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Abstract

An L-shaped embedding of a tree in a point set is a planar drawing of the tree where the
vertices are mapped to distinct points and every edge is drawn as a sequence of two axis-
aligned line segments. There has been considerable work on establishing upper bounds on
the minimum cardinality such that any point set of that size admits an L-shaped embedding
of any n-vertex tree with maximum degree 4. However, no non-trivial lower bound is known
to this date, i.e., no known n-vertex tree requires more than n points to be embedded.

In this paper, we present the first examples of n-vertex trees for n ∈ {13, 14, 16, 17, 18,
19, 20} that require strictly more points than vertices to admit an L-shaped embedding.
Moreover, using computer help, we show that every tree on n ≤ 12 vertices admits an
L-shaped embedding in every set of n points.

We also consider embedding ordered trees, where the cyclic order of the neighbors of
each vertex in the embedding is prescribed. For this setting, we determine the smallest
non-embeddable ordered tree on n = 10 vertices, and we show that every ordered tree on
n ≤ 9 or n = 11 vertices admits an L-shaped embedding in every set of n points. We
also construct an infinite family of ordered trees which do not always admit an L-shaped
embedding, answering a question raised by Biedl, Chan, Derka, Jain, and Lubiw.

1 Introduction

An L-shaped embedding of a tree in a point set is a planar drawing of the tree where the vertices
are mapped to distinct points of the set and every edge is drawn as a sequence of two axis-aligned
line segments; see Figure 1. Here and throughout this paper, all point sets are such that no two
points have the same x- or y-coordinate. The investigation of L-shaped embeddings was initiated
in [KS11, FHM+12, DGFF+13]. In particular, di Giacomo et al. [DGFF+13] showed that O(n2)
points are always sufficient to embed any n-vertex tree. Note that an L-shaped embedding
requires that the maximum degree of the tree is at most 4. Moreover, if the maximum degree
is 2, then the tree is a path and can be embedded greedily on any point set of the same size.
Formally, let fd(n) denote the minimum number N of points such that every n-vertex tree with
maximum degree d ∈ {3, 4} admits an L-shaped embedding in every point set of size N .

The second author’s master’s thesis [Sch15] proposed a method to recursively construct an L-
shaped embedding of any n-vertex tree in any point set of size O(n1.58) (see also [AHS16]). Biedl
et al. [BCD+18] gave a more precise analysis of this method, proving that f3(n) = O(n1.22)
and f4(n) = O(n1.55) points are enough. To this date, no lower bound besides the trivial

∗A short version of this paper appeared in the Proceedings of the 26th International Symposium on Graph
Drawing and Network Visualization [MS18].
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Figure 1: An L-shaped embedding of a tree in a point set.

bound fd(n) ≥ n is known, i.e., no known n-vertex tree requires more than n points to be embed-
ded. Di Giacomo, Frati, Fulek, Grilli, and Krug [DGFF+13] specifically asked for a tree and point
set that would prove f4(n) > n. The same question was reiterated by Fink, Haunert, Mchedlidze,
Spoerhase, and Wolff [FHM+12], and by Biedl, Chan, Derka, Jain, and Lubiw [BCD+18]. Kano
and Suzuki [KS11] even conjectured that f3(n) = n.

However, Biedl et al. [BCD+18] also considered a more restricted setting of embedding ordered
trees, where the cyclic order of the neighbors of each vertex in the embedding is prescribed.
They presented a single 14-vertex ordered tree which does not admit an L-shaped embedding in
a particular point set of size 141, and they raised the problem to find an infinite family of such
non-embeddable ordered trees.

1.1 Our results

We begin presenting our results for the setting where there are no constraints on the cyclic order
in which the neighbors appear around each vertex of the tree. With brute-force computer search,
we verified that all trees on n ≤ 12 vertices can be embedded in every point set of size n.

Theorem 1 (Computer-based). Every tree on n ≤ 12 vertices admits an L-shaped embedding in
every set of n points.

We also formulated a SAT instance to test a given pair of tree and point set for embeddability.
This way, we found a 13-vertex tree that does not admit an embedding in a particular point set.

Theorem 2. The tree T13 in Figure 2 does not admit an L-shaped embedding in the point set S13

shown in the figure.

Even though the 13-vertex tree T13 was found using the help of a SAT solver, a human-
verifiable proof of Theorem 2 is not hard to obtain.

Besides the pair (T13, S13), we also found pairs of trees and point sets that do not admit
an embedding for larger values of n. Overall, we found pairs of n-vertex trees and point sets
of size n for n ∈ {13, 14, 16, 17, 18, 19, 20}. For n = 15, however, our computer search did not
yield any non-embeddable example (the search was not exhaustive). We remark that all known
non-embeddable trees contain T13 as a subtree.

We now focus on the more restricted setting of ordered trees introduced in [BCD+18], where
the cyclic order of the neighbors of each vertex in the embedding is prescribed.

Theorem 3 (Computer-based). Every ordered tree on n ≤ 9 vertices or on n = 11 vertices
admits an L-shaped embedding in every set of n points.

1 Specifically, their counterexample is the 14-vertex caterpillar with 6 vertices on the central path and a pending
edge on each side of the four inner vertices of the path. The point set is a (4, 6, 4)-staircase in our terminology
(see Definition 5).
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Figure 2: The tree T13 (left) does not admit an L-shaped embedding in the (2, 2, 2, 1, 2, 2, 2)-staircase
point set S13 (right). The boxes B−3, . . . , B3 are highlighted by dashed frames.

T10 S10

X1 X2I1 I2

P3

P8

P4
P5

P6
P7

P1

P2

P10

P9

L1

L′
1 L′

2

L2

L′′
1 L′′

2

Figure 3: The ordered tree T10 (left) does not admit an L-shaped embedding in the point set S10

(right).

We also found a 10-vertex tree that does not admit an embedding in a particular point set.
This is a smaller non-embeddable instance than the one for n = 14 previously presented in
[BCD+18].

Theorem 4. The ordered tree T10 in Figure 3 does not admit an L-shaped embedding in the
point set S10 shown in the figure.

Remarkably, the pair (T10, S10) is the only one on n = 10 vertices/points not admitting an
L-shaped embedding.

Moreover, we construct an infinite family of ordered trees that do not admit an L-shaped
embedding on certain point sets, answering a question raised by Biedl, Chan, Derka, Jain, and
Lubiw in [BCD+18]. As it turns out, the point sets that appear to be difficult for embedding
have a regular staircase shape as shown in Figure 4 (see also Figure 2).

Definition 5 (Staircase point set). For a partition n = a1 + · · ·+ ak with k, a1, . . . , ak ∈ N, the
(a1, . . . , ak)-staircase is the point set consisting of a sequence of k boxes, ordered from top-left to
bottom-right, and the ith box contains a sequence of ai points with increasing x- and y-coordinate.

Theorem 6. For any even r ≥ 10, the ordered tree T ∗r on n = 9r + 8 vertices in Figure 4 does
not admit an L-shaped embedding in the n-point (2, . . . , 2)-staircase.

We conjecture that T ∗r does not admit an embedding in the same point set, even when
considered as an unordered tree, i.e., in the original unrestricted setting.
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Figure 4: The family of ordered trees T ∗r (left) does not admit an L-shaped embedding in the n-point
(2, . . . , 2)-staircase (right), where n = 9r + 8. The boxes of the point set are highlighted.

1.2 Related work

Besides the problem of finding L-shaped embeddings of arbitrary trees in arbitrary point sets,
various special classes of trees and point sets have also been studied. For instance, perfect
binary and perfect ternary n-vertex trees can be embedded in any point set of size O(n1.142)
or O(n1.465), respectively [BCD+18]. Moreover, trees with pathwidth k can be embedded in any
set of 2kn points [Sch15, Chapter 3.3.2] (see also [AHS16]).2 Specifically, any n-vertex caterpillar
with maximum degree 3 can be embedded in any point set of size n [DGFF+13]. A caterpillar
is a tree with the property that all leaves are in distance 1 of a central path. For maximum
degree 4 caterpillars, the currently best known upper bound is 4n/3 +O(1) many points [Sch15,
Chapter 5.2.1]. Biedl et al. [BCD+18] showed that any ordered caterpillar can be embedded in
any point set of size O(n log n).

When point sets are chosen uniformly at random, i.e., the y-coordinates are a random per-
mutation, it is known that O(n log n(log log n)2) and O(n1.332) points are sufficient to embed any
tree with maximum degree 3 or 4, respectively, with probability at least 1/2 [Sch15, Chapter 4]
(see also [AHS16]).

Another known setting are non-planar L-shaped point set embeddings, where L-shaped edges
are allowed to cross properly, but edge-segments must not overlap. For this setting, it is known
that n points are sufficient to embed any n-vertex tree with maximum degree 3 [FHM+12,
DGFF+13] or any n-vertex caterpillar with maximum degree 4 [Sch15, Theorem 21]. For n-
vertex trees with maximum degree 4 the currently best upper bound on the required number of
points is 7n/3 +O(1) [Sch15, Theorem 7].

1.3 Outline of this paper

In Sections 2 and 3 we present the proofs of Theorems 2 and 4, respectively. Section 4 is devoted
to proving Theorem 6. We describe our computational approach to proving Theorems 1 and 3
by exhaustive search in Section 5. More non-embeddable small trees are presented in Section 6,
together with our SAT model which is used to verify non-embeddability. We conclude in Section 7
with some challenging open problems.

2 For the definition of pathwidth, we refer the reader to [RS83].
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2 Proof of Theorem 2

Consider the (unordered) tree T13 and the (2, 2, 2, 1, 2, 2, 2)-staircase point set S13 depicted in
Figure 2. We label the degree 3 vertex of T13 by Y and the three degree 4 vertices of T13
as X1, X2, X3, respectively. Moreover, we label the boxes in the staircase point set S13 from left
to right by B−3, B−2, . . . , B3. Note the symmetry of T13, as the vertex Y joins three isomorphic
subtrees. Moreover, S13 has reflection symmetries along both diagonals of the grid.

For the sake of contradiction, we assume that an L-shaped embedding of T13 in S13 exists. We
first derive three lemmas that capture to which boxes the vertices X1, X2, X3, Y can be mapped
in such an embedding, and we then complete the proof by distinguishing two main cases.

Lemma 7. Neither of the four vertices X1, X2, X3, Y is mapped to B−3 or to B3.

Proof. All points in B−3 and B3 lie on the bounding box of the point set, so if one of the Xi is
mapped to such a point, then one of the four edges incident with Xi would leave the bounding
box, which is impossible. Moreover, Y cannot be mapped to one of these two boxes, as otherwise
one of the Xi, which are the only neighbors of Y in T13, would be mapped to the other point of
that same box.

Lemma 8. Each of the degree-4 vertices Xi is mapped to a distinct box.

Proof. Assume that Xi and Xj are mapped to the same box. By symmetry, we may assume
that Xj is right above Xi, and that Y is right below of Xi and Xj ; see Figure 5(a). Note that
the edge Y Xi enters Xi from below and the edge Y Xj enters Xj from the right. As Xi and Xj

both have degree 4, and their box only contains two points, the edge leaving Xi to the right and
the edge leaving Xj to the bottom must cross, a contradiction.

Xi

Xj

Y

(a)

X3

Y

X1, X2

(b)

Figure 5: Illustration of the proofs of (a) Lemma 8 and (b) Lemma 9. Crossing edges are highlighted.

Lemma 9. Not all three points X1, X2, X3 lie on the same side (above, below, left, or right)
of Y .

Proof. It suffices to prove one of the statements, then the others follow by symmetry. Suppose
for the sake of contradiction that X1, X2, X3 all lie above Y . As one edge leaving Y has to go
right, one of the Xi, say X3, is mapped to the same box, and Y is left below of X3 in that box;
see Figure 5(b). Moreover, Y X3 is an -edge. As X3 has degree 4, and each box contains at
most two points, the edge leaving Y on the top towards X1 or X2 crosses the edge that leaves X3

to the left, a contradiction.

By Lemma 7 and Lemma 9, Y is mapped to one of the boxes B−1, B0, or B1. By Lemma 8
we may assume that X1, X2, X3 appear in distinct boxes in exactly this order from left to right
and also from top to bottom, and none of them is in B−3 or B3. Moreover, from Lemma 9 we
conclude that X1 and X3 are in other boxes than Y , so at most Y and X2 are in the same box.
We now distinguish two cases.
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Case 1: Y and X2 are mapped to the same box. By symmetry, we may assume that they
are mapped to B1 and that X2 lies right above Y . Then the vertex X3 must be mapped to the
box B2; see Figure 6(a). If Y X3 would be a -edge, then it would cross the edge leaving X2 at
the bottom. It follows that Y X3 is a -edge. Note that the edge that leaves X2 to the right can
only connect to a leaf L that is mapped to B2 ∪B3, and L must be mapped to the right of X3,
as otherwise the edges X2L and Y X3 would cross. The edges leaving X3 at the bottom and
right can only connect to points from B2 ∪B3, so together with X3 and L we already have four
vertices that are mapped to B2∪B3. Consequently, the edge leaving X3 at the top must connect
to a point outside of B1∪B2∪B3, and therefore this edge crosses the edge X2L, a contradiction.

Y
X2

X3

L

B1

B2

B3

(a) Case 1

Y

X2

X1

L

(b) Case 2

Figure 6: Illustration of the proof of Theorem 2.

Case 2: Y and X2 are mapped to distinct boxes, so all four points X1, X2, X3, Y are in different
boxes. By symmetry, we assume that X1 and X2 both lie above and left of Y , and X3 lies below
and right of Y . Moreover, we assume that Y X1 us a -edge and that Y X2 is a -edge; see
Figure 6(b). Note that X2 cannot connect to any points right of Y , and X1 can only connect to
such points by the edge leaving it to the right. As Y is either mapped to B0 or B1, there are
at most 7 points left above of Y . Therefore, as X1 and X2 together with their leaves form a set
of 8 points, Y must be mapped to B1, and exactly one leaf L of X1 is mapped to a point right
of Y , connected to X1 via a -edge. Note that X2 cannot be mapped to B0, as then the edge
leaving X2 at the bottom could not connect to any point without either crossing Y X1 or Y X2.
Consequently, X2 is mapped to B−1. However, as B−1 and B0 together contain only 3 points,
and X2 together with its leaves form a set of 4 vertices, at least one of the two edges that leave X2

to the left or top must connect to a point above or left of X1, and this edge will cross either the
edge Y X1 or X1L, again a contradiction.

In both cases we obtain a contradiction to the assumption that T13 admits an L-shaped
embedding in the point set S13. This completes the proof of Theorem 2.

3 Proof of Theorem 4

Consider the ordered tree T10 and the point set S10 depicted in Figure 3. We label the two
degree 4 vertices of T10 by X1, X2 and the two degree 2 vertices by I1, I2. Moreover, we label
the leaves adjacent to X1 and X2 by L1, L

′
1, L2, L

′
2, and the leaves adjacent to I1 and I2 by L′′1

and L′′2 , as shown in the figure. We label the points of the point set S10 from left to right
by P1, . . . , P10. Note the symmetry of T10, and observe that S10 has reflection symmetries along
both diagonals of the grid.
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X2
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Case 1a Case 2a
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Case 3
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Figure 7: Illustration of the proof of Theorem 4.

For the sake of contradiction, we assume that an order-preserving L-shaped embedding of T10
in S10 exists. Clearly, none of the degree 4 vertices X1, X2 can be mapped to any of the four
points P1, P2, P9, P10 which lie on the bounding box of the point set S10. We also claim that
X1, X2 cannot be mapped to P3 or P8. By symmetry, it suffices to exclude the case that X1 is
mapped to P3. In this case, we may assume by symmetry that X2 is connected to X1 from the
right. Consequently, due to the cyclic order of the neighbors of X1, I1 must be mapped to P1

and L1 must be mapped to P2. Then L′′1 cannot be mapped to any point, a contradiction.
It follows that X1 and X2 are mapped to one of the points P4, P5, P6, P7. By symmetry, we

may assume that X1 is mapped to P4. We now distinguish six cases, illustrated in Figure 7:

• Case 1a: X2 is mapped to P5 and X1X2 is a -edge. In this case, the edge leaving X1 at the
bottom and the edge leaving X2 to the left must cross, a contradiction.

• Case 1b: X2 is mapped to P5 and X1X2 is a -edge. In this case, the edge leaving X1 to the
right and the edge leaving X2 to the top must cross, a contradiction.

• Case 2a: X2 is mapped to P6 and X1X2 is a -edge. In this case, the edge leaving X1 to the
top and the edge leaving X2 to the left must cross, a contradiction.

• Case 2b: X2 is mapped to P6 and X1X2 is a -edge. Clearly, none of the four vertices L′1,
L′2, I1, and I2 can be mapped to P1, P2, or P3. We claim that L′′1 and L′′2 cannot be mapped
to any of these points either. Indeed, X1I1 is an -edge, and I1 can only be mapped to one
of P5, P8, P9, or P10. If L′′1 is mapped to one of P1, P2, or P3, then I1 and L′′1 must be joined
via an -edge and either the first of the two edges X1I1 and I1L

′′
1 intersects the edge X1X2

or these two edges prevent one or both of the points P9, P10 from being reachable from X2

via one or two L-shaped edges. Consequently, only two vertices, namely L1 and L2 can be
mapped to the three points P1, P2, P3, a contradiction.

• Case 3: X2 is mapped to P7. The subcases where X1X2 is an -edge or an -edge are
symmetric, so it suffices to consider the first one. In this case we can argue as in Case 2b that
only L1 and L2 can be mapped to the three points P1, P2, P3, a contradiction.

In each case we obtain a contradiction, so this completes the proof of Theorem 4.
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4 Proof of Theorem 6

We label the degree 4 vertices of the ordered tree T ∗r along the central path by X0, . . . , Xr+1,
and for any vertex Xi, 1 ≤ i ≤ r, we label its two neighbors of degree 4 not on the central path
by X ′i and X ′′i , as shown in Figure 8. For our later arguments it will be convenient to orient the
edges of T ∗r which are not on the central path. Edges incident to a leaf are oriented away from
the leaf and edges X ′iXi and X ′′i Xi are oriented towards Xi.

T ∗r

. . .
X0 Xr+1X1 X2 Xr

X ′1 X ′′1 X ′r X ′′r

Figure 8: Labeling of vertices of the ordered tree T ∗r for the proof of Theorem 6.

Lemma 10. Each of the degree-4 vertices Xi, X
′
i, and X ′′i is mapped to a distinct box of the

n-point (2, . . . , 2)-staircase.

Proof. Assume that two degree 4 vertices P,Q of T ∗r are mapped to the same box, such that Q
is right above P . As P and Q have degree 4, there are edges in all four directions leaving both P
and Q. The edges leaving P to the top and Q to the left, or the edges leaving P to the right
and Q to the bottom will cross, unless one pair of them forms a single L-shaped edge, which
may happen only if P and Q are neighbors in the tree. In any case, at least the remaining pair
of edges must cross, a contradiction.

We refer to the sequence of - or -edges connecting the central path vertices X0, . . . , Xr+1

as the spine. By symmetry, we may assume w.l.o.g. that X0 is mapped to a box left of X1. In
the following we distinguish two main cases, depending on whether X0X1 is an -edge or an

-edge.

4.1 Case 1: X0X1 is an -edge

Throughout this section, we assume that X0X1 is an -edge. Lemma 10 and the cyclic order of
neighbors around each of the vertices Xi, i = 0, . . . , r + 1, now enforce a particular shape of all
tree edges that connect two degree-4 vertices, as captured by the following lemma; see Figure 9.

Lemma 11. The vertices X0, . . . , Xr+1 appear exactly in this order from left to right, and any
two consecutive such vertices are connected by an -edge. Moreover, for i = 1, . . . , r,

• the vertices X ′i and Xi are connected by an -edge;
• the vertices X ′′i and Xi are connected by an -edge;
• the three edges directed from the leaves towards the vertices X ′i, X

′′
i , X0, and Xr+1 form a ,

, , and , respectively.

By Lemma 10, each box containing one of the Xi, 1 ≤ i ≤ r, contains a second point to
which a leaf is mapped. We denote this point by Pi. Combining Lemmas 10 and 11 yields the
following lemma, which is illustrated in Figure 10.
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XiX ′i

X0

Xr+1

X1

Figure 9: Illustration of Lemma 11.

Pi

X0

Pi

Xj

X ′′j
Pi

X0

Xj

X ′j

Xi Xi

Xi

Figure 10: Illustration of Lemma 12. The corresponding -, -, and -blockers are highlighted with
bold lines.

Lemma 12. For every point Pi below the spine exactly one of the following four conditions
holds:

• Pi is connected to X0 by an -edge;
• Pi is connected to Xr+1 by an -edge;
• there is an index j, 1 ≤ j < i, such that Pi, X

′′
j , Xj are joined by two consecutive -edges;

• there is an index j, i < j ≤ r, such that Pi, X
′
j , Xj are joined by two consecutive -edges.

For every point Pi above the spine exactly one of the following two conditions holds:

• there is an index j, 1 ≤ j ≤ r, such that Pi, X
′
j and X ′j , Xj are joined by an -edge and an

-edge, respectively, wrapping around the top left end of the spine;
• there is an index j, 1 ≤ j ≤ r, such that Pi, X

′′
j and X ′′j , Xj are joined by an -edge and an

-edge, respectively, wrapping around the bottom right end of the spine.

Consider any pair of points Pi, X0 as in Lemma 12 connected by an -edge. We refer to
this edge together with the short diagonal line joining the points Xi and Pi in the same box
(this line is not part of the tree embedding), as a -blocker starting at Xi and ending at X0,
see Figure 10. Similarly, given any triple of points Pi, X

′′
j , Xj as in Lemma 12 joined by two

consecutive -edges, we refer to these two edges together with the line joining Xi and Pi, as a
-blocker starting at Xi and ending at Xj . Moreover, given any triple of points Pi, X

′
j , Xj as in
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X ′′k

X ′′`

Xm
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v

Ω

Pc

Pd

X ′′m

L
type 1

type 2

Figure 11: Illustration of Lemma 13.

Lemma 12 joined by a -edge followed by -edge wrapping around the top left end of the spine,
we refer to these two edges together with the line joining Xi and Pi, as a -blocker starting
at Xi and ending at Xj . The terms -blocker, -blocker and -blocker are defined analogously.
Observe that no other tree edge can cross a blocker.

For every index i1, 1 ≤ i1 ≤ r, we define a finite sequence of blockers as follows: For
j = 1, 2, . . . we consider the point Xij and the blocker starting at Xij . The endpoint Xij+1

of this blocker defines the next index ij+1. If ij+1 /∈ {i1, . . . , ij} ∪ {0, r + 1}, we repeat this
process, otherwise we stop. This yields a finite sequence of indices i1, i2, . . . , i`, such that any
two consecutive points Xij and Xij+1

are joined by a blocker starting at Xij and ending at Xij+1
.

Moreover, we either have i` ∈ {i1, . . . , i`−1} if the blockers close cyclically, or i` ∈ {0, r + 1} if
the last blocker ends at X0 or Xr+1 (the terminal index is included in the sequence). We refer
to the sequence of blockers generated in this fashion as the blocker sequence starting at Xi1 .

The statement and proof of the following key lemma are illustrated in Figure 11.

Lemma 13. Let 1 ≤ a < b ≤ r be such that Pa and Pb are two consecutive points above the
spine both contained in a -blocker, and let Xk and X` be the blocker endpoints, respectively.
Then there are indices c, d with k < c < d ≤ ` such that Pc and Pd are above the spine.
Symmetrically, if Pa and Pb, 1 ≤ a < b ≤ r, are two consecutive points above the spine both
contained in a -blocker, then there are indices c, d with k ≤ c < d < ` such that Pc and Pd are
above the spine.

Observe that this lemma does not make any assertions about the relative positions of the
points in {Xa, Xb} and {Xk, X`}. In particular, it does not make any assertions about the
disjointness of the sets {Pa, Pb} and {Pc, Pd}.

Proof. It suffices to prove the first part of the lemma where Pa and Pb are both contained in a -
blocker. The second part follows by symmetry. Let h denote the horizontal line segment slightly
above the box containing X ′′` between the two vertical segments of the -edges leaving Pa and Pb.
Let v denote the vertical line segment slightly left of the box containing X ′′` between the two
horizontal segments of the -edges leaving X ′′k and X ′′` . Let Ω denote the region enclosed by the
two -blockers starting at Xa and Xb and between the segments h and v, without the point X ′′k .
Note that Ω contains X ′′` and also the second point in its box, but neither X ′′k nor the second

10



point in its box, so Ω contains an even number of points from the (2, . . . , 2)-staircase. Observe
also that no edge crosses the segment h, as Pa and Pb are consecutive points above the spine.
Consider an edge crossing the segment v. By Lemma 11, this can only be an -edge starting at
a leaf L in Ω and ending at a vertex X ′′m for some m, k < m < ` (type 1), or an -edge starting
at some X ′′m in Ω, k < m < `, and ending at Xm (type 2). Figure 11 gives an illustration of both
types of edges. In the case of a type 2 edge as before, all three leaves adjacent to X ′′m must also
be in Ω. Therefore, every type 1 edge contributes 1 to the number of vertices in Ω, and every
type 2 edge contributes 4 to the number of vertices in Ω. Note that the other two leaves adjacent
to X ′′` apart from Pb must also be in Ω, so X ′′` together with these two leaves contributes 3 to
the number of vertices in Ω. As the number of points from the (2, . . . , 2)-staircase in Ω is even,
there must be at least one type 1 edge starting at a leaf L in Ω and ending at a vertex X ′′m,
k < m < `.

By Lemma 11, X ′′m is connected to Xm by another -edge. Now consider the blocker sequence
starting at Xm. We prove that it must contain a -or -blocker. For the sake of contradiction
suppose not. Then it can only have -blockers, but no -, -, or -blockers: Indeed, an -
blocker would lead to X0, which is impossible because of the -edge between X ′′k and Xk that
shields this blocker sequence from the left. Moreover, an - or -blocker would force one of the
points Xi, 1 ≤ i ≤ r + 1, to lie inside Ω, which is impossible. However, if the blocker sequence
consists only of -blockers, then it must end at X0, which is again impossible. This proves our
claim that the blocker sequence starting at Xm contains a - or -blocker, and the first such
blocker in the sequence will contain the desired point Pc, k < c ≤ m (if the very first blocker is
of this type then c = m).

An analogous argument applies to the blocker sequence starting at X`. As the -edge be-
tween L and X ′′m shields this blocker sequence from the left, the first - or -blocker in this
sequence contains the desired point Pd, m < d ≤ `. This completes the proof of the lemma.

We will later use the following corollary of Lemma 13.

Corollary 14. Suppose there are α ≥ 2 points Pi1 , . . . , Piα , i1 < · · · < i`, above the spine all
contained in a -blocker, and let Xk be the endpoint of the blocker starting at Xi1 . Then we
have k < i1, and there are at least 2(α− 1) many points Pi with i > k above the spine.
Symmetrically, suppose there are α ≥ 2 points Pi1 , . . . , Piα , i1 < · · · < i`, above the spine all
contained in a -blocker, and let Xk be the endpoint of the blocker starting at Xiα . Then we
have k > iα, and there are at least 2(α− 1) many points Pi with i < k above the spine.

Proof. Apply Lemma 13 to any pair of consecutive points above the spine that are both contained
in a - or -blocker.

Consider the collection of all blocker sequences starting at any of the points Xi, 1 ≤ i ≤ r.
Any blocker in one of these sequences encloses a region together with the spine, and if this region
touches a spine edge from the bottom left, then we say that this spine edge is enclosed. Any
spine edge that is not enclosed is called free. In Figure 12, enclosed regions are shaded. For any
point A of the staircase point set, consider the second point A′ in the same box of the staircase,
and let L(A) denote the halfplane containing those two points, such that the points lie slightly to
the left of the boundary of the halfplane. We define the halfplane R(A) analogously, by changing
left and right in the previous definition.

Lemma 15. There is no valid embedding of T ∗r with zero or one free spine edges.

Proof. We choose two particular degree 4 vertices A and B of T ∗r as follows: If there are no
-blockers, then A := X0, and otherwise A is defined as the middle vertex of the outermost
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no free spine edge

L(A)

R(B)

one free spine edgeXc

Xc+1

X ′′c

X ′c+1

A

B

R(B)

R(X ′′c )

L(A)

A

B

Figure 12: Illustration of Lemma 15. Regions enclosed by blockers and the spine are shaded.

-blocker. Similarly, if there are no -blockers, then B := Xr+1, and otherwise B is defined
as the middle vertex of the outermost -blocker; see Figure 12. Note that if A = X0 and the
spine edge X0X1 is enclosed, then the edge entering X0 from the bottom is part of a -blocker.
Similarly, if B = Xr+1 and the spine edge XrXr+1 is enclosed, then the edge entering Xr+1 from
the left is part of a -blocker.

We first assume that there is no free spine edge. Consider the regions L(A) and R(B). Note
that A and exactly two of the leaves adjacent to it lie in L(A), and that B and exactly two of
the leaves adjacent to it lie in R(B). On the other hand, both regions contain an even number
of points from the (2, . . . , 2)-staircase. This immediately yields a contradiction, as none of the
vertices X ′i, X

′′
i , 1 ≤ i ≤ r, or any of the leaves adjacent to them can reach into L(A) or R(B);

see the left hand side of Figure 12.
It remains to consider the case that there is one free spine edge XcXc+1, 0 ≤ c ≤ r. In the

following we only consider the subcase 1 ≤ c ≤ r − 1; see the right hand side of Figure 12. The
remaining subcases c = 0 and c = r are symmetric, and can be handled analogously. We again
consider the regions L(A) and R(B). As XcXc+1 is the only free spine edge, at least one of the
vertices X ′′c , X ′c+1 or one of the leaves adjacent to one of them must also be inside L(A) and R(B).
By symmetry, we may assume that the -edge from X ′′c to Xc or the -edge entering X ′′c has its
starting point in R(B). This prevents the -edge from X ′c+1 to Xc+1 or the -edge entering X ′c+1

from reaching into L(A). In this situation the starting point of the -edge entering X ′′c is the
only one that can reach into L(A), wrapping around the entire spine, which forces X ′′c to be
in R(B). This, however, leads to a contradiction, as only 3 vertices would be mapped to points
in R(X ′′c ).

With Corollary 14 and Lemma 15 in hand, we are ready to complete the proof of Theorem 6 in
the case that X0X1 is an -edge. We let αL and αR denote the number of the number of points Pi
above the spine that are contained in a - or -blocker, respectively. Clearly, α := αL + αR is
the total number of points Pi above the spine. Moreover, when considering the points Pi above
the spine from left to right, then we first encounter all those are contained in a -blocker, and
then all those contained in a -blocker. By symmetry we may assume that αL ≤ αR. In the
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following we distinguish the five cases α ∈ {0, 1, 2, 3, 4} and the case α > 4, and we show that
none of them can occur.

Case α = 0: We claim that in this case, exactly one of the spine edges XcXc+1, 0 ≤ c ≤ r, is
free. Specifically, if c ≥ 1, then the blocker sequence starting at Xc ends at X0 and encloses the
edges XiXi+1, 0 ≤ i < c, and if c < r, then the blocker sequence starting at Xc+1 ends at Xr+1

and encloses the edges XiXi+1, c < i ≤ r. Applying Lemma 15 will therefore conclude the proof.
To verify this claim, we consider the blocker sequence starting at X1, which contains only

-, -, - and -blockers, but no - or -blockers (in fact, -blockers cannot occur either). It
either ends at Xr+1, and then the claim holds, or it ends at X0. In the latter case, consider the
point Xc, 1 ≤ c ≤ r, with highest index reached by this blocker sequence. Clearly, the blocker
sequence starting at Xc is a subsequence of the previous sequence, so it ends at X0 and encloses
the spine edges XiXi+1, 0 ≤ i < c. Moreover, the edge XcXc+1 is free, and if c < r, then the
blocker sequence starting at Xc+1 must end at Xr+1, enclosing the edges XiXi+1, c < i ≤ r.

Case α = 1: By symmetry we may assume that αL = 0 and αR = 1. Let Pa be the unique
point above the spine, i.e., Pa is contained in a -blocker. Consider the blocker sequence starting
at Xa. It either ends at X0, enclosing all spine edges XiXi+1, 0 ≤ i ≤ r, and then we are done
with the help of Lemma 15. Otherwise this blocker sequence ends at Xa, enclosing the spine
edges XiXi+1, a ≤ i ≤ r. By considering the blocker sequence starting at X1, we conclude that
in this remaining case there is exactly one free spine edge XcXc+1, 0 ≤ c < a. Again we are
done with the help of Lemma 15.

Case α = 2: We only need to consider the cases (αL, αR) = (1, 1) and (αL, αR) = (0, 2).
Let Pa, Pb, a < b, be the two points above the spine.

We first consider the case (αL, αR) = (1, 1), i.e., Pa is contained in a -blocker and Pb
is contained in a -blocker. Let Sa and Sb be the blocker sequences starting at Xa and Xb,
respectively. Observe that either Sa and Sb both end at Xa, or both end at Xb, or Sa ends
at Xa and Sb ends at Xb. In the first two cases, there are no free spine edges, and in the third
case, there is exactly one free spine edge XcXc+1, a ≤ c < b, which can be seen by considering
the blocker sequence starting at Xa+1. Applying Lemma 15 therefore concludes the proof in all
those subcases.

We now consider the case (αL, αR) = (0, 2), i.e., Pa and Pb are both contained in a -blocker.
Let Xk be the endpoint of the blocker starting at Xa. From Corollary 14, we obtain that k < a,
i.e., the blocker sequence starting at Xa must end at X0, enclosing all spine edges XiXi+1,
0 ≤ i ≤ r. Applying Lemma 15 again completes the proof.

Case α = 3: We only need to consider the cases (αL, αR) = (1, 2) and (αL, αR) = (0, 3).
Let Pa, Pb, Pc, a < b < c, be the three points above the spine.

We first consider the case (αL, αR) = (1, 2), i.e., Pb, Pc are both contained in a -blocker.
Let Xk be the endpoint of the blocker starting at Xb. From Corollary 14, we obtain that k < b,
i.e., the blocker sequence starting at Xb must end at Xa, together with the blocker sequence
starting at Xa, and both enclose all spine edges XiXi+1, 0 ≤ i ≤ r. Consequently, we are done
with the help of Lemma 15.

We now consider the case (αL, αR) = (0, 3), i.e., all three points Pa, Pb, Pc are contained in a
-blocker. Corollary 14 implies that there are at least 2(αR − 1) = 4 points Pi above the spine,

a contradiction.
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X ′c+1

X ′′c+1

Xc−1

X ′c−1

X ′′c−1
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X ′c

X ′′c

Xc+1

Xc+2

Figure 13: Illustration of Lemma 16.

Case α = 4: We only need to consider the cases (αL, αR) = (2, 2), (αL, αR) = (1, 3), and
(αL, αR) = (0, 4). Let Pa, Pb, Pc, Pd, a < b < c < d, be the four points above the spine.

If (αL, αR) = (2, 2), then Corollary 14 shows that the blocker sequences starting at Xb and Xc

cannot coexist: Specifically, the blocker sequence starting at Xb with a -blocker ends at Xi with
b < i ≤ r+1, and the blocker sequence starting at Xc with a -blocker ends at Xj with 0 ≤ j < c.
This is a contradiction. Similarly, if (αL, αR) = (1, 3), then Corollary 14 shows that the blocker
sequences starting at Xa and Xb cannot coexist. If (αL, αR) = (0, 4), then Corollary 14 implies
that there are at least 2(αR − 1) = 6 points Pi above the spine, a contradiction.

Case α > 4: Corollary 14 shows that there are at least 2(αL−1)+2(αR−1) = 2α−4 points Pi
above the spine, which is a contradiction, as 2α− 4 > α for α > 4.

4.2 Case 2: X0X1 is an -edge

Throughout this section, we assume that X0X1 is an -edge. Lemma 10 and the cyclic order of
neighbors around each of the vertices Xi, i = 0, . . . , r + 1, now enforce a particular shape of all
tree edges that connect two degree-4 vertices, as captured by the following lemma; see Figure 13.

Lemma 16. For i = 0, . . . , r, the vertex Xi is left of Xi+1 and both are connected by a -edge
if i is even, and the vertex Xi is right of Xi+1 and both are connected by a -edge if i is odd.
Moreover, for i = 1, . . . , r,

• the vertices X ′i and Xi are connected by an -edge if i is even, and they are connected by an
-edge if i is odd;

• the vertices X ′′i and Xi are connected by an -edge if i is even, and they are connected by an
-edge if i is odd;
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X1
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X4

X3

X ′1

X ′′1

X ′2

X ′′2

X ′3 X ′′3

h1

Ω1
Ω2

(R(X ′1) ∩ Ω1) \ {X3}

(L(X ′′2 ) ∩ Ω2) \ {X4}

h2

Figure 14: Illustration of the proof of Theorem 6 in Case 2.

• the three edges directed from the leaves towards the vertex X0 form a , and the three edges

directed from the leaves towards X ′i and X ′′i form a or , respectively, if i is even, and a

or if i is odd.

We define the length of a spine edge XiXi+1, 0 ≤ i ≤ r, in the embedding as the number
of boxes in the (2, . . . , 2)-staircase between its endpoints plus 1. For instance, if it connects two
neighboring boxes, then its length is 1. By Lemma 16, there is a unique longest spine edge
XcXc+1, 0 ≤ c ≤ r, and the two length sequences of the edges XiXi+1 for i = c, c+ 1, . . . , r and
Xi+1Xi for i = c, c − 1, . . . , 0 are strictly decreasing, i.e., each of the two corresponding parts
of the spine spirals into itself in counterclockwise or clockwise direction, respectively, as shown
in Figure 13. By the requirement that r ≥ 10, the longer of these two sequences consists of at
least 6 spine edges, and by symmetry we may assume that it is the latter one, i.e., the initial
part of the spine looks as shown in Figure 14.

For i ∈ {1, 2}, we let hi denote the horizontal line segment between the vertical segments of
the spine edges XiXi+1 and Xi+2Xi+3, and let Ωi denote the region enclosed by the spine and
this segment; see the figure. One of the leaves of the tree T ∗r must be mapped to the point P1,
which lies in the same box as X1. This can only be the leaf adjacent to X ′′2 via a -edge, or the
leaf adjacent to X ′1 via a -edge, or the leaf adjacent to X ′′1 via a -edge. In the last two cases,
the leaf adjacent to X ′′2 via a -edge must reach into the region (R(X ′1)∩Ω1) \ {X3} or into the
region (R(X ′′1 ) ∩ Ω1) \ {X3}, respectively. This is because this region contains an even number
of points, and therefore an even number of tree vertices must be mapped to them. In any case,
the edge leaving X ′′2 to the right must reach into Ω1. Consequently, the leaf adjacent to X ′′3 via
a -edge must reach into the region (L(X ′′2 ) ∩ Ω2) \ {X4}, in order to map an even number of
tree vertices to this region. However, as none of the leaves of X ′2 can connect to P2, which lies
in the same box as X2, no vertex is mapped to P2, a contradiction.

This completes the proof of Theorem 6.
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5 Computer-based proofs of Theorems 1 and 3

We implemented a C++ program to test whether a given (unordered or ordered) tree admits
an L-shaped embedding in a given set of points. Our algorithm recursively embeds vertices and
edges in all possible ways until either a crossing occurs or a valid drawing is obtained.

Each point set is represented by a permutation, which captures the y-coordinates of the
points from left to right. Those permutations are generated in lexicographic order using the C++
standard library function next permutation. When embedding unordered trees, only point sets
that are non-isomorphic up to rotation and mirroring need to be tested, by considering only the
lexicographically smallest permutation obtained by those operations. Similarly, when embedding
ordered trees, we factor our point sets that are isomorphic up to rotation (but not mirroring).

The list of all non-isomorphic unordered and ordered trees was generated with SageMath [S+18],
using the integrated nauty graph generator [MP14], and then loaded by the C++ program.

When testing ordered trees, we only need to test trees that admit more than one way to
cyclically order the neighbors of all vertices, as otherwise the tree is equivalent to the corre-
sponding unordered tree. Here we consider two ordered trees the same if they differ only in
changing the orientation of all cyclic orders from clockwise to counterclockwise or vice versa,
which corresponds to mirroring the embedding.

As pairs of trees and point sets can be tested independently, we parallelized our computations;
see Table 1. The source code of all those programs is available online [MS].

Table 1: Number of non-isomorphic point sets and unordered/ordered trees with maximum degree 4
up to n ≤ 12, and the computation times of our C++ program. The times marked with * are the sum
of parallelized computations on 16 cores.

n point sets unordered trees CPU time point sets ordered trees CPU time

OEIS/A903 OEIS/A602 OEIS/A263685

4 7 2 9 2

5 23 3 33 3

6 115 5 192 5

7 694 9 1.272 10

8 5.282 18 < 1 sec 10.182 21 < 1 sec

9 46.066 35 9 sec 90.822 48 21 sec

10 456.454 75 7 min 908.160 120 21 min

11 4.999.004 159 12 hours 9.980.160 312 64 hours*

12 59.916.028 355 84 days* 119.761.980 864 —

6 Further non-embeddable examples

In this section, we present further pairs of (unordered) n-vertex trees and sets of n points for
n = 13, 14, 16, 17, 18, 19, 20, which do not admit an L-shaped embedding. The trees Tn are
obtained as subtrees of the tree shown in Figure 15, by taking the subgraph induced by all
unlabeled vertices and the vertices with labels ≤ n. The corresponding point sets are encoded
below in staircase notation. Note that all those staircase point sets have rotation and reflection
symmetry and boxes of size at most 3. The fact that those instances do not allow an L-shaped
embedding was established with computer help via a SAT solver, as described below.
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Tn

16

16

14 17

18

20

1913

Figure 15: The 20-vertex tree T20.

n = 13:

(1,1,2,2,1,2,2,1,1)

(1,1,3,1,1,1,3,1,1)

(2,2,2,1,2,2,2)

(2,3,1,1,1,3,2)

n = 14:

(1,1,2,1,2,2,1,2,1,1)

(2,2,1,2,2,1,2,2)

n = 16:

(1,3,1,1,1,2,1,1,1,3,1)

(1,3,2,1,2,1,2,3,1)

n = 17:

(1,1,3,1,1,3,1,1,3,1,1)

n = 18:

(1,1,2,1,1,1,2,2,1,1,1,2,1,1)

n = 19:

(1,1,3,1,1,1,3,1,1,1,3,1,1)

(1,1,3,1,2,3,2,1,3,1,1)

(1,1,3,2,1,3,1,2,3,1,1)

(2,3,1,1,1,3,1,1,1,3,2)

(2,3,1,2,3,2,1,3,2)

(2,3,2,1,3,1,2,3,2)

n = 20:

(1,1,2,1,1,1,2,2,2,1,1,1,2,1,1)

(1,1,2,1,2,2,2,2,2,1,2,1,1)
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(1,1,2,2,1,2,2,2,1,2,2,1,1)

(2,2,1,1,1,2,2,2,1,1,1,2,2)

(2,2,1,2,2,2,2,2,1,2,2)

(2,2,2,1,2,2,2,1,2,2,2)

6.1 The SAT model

To test whether a given tree with vertex set {1, . . . , n} admits an L-shaped embedding in a given
point set {P1, . . . , Pn}, we formulated a Boolean satisfiability problem that has a solution if and
only if the tree admits an embedding in the point set.

Our SAT model has variables xi,j to indicate whether the vertex i is mapped to the point Pj ,
and for every edge ab in the tree a variable ya,b to indicate whether the edge is connected hori-
zontally to a (otherwise it is connected vertically to a). The following constraints are necessary
and sufficient to guarantee the existence of an L-shaped embedding:

• Injective mapping from vertices to points: Each vertex is mapped to a point, and no
two vertices are mapped to the same point.

• L-shaped edges: For each edge ab of the tree, a is either connected horizontally or vertically
to b. Figure 16(a) gives an illustration.

• No overlapping edge segments: For each pair of incident edges ab and ac, if b and c
are mapped to the right of a, then a cannot be connected horizontally to both b and c.
An analogous statement holds if b and c are both mapped to the left, above, or below a.
Figure 16(b) gives an illustration.

• No crossing edge segments: For each pair of edges ab and cd, the vertices a, b, c, d must not
be mapped so that segments cross. More specifically, for each four points p, q, r, s (to which
a, b, c, d may map), there are at most four cases that have to be forbidden in the mapping,
depending on the relative position of p, q, r, s. Figures 16(c) and 16(d) give an illustration.

a

b

(a)

a

b
c

(b)

a

b

c

d

(c)

a

b = c

d

(d)

Figure 16: Illustration of the constraints of the SAT model.

The resulting CNF formula thus has Θ(n2) variables and Θ(n4) clauses. Our Python program
that creates a SAT instance for a given pair of tree and staircase point set is available online [MS].
We used the SAT solver PicoSAT [Bie08], which allows enumeration of all solutions. We also
made use of pycosat, which provides Python bindings to PicoSAT.

7 Open problems

We currently do not know of any infinite family of (unordered) trees which do not always admit
an L-shaped embedding. However, we conjecture that the instance in Figure 4 is such a family
when considering the tree as unordered. Moreover, since all non-embeddable examples that
we know are trees with pathwidth 2 (lobsters), it would be interesting to know whether trees
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with pathwidth 1 (caterpillars) always admit an L-shaped embedding. So far all known non-
embeddable trees have maximum degree 4, so the question for trees with maximum degree 3
remains open [KS11, FHM+12, DGFF+13].

A more general class of embeddings are orthogeodesic embeddings, where the edges are drawn
with minimal `1-length and consist of segments along the grid induced by the point set [KKRW10,
DGFF+13, Sch15, BBHL16]. The best known bounds are due to Bárány et al. [BBHL16] who
showed that every n-vertex tree with maximum degree 4 admits an orthogeodesic embedding
in every point set of size b11n/8c. Unfortunately, our example T13 allows an orthogeodesic
embedding in S13 (see Figure 17), so the question whether n points are always sufficient to
guarantee an orthogeodesic embedding of any n-vertex tree [DGFF+13, BBHL16], also remains
open.

Y

X1

X3

X2

Figure 17: An orthogeodesic embedding of the tree T13 in the point set S13. The only edge with two
turns (not L-shaped) is drawn dotted.
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