_{1}}, \ldots, P_{i_{\alpha}}, i_{1}<\cdots<i_{\ell}$, above the spine all contained in a-blocker, and let X_{k} be the endpoint of the blocker starting at $X_{i_{1}}$. Then we have $k<i_{1}$, and there are at least $2(\alpha-1)$ many points P_{i} with $i>k$ above the spine.
Symmetrically, suppose there are $\alpha \geq 2$ points $P_{i_{1}}, \ldots, P_{i_{\alpha}}, i_{1}<\cdots<i_{\ell}$, above the spine all contained in $a \rightarrow$-blocker, and let X_{k} be the endpoint of the blocker starting at $X_{i_{\alpha}}$. Then we have $k>i_{\alpha}$, and there are at least $2(\alpha-1)$ many points P_{i} with $i<k$ above the spine.

Proof. Apply Lemma 13 to any pair of consecutive points above the spine that are both contained in a \rightarrow - or \rightarrow-blocker.

Consider the collection of all blocker sequences starting at any of the points $X_{i}, 1 \leq i \leq r$. Any blocker in one of these sequences encloses a region together with the spine, and if this region touches a spine edge from the bottom left, then we say that this spine edge is enclosed. Any spine edge that is not enclosed is called free. In Figure 12, enclosed regions are shaded. For any point A of the staircase point set, consider the second point A^{\prime} in the same box of the staircase, and let $L(A)$ denote the halfplane containing those two points, such that the points lie slightly to the left of the boundary of the halfplane. We define the halfplane $R(A)$ analogously, by changing left and right in the previous definition.

Lemma 15. There is no valid embedding of T_{r}^{*} with zero or one free spine edges.
Proof. We choose two particular degree 4 vertices A and B of T_{r}^{*} as follows: If there are no \rightarrow-blockers, then $A:=X_{0}$, and otherwise A is defined as the middle vertex of the outermost

Figure 12：Illustration of Lemma 15 ．Regions enclosed by blockers and the spine are shaded．
\square－blocker．Similarly，if there are no 弌－blockers，then $B:=X_{r+1}$ ，and otherwise B is defined as the middle vertex of the outermost $已$－blocker；see Figure 12 ．Note that if $A=X_{0}$ and the spine edge $X_{0} X_{1}$ is enclosed，then the edge entering X_{0} from the bottom is part of a \llcorner－blocker． Similarly，if $B=X_{r+1}$ and the spine edge $X_{r} X_{r+1}$ is enclosed，then the edge entering X_{r+1} from the left is part of a L－blocker．

We first assume that there is no free spine edge．Consider the regions $L(A)$ and $R(B)$ ．Note that A and exactly two of the leaves adjacent to it lie in $L(A)$ ，and that B and exactly two of the leaves adjacent to it lie in $R(B)$ ．On the other hand，both regions contain an even number of points from the $(2, \ldots, 2)$－staircase．This immediately yields a contradiction，as none of the vertices $X_{i}^{\prime}, X_{i}^{\prime \prime}, 1 \leq i \leq r$ ，or any of the leaves adjacent to them can reach into $L(A)$ or $R(B)$ ； see the left hand side of Figure 12，

It remains to consider the case that there is one free spine edge $X_{c} X_{c+1}, 0 \leq c \leq r$ ．In the following we only consider the subcase $1 \leq c \leq r-1$ ；see the right hand side of Figure 12 ．The remaining subcases $c=0$ and $c=r$ are symmetric，and can be handled analogously．We again consider the regions $L(A)$ and $R(B)$ ．As $X_{c} X_{c+1}$ is the only free spine edge，at least one of the vertices $X_{c}^{\prime \prime}, X_{c+1}^{\prime}$ or one of the leaves adjacent to one of them must also be inside $L(A)$ and $R(B)$ ． By symmetry，we may assume that the \uparrow－edge from $X_{c}^{\prime \prime}$ to X_{c} or the \uparrow－edge entering $X_{c}^{\prime \prime}$ has its starting point in $R(B)$ ．This prevents the $\left\llcorner\right.$－edge from X_{c+1}^{\prime} to X_{c+1} or the L－edge entering X_{c+1}^{\prime} from reaching into $L(A)$ ．In this situation the starting point of the \downarrow－edge entering $X_{c}^{\prime \prime}$ is the only one that can reach into $L(A)$ ，wrapping around the entire spine，which forces $X_{c}^{\prime \prime}$ to be in $R(B)$ ．This，however，leads to a contradiction，as only 3 vertices would be mapped to points in $R\left(X_{c}^{\prime \prime}\right)$ ．

With Corollary 14 and Lemma 15 in hand，we are ready to complete the proof of Theorem 6 in the case that $X_{0} X_{1}$ is an－edge．We let α_{L} and α_{R} denote the number of the number of points P_{i} above the spine that are contained in a \rightarrow or \boldsymbol{t}－blocker，respectively．Clearly，$\alpha:=\alpha_{L}+\alpha_{R}$ is the total number of points P_{i} above the spine．Moreover，when considering the points P_{i} above the spine from left to right，then we first encounter all those are contained in a \rightarrow－blocker，and then all those contained in a $七$－blocker．By symmetry we may assume that $\alpha_{L} \leq \alpha_{R}$ ．In the
following we distinguish the five cases $\alpha \in\{0,1,2,3,4\}$ and the case $\alpha>4$, and we show that none of them can occur.

Case $\alpha=0$: We claim that in this case, exactly one of the spine edges $X_{c} X_{c+1}, 0 \leq c \leq r$, is free. Specifically, if $c \geq 1$, then the blocker sequence starting at X_{c} ends at X_{0} and encloses the edges $X_{i} X_{i+1}, 0 \leq i<c$, and if $c<r$, then the blocker sequence starting at X_{c+1} ends at X_{r+1} and encloses the edges $X_{i} X_{i+1}, c<i \leq r$. Applying Lemma 15 will therefore conclude the proof.

To verify this claim, we consider the blocker sequence starting at X_{1}, which contains only
 either ends at X_{r+1}, and then the claim holds, or it ends at X_{0}. In the latter case, consider the point $X_{c}, 1 \leq c \leq r$, with highest index reached by this blocker sequence. Clearly, the blocker sequence starting at X_{c} is a subsequence of the previous sequence, so it ends at X_{0} and encloses the spine edges $X_{i} X_{i+1}, 0 \leq i<c$. Moreover, the edge $X_{c} X_{c+1}$ is free, and if $c<r$, then the blocker sequence starting at X_{c+1} must end at X_{r+1}, enclosing the edges $X_{i} X_{i+1}, c<i \leq r$.

Case $\alpha=1$: By symmetry we may assume that $\alpha_{L}=0$ and $\alpha_{R}=1$. Let P_{a} be the unique point above the spine, i.e., P_{a} is contained in a t-blocker. Consider the blocker sequence starting at X_{a}. It either ends at X_{0}, enclosing all spine edges $X_{i} X_{i+1}, 0 \leq i \leq r$, and then we are done with the help of Lemma 15 . Otherwise this blocker sequence ends at X_{a}, enclosing the spine edges $X_{i} X_{i+1}, a \leq i \leq r$. By considering the blocker sequence starting at X_{1}, we conclude that in this remaining case there is exactly one free spine edge $X_{c} X_{c+1}, 0 \leq c<a$. Again we are done with the help of Lemma 15.

Case $\alpha=2$: We only need to consider the cases $\left(\alpha_{L}, \alpha_{R}\right)=(1,1)$ and $\left(\alpha_{L}, \alpha_{R}\right)=(0,2)$. Let $P_{a}, P_{b}, a<b$, be the two points above the spine.

We first consider the case $\left(\alpha_{L}, \alpha_{R}\right)=(1,1)$, i.e., P_{a} is contained in a \square-blocker and P_{b} is contained in a $⿹$-blocker. Let S_{a} and S_{b} be the blocker sequences starting at X_{a} and X_{b}, respectively. Observe that either S_{a} and S_{b} both end at X_{a}, or both end at X_{b}, or S_{a} ends at X_{a} and S_{b} ends at X_{b}. In the first two cases, there are no free spine edges, and in the third case, there is exactly one free spine edge $X_{c} X_{c+1}, a \leq c<b$, which can be seen by considering the blocker sequence starting at X_{a+1}. Applying Lemma 15 therefore concludes the proof in all those subcases.

We now consider the case $\left(\alpha_{L}, \alpha_{R}\right)=(0,2)$, i.e., P_{a} and P_{b} are both contained in a $刀$-blocker. Let X_{k} be the endpoint of the blocker starting at X_{a}. From Corollary 14 we obtain that $k<a$, i.e., the blocker sequence starting at X_{a} must end at X_{0}, enclosing all spine edges $X_{i} X_{i+1}$, $0 \leq i \leq r$. Applying Lemma 15 again completes the proof.

Case $\alpha=3$: We only need to consider the cases $\left(\alpha_{L}, \alpha_{R}\right)=(1,2)$ and $\left(\alpha_{L}, \alpha_{R}\right)=(0,3)$. Let $P_{a}, P_{b}, P_{c}, a<b<c$, be the three points above the spine.

We first consider the case $\left(\alpha_{L}, \alpha_{R}\right)=(1,2)$, i.e., P_{b}, P_{c} are both contained in a \downarrow-blocker. Let X_{k} be the endpoint of the blocker starting at X_{b}. From Corollary 14, we obtain that $k<b$, i.e., the blocker sequence starting at X_{b} must end at X_{a}, together with the blocker sequence starting at X_{a}, and both enclose all spine edges $X_{i} X_{i+1}, 0 \leq i \leq r$. Consequently, we are done with the help of Lemma 15.

We now consider the case $\left(\alpha_{L}, \alpha_{R}\right)=(0,3)$, i.e., all three points P_{a}, P_{b}, P_{c} are contained in a A-blocker. Corollary 14 implies that there are at least $2\left(\alpha_{R}-1\right)=4$ points P_{i} above the spine, a contradiction.

Figure 13: Illustration of Lemma 16

Case $\alpha=4$: We only need to consider the cases $\left(\alpha_{L}, \alpha_{R}\right)=(2,2),\left(\alpha_{L}, \alpha_{R}\right)=(1,3)$, and $\left(\alpha_{L}, \alpha_{R}\right)=(0,4)$. Let $P_{a}, P_{b}, P_{c}, P_{d}, a<b<c<d$, be the four points above the spine.

If $\left(\alpha_{L}, \alpha_{R}\right)=(2,2)$, then Corollary 14 shows that the blocker sequences starting at X_{b} and X_{c} cannot coexist: Specifically, the blocker sequence starting at X_{b} with a -blocker ends at X_{i} with $b<i \leq r+1$, and the blocker sequence starting at X_{c} with a $⿹$-blocker ends at X_{j} with $0 \leq j<c$. This is a contradiction. Similarly, if $\left(\alpha_{L}, \alpha_{R}\right)=(1,3)$, then Corollary 14 shows that the blocker sequences starting at X_{a} and X_{b} cannot coexist. If $\left(\alpha_{L}, \alpha_{R}\right)=(0,4)$, then Corollary 14 implies that there are at least $2\left(\alpha_{R}-1\right)=6$ points P_{i} above the spine, a contradiction.

Case $\alpha>4$: Corollary 14 shows that there are at least $2\left(\alpha_{L}-1\right)+2\left(\alpha_{R}-1\right)=2 \alpha-4$ points P_{i} above the spine, which is a contradiction, as $2 \alpha-4>\alpha$ for $\alpha>4$.

4.2 Case 2: $X_{0} X_{1}$ is an L-edge

Throughout this section, we assume that $X_{0} X_{1}$ is an L-edge. Lemma 10 and the cyclic order of neighbors around each of the vertices $X_{i}, i=0, \ldots, r+1$, now enforce a particular shape of all tree edges that connect two degree- 4 vertices, as captured by the following lemma; see Figure 13 .

Lemma 16. For $i=0, \ldots, r$, the vertex X_{i} is left of X_{i+1} and both are connected by a L-edge if i is even, and the vertex X_{i} is right of X_{i+1} and both are connected by a $ᄀ$-edge if i is odd. Moreover, for $i=1, \ldots, r$,

- the vertices X_{i}^{\prime} and X_{i} are connected by an \downarrow-edge if i is even, and they are connected by an \uparrow-edge if i is odd;
- the vertices $X_{i}^{\prime \prime}$ and X_{i} are connected by an \rightarrow-edge if i is even, and they are connected by an 7-edge if i is odd;

Figure 14: Illustration of the proof of Theorem 6 in Case 2.

- the three edges directed from the leaves towards the vertex X_{0} form $a \rightarrow+$, and the three edges directed from the leaves towards X_{i}^{\prime} and $X_{i}^{\prime \prime}$ form a ${ }^{+}$or ${ }^{+}+$if i is odd.

We define the length of a spine edge $X_{i} X_{i+1}, 0 \leq i \leq r$, in the embedding as the number of boxes in the $(2, \ldots, 2)$-staircase between its endpoints plus 1 . For instance, if it connects two neighboring boxes, then its length is 1. By Lemma 16, there is a unique longest spine edge $X_{c} X_{c+1}, 0 \leq c \leq r$, and the two length sequences of the edges $X_{i} X_{i+1}$ for $i=c, c+1, \ldots, r$ and $X_{i+1} X_{i}$ for $i=c, c-1, \ldots, 0$ are strictly decreasing, i.e., each of the two corresponding parts of the spine spirals into itself in counterclockwise or clockwise direction, respectively, as shown in Figure 13. By the requirement that $r \geq 10$, the longer of these two sequences consists of at least 6 spine edges, and by symmetry we may assume that it is the latter one, i.e., the initial part of the spine looks as shown in Figure 14.

For $i \in\{1,2\}$, we let h_{i} denote the horizontal line segment between the vertical segments of the spine edges $X_{i} X_{i+1}$ and $X_{i+2} X_{i+3}$, and let Ω_{i} denote the region enclosed by the spine and this segment; see the figure. One of the leaves of the tree T_{r}^{*} must be mapped to the point P_{1}, which lies in the same box as X_{1}. This can only be the leaf adjacent to $X_{2}^{\prime \prime}$ via a \downarrow-edge, or the leaf adjacent to X_{1}^{\prime} via a 7 -edge, or the leaf adjacent to $X_{1}^{\prime \prime}$ via a \rightarrow-edge. In the last two cases, the leaf adjacent to $X_{2}^{\prime \prime}$ via a 7 -edge must reach into the region $\left(R\left(X_{1}^{\prime}\right) \cap \Omega_{1}\right) \backslash\left\{X_{3}\right\}$ or into the region $\left(R\left(X_{1}^{\prime \prime}\right) \cap \Omega_{1}\right) \backslash\left\{X_{3}\right\}$, respectively. This is because this region contains an even number of points, and therefore an even number of tree vertices must be mapped to them. In any case, the edge leaving $X_{2}^{\prime \prime}$ to the right must reach into Ω_{1}. Consequently, the leaf adjacent to $X_{3}^{\prime \prime}$ via a \downarrow-edge must reach into the region $\left(L\left(X_{2}^{\prime \prime}\right) \cap \Omega_{2}\right) \backslash\left\{X_{4}\right\}$, in order to map an even number of tree vertices to this region. However, as none of the leaves of X_{2}^{\prime} can connect to P_{2}, which lies in the same box as X_{2}, no vertex is mapped to P_{2}, a contradiction.

This completes the proof of Theorem 6

5 Computer-based proofs of Theorems 1 and 3

We implemented a C++ program to test whether a given (unordered or ordered) tree admits an L-shaped embedding in a given set of points. Our algorithm recursively embeds vertices and edges in all possible ways until either a crossing occurs or a valid drawing is obtained.

Each point set is represented by a permutation, which captures the y-coordinates of the points from left to right. Those permutations are generated in lexicographic order using the C++ standard library function next_permutation. When embedding unordered trees, only point sets that are non-isomorphic up to rotation and mirroring need to be tested, by considering only the lexicographically smallest permutation obtained by those operations. Similarly, when embedding ordered trees, we factor our point sets that are isomorphic up to rotation (but not mirroring).

The list of all non-isomorphic unordered and ordered trees was generated with SageMath $\mathbf{S}^{+} 18$, using the integrated nauty graph generator [MP14], and then loaded by the C++ program.

When testing ordered trees, we only need to test trees that admit more than one way to cyclically order the neighbors of all vertices, as otherwise the tree is equivalent to the corresponding unordered tree. Here we consider two ordered trees the same if they differ only in changing the orientation of all cyclic orders from clockwise to counterclockwise or vice versa, which corresponds to mirroring the embedding.

As pairs of trees and point sets can be tested independently, we parallelized our computations; see Table 1. The source code of all those programs is available online [MS].

Table 1: Number of non-isomorphic point sets and unordered/ordered trees with maximum degree 4 up to $n \leq 12$, and the computation times of our C++ program. The times marked with * are the sum of parallelized computations on 16 cores.

6 Further non-embeddable examples

In this section, we present further pairs of (unordered) n-vertex trees and sets of n points for $n=13,14,16,17,18,19,20$, which do not admit an L-shaped embedding. The trees T_{n} are obtained as subtrees of the tree shown in Figure 15 by taking the subgraph induced by all unlabeled vertices and the vertices with labels $\leq n$. The corresponding point sets are encoded below in staircase notation. Note that all those staircase point sets have rotation and reflection symmetry and boxes of size at most 3 . The fact that those instances do not allow an L-shaped embedding was established with computer help via a SAT solver, as described below.

Figure 15: The 20-vertex tree T_{20}.

$$
\begin{aligned}
& n=13: \\
& \quad(1,1,2,2,1,2,2,1,1) \\
& \quad(1,1,3,1,1,1,3,1,1) \\
& \quad(2,2,2,1,2,2,2) \\
& \quad(2,3,1,1,1,3,2)
\end{aligned}
$$

$$
\begin{aligned}
& n=14: \\
& \quad(1,1,2,1,2,2,1,2,1,1) \\
& \quad(2,2,1,2,2,1,2,2)
\end{aligned}
$$

$$
\begin{aligned}
& n=16: \\
& \quad(1,3,1,1,1,2,1,1,1,3,1) \\
& \quad(1,3,2,1,2,1,2,3,1)
\end{aligned}
$$

$$
n=17:
$$

$$
(1,1,3,1,1,3,1,1,3,1,1)
$$

$$
\begin{aligned}
& n=18: \\
& \quad(1,1,2,1,1,1,2,2,1,1,1,2,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& n=19: \\
& \quad(1,1,3,1,1,1,3,1,1,1,3,1,1) \\
& \quad(1,1,3,1,2,3,2,1,3,1,1) \\
& (1,1,3,2,1,3,1,2,3,1,1) \\
& (2,3,1,1,1,3,1,1,1,3,2) \\
& (2,3,1,2,3,2,1,3,2) \\
& (2,3,2,1,3,1,2,3,2)
\end{aligned}
$$

$$
\begin{aligned}
& n=20 \\
& \quad(1,1,2,1,1,1,2,2,2,1,1,1,2,1,1) \\
& \quad(1,1,2,1,2,2,2,2,2,1,2,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& (1,1,2,2,1,2,2,2,1,2,2,1,1) \\
& (2,2,1,1,1,2,2,2,1,1,1,2,2) \\
& (2,2,1,2,2,2,2,2,1,2,2) \\
& (2,2,2,1,2,2,2,1,2,2,2)
\end{aligned}
$$

6.1 The SAT model

To test whether a given tree with vertex set $\{1, \ldots, n\}$ admits an L-shaped embedding in a given point set $\left\{P_{1}, \ldots, P_{n}\right\}$, we formulated a Boolean satisfiability problem that has a solution if and only if the tree admits an embedding in the point set.

Our SAT model has variables $x_{i, j}$ to indicate whether the vertex i is mapped to the point P_{j}, and for every edge $a b$ in the tree a variable $y_{a, b}$ to indicate whether the edge is connected horizontally to a (otherwise it is connected vertically to a). The following constraints are necessary and sufficient to guarantee the existence of an L-shaped embedding:

- Injective mapping from vertices to points: Each vertex is mapped to a point, and no two vertices are mapped to the same point.
- L-shaped edges: For each edge $a b$ of the tree, a is either connected horizontally or vertically to b. Figure 16(a) gives an illustration.
- No overlapping edge segments: For each pair of incident edges $a b$ and $a c$, if b and c are mapped to the right of a, then a cannot be connected horizontally to both b and c. An analogous statement holds if b and c are both mapped to the left, above, or below a. Figure 16(b) gives an illustration.
- No crossing edge segments: For each pair of edges $a b$ and $c d$, the vertices a, b, c, d must not be mapped so that segments cross. More specifically, for each four points p, q, r, s (to which a, b, c, d may map), there are at most four cases that have to be forbidden in the mapping, depending on the relative position of p, q, r, s. Figures $16(\mathrm{c})$ and $16(\mathrm{~d})$ give an illustration.

Figure 16: Illustration of the constraints of the SAT model.
The resulting CNF formula thus has $\Theta\left(n^{2}\right)$ variables and $\Theta\left(n^{4}\right)$ clauses. Our Python program that creates a SAT instance for a given pair of tree and staircase point set is available online MS. We used the SAT solver PicoSAT Bie08, which allows enumeration of all solutions. We also made use of pycosat, which provides Python bindings to PicoSAT.

7 Open problems

We currently do not know of any infinite family of (unordered) trees which do not always admit an L-shaped embedding. However, we conjecture that the instance in Figure 4 is such a family when considering the tree as unordered. Moreover, since all non-embeddable examples that we know are trees with pathwidth 2 (lobsters), it would be interesting to know whether trees
with pathwidth 1 (caterpillars) always admit an L-shaped embedding. So far all known nonembeddable trees have maximum degree 4, so the question for trees with maximum degree 3 remains open KS11, $\mathrm{FHM}^{+} 12, \mathrm{DGFF}^{+} 13$.

A more general class of embeddings are orthogeodesic embeddings, where the edges are drawn with minimal ℓ_{1}-length and consist of segments along the grid induced by the point set KKRW10, DGFF $^{+}$13, Sch15, BBHL16. The best known bounds are due to Bárány et al. BBHL16] who showed that every n-vertex tree with maximum degree 4 admits an orthogeodesic embedding in every point set of size $\lfloor 11 n / 8\rfloor$. Unfortunately, our example T_{13} allows an orthogeodesic embedding in S_{13} (see Figure 17), so the question whether n points are always sufficient to guarantee an orthogeodesic embedding of any n-vertex tree [DFF+13, BBHL16, also remains open.

Figure 17: An orthogeodesic embedding of the tree T_{13} in the point set S_{13}. The only edge with two turns (not L-shaped) is drawn dotted.

Acknowledgements

Manfred Scheucher was partially supported by DFG Grant FE 340/12-1. We gratefully acknowledge the computing time granted by TBK Automatisierung und Messtechnik GmbH.

References

[AHS16] O. Aichholzer, T. Hackl, and M. Scheucher. Planar L-shaped point set embeddings of trees. In Proc. 32nd European Workshop on Computational Geometry (EuroCG 2016), pages 51-54, 2016.
[BBHL16] I. Bárány, K. Buchin, M. Hoffmann, and A. Liebenau. An improved bound for orthogeodesic point set embeddings of trees. In Proc. 31nd European Workshop on Computational Geometry (EuroCG 2015), pages 47-50, 2016.
$\left[\mathrm{BCD}^{+} 18\right]$ T. Biedl, T. M. Chan, M. Derka, K. Jain, and A. Lubiw. Improved bounds for drawing trees on fixed points with L-shaped edges. In Graph drawing and network visualization, volume 10692 of Lecture Notes in Comput. Sci., pages 305-317. Springer, Cham, 2018.
[Bie08] A. Biere. PicoSAT essentials, Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 4:75-97, 2008.
$\left[\mathrm{DGFF}^{+} 13\right]$ E. Di Giacomo, F. Frati, R. Fulek, L. Grilli, and M. Krug. Orthogeodesic point-set embedding of trees. Comput. Geom., 46(8):929-944, 2013.
[FHM ${ }^{+}$12] M. Fink, J.-H. Haunert, T. Mchedlidze, J. Spoerhase, and A. Wolff. Drawing graphs with vertices at specified positions and crossings at large angles. In WALCOM: algorithms and computation, volume 7157 of Lecture Notes in Comput. Sci., pages 186-197. Springer, Heidelberg, 2012.
[KKRW10] B. Katz, M. Krug, I. Rutter, and A. Wolff. Manhattan-geodesic embedding of planar graphs. In Graph drawing, volume 5849 of Lecture Notes in Comput. Sci., pages 207-218. Springer, Berlin, 2010.
[KS11] M. Kano and K. Suzuki. Geometric graphs in the plane lattice. In Computational geometry, volume 7579 of Lecture Notes in Comput. Sci., pages 274-281. Springer, Cham, 2011.
[MP14] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic Comput., 60:94-112, 2014.
[MS] T. Mütze and M. Scheucher. Personal websites with source code of our programs. http://page.math.tu-berlin.de/~muetze and http://page.math.tu-berlin. de/~scheucher/suppl/lshapes/.
[MS18] T. Mütze and M. Scheucher. On L-shaped point set embeddings of trees: first nonembeddable examples. In Proceedings of 26th International Symposium on Graph Drawing and Network Visualization (GD 2018), 9 pages. 2018.
[RS83] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J. Combin. Theory Ser. B, 35(1):39-61, 1983.
$\left[\mathrm{S}^{+} 18\right] \quad$ W. A. Stein et al. Sage Mathematics Software (Version 8.1). The Sage Development Team, 2018. http://www.sagemath.org
[Sch15] M. Scheucher. Orthogeodesic point set embeddings of outerplanar graphs. Master's thesis, Graz University of Technology, 2015.

[^0]: *A short version of this paper appeared in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization [MS18].
 ${ }^{\dagger}$ Institut für Mathematik, Technische Universität Berlin, Germany, \{muetze,scheucher\}@math.tu-berlin.de

[^1]: ${ }^{1}$ Specifically, their counterexample is the 14 -vertex caterpillar with 6 vertices on the central path and a pending edge on each side of the four inner vertices of the path. The point set is a $(4,6,4)$-staircase in our terminology (see Definition 5).

[^2]: ${ }^{2}$ For the definition of pathwidth, we refer the reader to RS83].

