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Abstract

The saturation number of a graph is the cardinality of a smallest maximal matching. This
paper presents bounds for the saturation number of carbon nanocones which are asymptotically
equal. The same techniques are applied for the saturation number of certain families of carbon
nanotubes, which improve previous results and in one case, yields the exact value.
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1 Introduction

Throughout this paper G is an n-vertex, simple graph with vertex set V (G) and edge set E(G).
A matching M in a graph G is a collection of edges of G such that no two edges from M share
a vertex. The cardinality of M is called the size of the matching. A matching M is a maximum
matching if there is no matching in G with greater size. The matching number ν(G) of G is the
cardinality of any maximum matching in G. Since each vertex can be incident to at most one edge
of a matching, it follows that ν(G) ≤ bn/2c for any graph G. If every vertex of G is incident with
an edge in M , then M is called a perfect matching and such graphs have ν(G) = n/2. It is clear
that perfect matchings are also maximum matchings but the converse is not generally true.

Matchings serve as models of many phenomena across the sciences. An important motivation for
their study arose from chemistry, when it was observed that the stability of benzenoid compounds
is related to the number of perfect matchings, also known as Kekulé structures, in the corresponding
chemical graphs. For a survey of these results, see [7]. With the discovery of fullerenes in 1985 [21],
the desire to identify properties characteristic for stable fullerenes led to the enumeration of perfect
matchings [8, 9, 18,25] in these corresponding graphs.

Maximum matchings give one way to quantify the largeness of a matching. Both the enumerative
and structural properties of maximum matchings are well studied and well understood, see [22] for
a general background on such matching theory.

There is yet another way to quantify the largeness of a matching. A maximal matching in G is
a matching that cannot be extended to a larger matching in G. Clearly, every maximum matching
is also maximal but the opposite is usually not true. Chemically, maximal matchings model the
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adsorption of dimers to a molecule, where each dimer bonds to a pair of adjacent atoms in the
molecule. Any such adsorption pattern corresponds to a matching in the graph of the molecule,
and once no further adsorption is possible, such a matching must be maximal. The best case of
adsorption can be viewed as a maximum matching, while the worst case concerns the smallest
possible maximal matching. This idea gives rise to the study of the saturation number of a graph
G, which is the cardinality of any smallest maximal matching in G. Thus the saturation number
is a measure of how inefficient the adsorption process can be. Aside from chemistry, the saturation
number has a number of interesting applications in networks, engineering, etc. The saturation
number of a graph is equal to the cardinality of an independent edge dominating set. Finding an
independent edge dominating set in a graph is an NP-Hard problem [24].

Maximal matchings are much less understood than their maximum counterparts. Some work
has been done on enumerating maximal matchings in certain chemical graphs [11, 13] but this
area remains largely unexplored. Structural properties, such as the saturation number, have been
studied for benzenoid graphs [12], fullerenes [2,3,10], and nanotubes [23]. The paper [12] mentions
the saturation number of nanocones as an interesting, unexplored avenue of study.

This paper considers both nanocones and nanotubes, which are carbon networks situated be-
tween graphene and fullerene in terms of structure. New upper and lower bounds on the saturation
number of nanocones are established, which are asymptotically equal. In addition, lower bounds
for the saturation number of two classes of nanotubes are presented, which improve recent results
[23].

2 Statement of Results

A hexagonal patch, or patch for short, is a planar graph where all faces are hexagons except one
outer or boundary face. All internal vertices have degree 3 and all vertices on the outer face have
degree 2 or 3. For a face F in a planar graph G, let n2(F ) be the number of degree 2 vertices
incident to F and let n2 = n2(G) be the total number of degree 2 vertices in a graph G.

Next it will be useful to introduce some definitions utilized in [4,5,14–16]. The boundary code of
a patch is described by a sequence of 2’s and 3’s corresponding to the degree of the vertices on the
boundary of the patch in cyclic order. A break edge is an edge on the boundary whose endpoints
are both degree 2. A bend edge is an edge on the boundary whose endpoints are both degree 3.

This paper limits itself to patches with nice boundaries. A patch is pseudoconvex if it does not
contain any bend edges. A side of a patch is a path on the boundary between a consecutive pair of
break edges, including the break edges, and the length of a side is the number of degree 3 vertices
on the side.

A defect in a patch is a non-hexagonal face. A defect is internal if all vertices incident to the
face are degree 3. A defect is external if there are degree 2 vertices incident to the face. Using this
terminology, the outer face of a patch can also be called an external defect. Patches can have more
than one external defect. In such a graph, any face incident to degree 2 vertices could the outer
face in a planar drawing.

The following theorem is the main tool in proving lower bounds on the saturation number. This
theorem is a generalization of the theorem proven for fullerenes in [3], in that a fullerene graph
can be viewed as a patch containing exactly 12 pentagonal defects and no vertices of degree 2 (i.e.
fullerenes have no external defects). For the sake of consistency, the proof in Section 3 uses similar
terminology and structure to what was presented in [3].
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Theorem 2.1. Let G be a pseudoconvex patch with n vertices, ok internal defects which are k-gonal
where k is odd, ek internal defects which are k-gonal where k 6= 6 is even, and n2 vertices of degree
2. Then

s(G) ≥ n

3
− 1

18

(∑
k odd

(k − 2)ok +
∑

k even

kek

)
− n2

6
.

2.1 Nanocones

Generally speaking, nanocones are planar graphs where the majority of faces are hexagons, along
with some non-hexagonal faces, most commonly pentagons, in addition to the outer face. This paper
considers these pentagonal defect nanocones as well as nanocones with a single k-gonal defect.

A single-defect k-gonal nanocone with ` layers, CNCk(`), is obtained by taking a cycle on k ≥ 3
vertices, Ck, and surrounding it with ` concentric layers of hexagons. Using previous terminology,
a single-defect k-gonal nanocone is a pseudoconvex patch with a single k-gonal defect at its apex.
By induction, it follows that there are k

(
`+1
2

)
hexagonal faces, k(`+ 1)2 total vertices, and (2`+ 1)k

external vertices. There are k` external vertices of degree 3 and k(`+ 1) vertices of degree 2. The
following Corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2.

s(CNCk(`)) ≥

{
k(`+1)2

3 − k−2
18 −

k(`+1)
6 if k is odd

k(`+1)2

3 − k
18 −

k(`+1)
6 if k is even

Pentagonal defect nanocones are pseudoconvex patches with p pentagons, where 1 ≤ p ≤ 5.
While many arrangements of pentagons and hexagons are possible, a classification result first from
[19, 20] and then independently in [17] shows that it suffices to consider the 8 configurations of
pentagons and or hexagons in Figure 1. Note that the single pentagon configuration is merely
CNC5(0).

A pentagonal defect nanocone with i pentagons and ` layers, CN j
i (`), i ∈ {2, 3, 4, 5} and j ∈

{s, a}, is defined to be the configuration CN j
i in Figure 1 surrounded by ` concentric layers of

hexagons. For reference, the use of s in the superscript designates a symmetric configuration as
drawn in Figure 1 and the use of a represents asymmetric. The configurations CNC5(0) and CN j

i

in Figure 1 are called the caps of the nanocone.
The following Corollary is another consequence of Theorem 2.1, and its proof, containing addi-

tional details, is provided in Section 4.

Corollary 2.3. ˙

(a) s(CN s
2 (`)) ≥ 14+4`(`+4)

3 − 1
3 −

4(`+2)
6

(b) s(CNa
2 (`)) ≥ 11+2`(2`+7)

3 − 1
3 −

4`+7
6

(c) s(CN s
3 (`)) ≥ 10+3`(`+4)

3 − 1
2 −

3(`+2)
6

(d) s(CNa
3 (`)) ≥ 16+`(3`+16)

3 − 1
2 −

3`+8
6

(e) s(CN s
4 (`)) ≥ 12+2`(`+6)

3 − 2
3 −

2(`+3)
6

3



CNC5(0) CN s
2 CNa

2 CN s
3 CNa

3

CN s
4 CNa

4 CNa
5

Figure 1: The 8 configurations of pentagons and or hexagons for pentagonal defect nanocones.

(f) s(CNa
4 (`)) ≥ 15+2`(`+7)

3 − 2
3 −

2`+7
6

(g) s(CNa
5 (`)) ≥ 16+`(`+12)

3 − 5
6 −

`+6
6

The upper bound on the saturation number of nanocones relies on splitting the nanocone in
subgraphs, where the number of subgraphs depends on the number of break edges. The following
Lemma was proven in [16].

Lemma 2.4. [16] In a nanocone, the number of pentagons p and the number of break edges s are
related by

s+ p = 6.

The subgraph used is a benzenoid triangle, Tp, which is a patch that can be constructed by arranging(
p+1
2

)
hexagonal faces in the shape of an equilateral triangle, so that each side of the triangle has p

hexagons. For an example of a benzenoid triangle, see Figure 2. Note that the saturation number
of similar graphs, such as benzenoid parallelograms, was studied in [12]. The upper bound on the
saturation number of benzenoid triangles is presented in Lemma 2.5 which is used to deduce the
upper bounds on the saturation number of nanocones in Theorem 2.6. The proofs of these results
are presented in Section 4.

Lemma 2.5.

s(Tp) ≤
⌊

(p+ 1)(p+ 3)

3

⌋
The upper bound presented in Lemma 2.5 is believed to be the exact value of s(Tp) and is the
sequence A032765 in the OEIS [1].

4



Figure 2: The benzenoid triangle, T5.

Theorem 2.6. ˙

(a) s(CNCk(`)) ≤ k
⌊
`(`+2)

3

⌋
+ k(`+ 1)

(b) s(CN s
2 (`)) ≤ 4

⌊
(`+1)(`+3)

3

⌋
+ 4(`+ 1) + 1

(c) s(CNa
2 (`)) ≤ 3

⌊
(`+1)(`+3)

3

⌋
+
⌊
`(`+2)

3

⌋
+ 4(`+ 1) + 1

(d) s(CN s
3 (`)) ≤ 3

⌊
(`+1)(`+3)

3

⌋
+ 3(`+ 1) + 1

(e) s(CNa
3 (`)) ≤ 2

⌊
(`+2)(`+4)

3

⌋
+
⌊
(`+1)(`+3)

3

⌋
+ 3(`+ 1) + 2

(f) s(CN s
4 (`)) ≤ 2

⌊
(`+2)(`+4)

3

⌋
+ 2(`+ 1) + 3

(g) s(CNa
4 (`)) ≤

⌊
(`+3)(`+5)

3

⌋
+
⌊
(`+2)(`+4)

3

⌋
+ 2(`+ 1) + 4

(h) s(CNa
5 (`)) ≤

⌊
(`+5)(`+7)

3

⌋
+ (`+ 1) + 6

Combining Corollaries 2.2 and 2.3 along with Theorem 2.6 shows that if G is any nanocone
graph with n vertices, then s(G) ∼ n/3. Hence, in a smallest maximal matching, as n gets large
there are roughly 2 matched edges per hexagon. These findings are consistent with the work done
on the saturation number of fullerenes [3] and benzenoid graphs [12].

2.2 Nanotubes

Open ended nanotubes, also called tubulenes, can be obtained in the following way. Starting with a
hexagonal tessellation of a cylinder, take the finite graph induced by all hexagons that lie between
two vertex disjoint cycles, where each cycle encircles the axis of the cylinder. This paper considers
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two types of tubulenes having particularly nice structure, namely zig-zag and arm chair tubulenes,
shown in Figures 3 and 4.

Zig-zag tubulenes, ZT (`,m), have ` horizontal layers of hexagons, each containing m hexagons.
Bounds on the saturation number of such zig-zag were first established in [23], shown in Corollary
2.7.

L1 L2

Figure 3: The zig-zag tubulene, ZT (6, 5), is obtained from the figure above by gluing the lines L1

and L2 together.

Corollary 2.7. [23]

m(`+ 1)

2
≤ s(ZT (`,m)) ≤


m(2`+3)

3 if 3|`
m(2`+1)

3 if 3|(`− 1)
m(2`+2)

3 if 3|(`− 2)

Corollary 2.8 follows as an application of Theorem 2.1 and improves the lower bound for the satu-
ration number of zig-zag tubulenes. The proof is contained in Section 5.

Corollary 2.8.

s(ZT (`,m)) ≥ m(2`+ 1)

3

Combining the new lower bound from Corollary 2.8 and the upper bounds presented in Corollary
2.7, it follows that s(ZT (`,m)) = m(2`+1)

3 whenever 3|(`− 1).
Armchair tubulenes, AT (m, `), have ` vertical layers of hexagons, each containing m hexagons.

The saturation number of armchair tubulenes was also studied in [23], as seen in Corollary 2.9.

Corollary 2.9. [23]

`(m+ 1)

2
≤ s(AT (m, `)) ≤


2`(m+1)

3 if 3|`
(2`+1)(m+1)

3 if 3|(`− 1)
2(`+2)(m+1)

3 if 3|(`− 2)

Another application of Theorem 2.1, Corollary 2.10 improves the lower bound for the saturation
number of armchair tubulenes and its proof is found in Section 5.
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L1 L2

Figure 4: The armchair tubulene, AT (4, 6), is obtained from the figure above by gluing the curves
L1 and L2 together.

Corollary 2.10.

s(AT (m, `)) ≥ `(2m+ 1)

3

From the work above, it follows that the saturation number of zigzag and armchair tubulenes
with n vertices is essentially n/3. This is now consistent with the findings for nanocones, fullerenes,
and benzenoid graphs.

3 Proof of the main tool

Proof (of Theorem 2.1). Let M be a maximal matching in G. Let the edges in M and the vertices
saturated by M be called black, and let the remaining edges and vertices be called white. Let B
and W be the set of all black and white vertices, respectively.

The proof using the discharging method, setting the initial charges as follows:

• Let the initial charge of each black vertex be 3;

• Let the initial charge of each white vertex be −6;

• Let the initial charge of each k-gonal, internal defect be equal to

{
k-2 if k is odd,

k if k is even
; and

• Let the initial charge of each external defect, E, be 3n2(E).

It remains to show that the total sum of the charge in the graph 3|B|−6|W |+
∑

k odd(k−2)ok +∑
k even kek + 3n2 is non-negative. From this it follows that

3|B| ≥ 2|B|+ 2|W | − 1

3

(∑
k odd

(k − 2)ok +
∑

k even

kek

)
− n2

7



implying that

|M | = |B|
2
≥ |B|+ |W |

3
− 1

18

(∑
k odd

(k − 2)ok +
∑

k even

kek

)
− n2

6

=
n

3
− 1

18

(∑
k odd

(k − 2)ok +
∑

k even

kek

)
− n2

6
.

The initial charge is distributed as follows:

(R1) Each external defect sends +3 charge to each incident, degree 2 white vertex.

First note that all vertices of degree 2 in G are incident to an external defect. There are a total
of n2(E) vertices of degree 2 incident to an external defect E, not all of them white vertices, so
after applying (R1) all white vertices of degree 2 in G now have charge -3.

(R2) Each white vertex distributes its negative charge evenly among the adjacent black vertices.

Since M is a maximal matching, W is an independent set in G, so no 2 white vertices are
adjacent. The white vertices of degree 2 are adjacent to exactly 2 black vertices and sends -1.5
charge to each adjacent black vertex. All other white vertices are adjacent to 3 black vertices and
sends -2 charge to each adjacent black vertex. After applying (R2), all white vertices have charge
0.

Let v be a black vertex. Since v is saturated by M , v is adjacent to at least one black vertex
and hence, v is adjacent to at most 2 white vertices. After receiving charge 0, -1.5, -2, -3, -3.5, or
-4 from (R1) according to the number and type of white neighbors, v now has charge 3, 1.5, 1, 0,
-0.5, or -1.

Next, let ev be the black edge incident with v, and let fv be the face incident to v but not ev,
if such a face exists. Note that it’s possible fv is an external defect. If such a face does not exists,
then both v and ev must be incident to an external defect, in which case set uv to be the incident
external defect.

(R3) Each black vertex sends all of its remaining charge to fv or uv.

Note that all charge that was initially present at the vertices of G is now at its faces. Due
to the face that G is pseudoconvex, it is straightforward to check that if v is a black vertex that
sent charge to an external defect according to (R3), then v previously had charge 0, 1, 1.5, or 3.
So external defects receive no negative charge after applying (R3), and hence, their total charge is
non-negative.

Now the only case when a face receives negative charge from (R3) is when a black vertex v with
2 white neighbors sends charge −1 or −1

2 (depending on the degrees of the white neighbors) to fv.
So if a face is incident with at most 1 white vertex, then its charge is certainly non-negative. It
turns out that if a face is incident to at most two white vertices, then its charge is non-negative.

An internal k-gonal defect is incident to at most k/2 white vertices if k is even and (k − 1)/2
white vertices if k is odd. Hence, the negative charge an internal k-gonal defect receives after
applying (R3) is at most k/2 in either case. Therefore, the charge of each such defect is at least
bk/2c after applying (R3).

8



All hexagonal faces have nonnegative charge except those incident to three white vertices. For
the hexagons incident to at least two white vertices, the different cases for hexagons are split into
figures depending on the number of incident vertices of degree 2. The cases for hexagons incident
to 0, 1, 2, and 3 vertices of degree 2 can be seen in Figures 5, 6, 7, and 8, respectively.

-1
-1

-1

(a)

1
-1

(b) (c)

11

1 1

11

(d)

1
-1

1 3

Figure 5: Hexagons adjacent to at least 2 white vertices and 0 vertices of degree 2.

If a hexagon has negative charge as in Figure 5 (a) or Figure 6 (a), then these hexagons are
called bad. If a hexagon has zero charge as in Figure 5 (b), Figure 6 (b), or Figure 7 (a), then
these hexagons are called transitional. If a hexagon has zero charge as in Figure 5 (c), Figure 6 (c),
Figure 7 (b), or Figure 8 (a), then these hexagons are called neutral. Those hexagons with charge
1/2 as in Figure 6 (d), Figure 7 (b), or Figure 8 (b) are called almost neutral. All other hexagons
have a positive charge, and the value of the positive charge is at least the number of incident white
vertices. These hexagons with positive charge are called good.

Let f be a transitional hexagon. Then f is incident to one black edge, two white vertices, and
two black vertices that are incident to black edges not incident to f . Let the white vertex adjacent
to the black edge incident to f be called outgoing. Let the other white vertex, between the black
edges that are not incident to f , be called incoming.

The last steps of the discharging are given by the following rules:

(R4) Each good face sends charge 1 to each incident, degree 3 white vertex.

(R5) Each bad hexagonal face sends charge -1 to each incident, degree 3 white vertex.

(R6) Each transitional hexagonal face sends charge -1 to the incoming degree 3 white vertex, and
it sends charge 1 to the outoing degree 3 white vertex.

After applying (R4)-(R6), there is no negative charge left at the faces of G, and the only possible
negative charge resides at white vertices of degree 3 in G.

Let v be a vertex that was sent charge −1 by either (R5) or (R6), let h be the hexagon that
sent the negative charge to v, and let ui, i = 1, 2, be the black vertices adjacent to v and incident

9



−1
2

−1
2

-1

(a)

1
-1

(b)

1
-1

(c)

−1
2

1

(d)

3
23

2
1

1

3
2−1

2
1

3 3
2
1

(e)

11

3
2−1

2

Figure 6: Hexagons adjacent to at least 2 white vertices and 1 vertex of degree 2.

to h. Since h is either a bad hexagon or transitional hexagon, then the black edges incident to the
ui are not incident to h.

Now let x be the black vertex adjacent to v but not incident to h. Since G is pseudoconvex,
there exists two faces fi, = 1, 2, incident with v different from h, where fi is incident to ui, i = 1, 2.
Without loss of generality, assume the black edge incident with x is incident with f1. Since the
black edges incident to both u1 and x are incident to f1, it follows that f1 is either good or neutral,
so it does not send negative charge to v.

Now consider f2. Since the black edge incident to u2 is incident to f2, then f2 cannot be a bad
hexagon, nor a neutral hexagon due to the black edge incident to x. Furthermore, f2 cannot be
almost-neutral since v is a degree 3 white vertex. If f2 is not incident to any other white vertex
other than v, then f2 is a good hexagon. If f2 is incident to another white vertex at distance 3 from
v, then it is a good hexagon as well. If f2 is incident to another white vertex at distance 2 from v,
then f2 is a transitional hexagon. In the case that f2 is transitional, then v is the outgoing white
vertex for f2. Hence in all considered cases, f2 has sent positive 1 charge to v by (R4) or (R5).

Repeating the above argument, it’s possible G has a chain of adjacent, transitional hexagons,
which in turn, would move charge between adjacent hexagons. If such a chain starts with a bad
hexagon, then the chain cannot close on itself forming a cycle of hexagons. Such a cycle would
have to close at the bad hexagon, implying a white vertex receives negative charge from both a
bad hexagon and transitional hexagon and this cannot happen according to the above argument. A

10



1
-1

(a) (b)

−1
2

1

(c)

11

(d)

3
2
1

Figure 7: Hexagons adjacent to at least 2 white vertices and 2 vertices of degree 2.

(a)

−1
2

1

(b)

3
21

(c)

Figure 8: Hexagons adjacent to at least 2 white vertices and 3 vertices of degree 2.

chain beginning with a transitional hexagon could close to form a cycle of transitional hexagons, in
which case, since transitional hexagons have zero charge, the discharging simply moved zero charge
around in a cycle.

Thus after these last steps of discharging, there is no negative charge in the graph. So the total
sum of charge is non-negative, which finishes the proof.

4 Proofs for nanocones

Proof (of Lemma 2.5). First a construction of a maximal matching M is given and then below it
is shown this matching yields the desired bound. To construct M , Tp is drawn in the plane so that
the hexagons appear in columns and the number of hexagons in columns decreases moving to the
right, as in Figure 10. Moving left to right, the following pattern of matched edges is iterated every
3 columns of hexagons: the first column of k hexagons requires k + 1 matched edges, the second
column of k − 1 hexagons requires k matched edges, and the third column is skipped, since edges
from the second column partially matches the third column. See the bold edges in Figure 10 for

11



h v

u1

u2

x

f1

f2

h v

u1

u2

x

f1

f2

Figure 9: On the left shows the case when h is a bad hexagon and f2 is transitional. On the right
shows when both h and f2 are transitional.

examples of these matchings. This pattern is continued so long as there are at least 3 columns of
hexagons remaining, at which point the pattern breaks. This process yields a maximal matching of
size

(p+ 1) + p+ (p− 2) + (p− 3) + · · ·+ k2 + k1

where the end values ki, i = 1, 2, fall into 3 cases depending on the value of p + 1 modulo 3,
which can be seen in the matchings of T3, T4, and T5 in Figure 10.

Figure 10: Maximal matchings of T2, T3, T4, and T5 as described in Lemma 2.5.

The remaining argument is broken into these 3 cases:

(Case 1) p+ 1 ≡ 0 (mod 3)

In this case, the construction gives a matching of size

((p+ 1) + p) + ((p− 2) + (p− 3)) + · · ·+ (6 + 5) + (3 + 2)

and then iteratively rearranging terms so that the next largest term is now paired with the next
smallest term yields

((p+ 1) + 2) + (p+ 3) + ((p− 2) + 5) + ((p− 3) + 6) + · · · ((p− k) + (k + 3))

12



for some value k. This new sum consists of (p+1)/3) pairs each summing to (p+3), so the matching
has size exactly (p+ 1)(p+ 3)/3.

(Case 2) p+ 1 ≡ 1 (mod 3)

In this case, it also follows that (p+ 3) ≡ 0 (mod 3). The construction gives a matching of size

((p+ 1) + p) + ((p− 2) + (p− 3)) + · · ·+ (4 + 3) + 1

which can be rearranged to

((p+ 1) + 0) + (p+ 1) + ((p− 2) + 3) + ((p− 3) + 4) + · · · ((p− k) + (k + 1))

for some value k. This new sum consists of (n+3)/3) pairs each summing to (p+1), so the matching
has size exactly (p+ 1)(p+ 3)/3.

(Case 3) p+ 1 ≡ 2 (mod 3)

This case has (p+ 1) = 3q + 2 for some integer q. The construction gives a matching of size

((p+ 1) + p) + ((p− 2) + (p− 3)) + · · ·+ (5 + 4) + 2.

First, the smallest and largest terms are paired together, ((p + 1) + 2), and the next largest term,
p, is reserved. The remaining terms are iteratively rearranged so that the next largest term is now
paired with the next smallest term to obtain

((p− 2) + 4) + ((p− 3) + 5) + · · · ((p− k) + (k + 2))

for some value k. This last sum results in (q−1) pairs each summing to (p+2). Hence the matching
has size (p+ 3) + p+ (q − 1)(p+ 2). Now

(p+ 3) + p+ (q − 1)(p+ 2) = (p+ 3) + p+ (q − 1)(p+ 3)− (q − 1)

= p+ q(p+ 3)− (q − 1)

= p− p− 4

3
+ q(p+ 3)

<
2

3
(p+ 3) + q(p+ 3)

=
(p+ 1)(p+ 3)

3

which proves the desired bound.

Proof (of Corollary 2.3). The claimed lower bounds are a straight forward application of Theorem
2.1 depending on the total number of vertices, the number of pentagons, and the number of vertices
of degree 2. The counts of these values are provided below, where both counts of vertices follow by
induction on `.

(a) CN s
2 (`) has 14 + 4`(`+ 4) total vertices, 2 pentagons, and 4(`+ 2) vertices of degree 2.

(b) CNa
2 (`) has 11 + 2`(2`+ 7) total vertices, 2 pentagons, and 4`+ 7 vertices of degree 2.

13



CNC5(4) CNs
2 (3) CNa

2 (3)

CNs
3 (3) CNa

3 (3) CNs
4 (3)

CNa
4 (3) CNa

5 (3)

Figure 11: Nanocones split into benzenoid triangles, or subgraphs thereof, which are represented
by the shaded regions.
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(c) CN s
3 (`) has 10 + 3`(`+ 4) total vertices, 3 pentagons, and 3(`+ 2) vertices of degree 2.

(d) CNa
3 (`) has 16 + `(3`+ 16) total vertices, 3 pentagons, and 3`+ 8 vertices of degree 2.

(e) CN s
4 (`) has 12 + `(2`+ 12) total vertices, 4 pentagons, and 2(`+ 3) vertices of degree 2.

(f) CNa
4 (`) has 15 + `(2`+ 14) total vertices, 4 pentagons, and 2`+ 7 vertices of degree 2.

(g) CNa
5 (`) has 16 + `(`+ 12) total vertices, 5 pentagons, and `+ 6 vertices of degree 2.

Proof (of Theorem 2.6). Observe that a nanocone with s break edges can be split into s benzenoid
triangles, or subgraphs of benzenoid triangles. Each such benzenoid triangle or subgraph resides
between successive hexagons containing the break edges each layer of hexagons, see Figure 11. The
sizes of the triangles depends on the lengths of the sides of the nanocone. Lemma 2.5 can be used
to find a maximal matching of the benzenoid triangles of the indicated size. The union of these
matchings augmented by a matching of size at most s(`+ 1) along the break edges from each layer,
and potentially an additional matching of the cap, gives an upper bound on the size of a maximal
matching of the nanocone. Additional details for each case are provided below.

(a) CNCk(`) has k break edges and therefore can be split into k benzenoid triangles T`−1, each

triangle with a matching of size
⌊
`(`+2)

3

⌋
. The union of these matching augmented by a matching of

size of size k(`+ 1) along the break edges from each layer provides an upper bound for a maximal
matching of CNCk(`).

(b) By Lemma 2.4, CN s
2 (`) has 4 break edges and can be split into 4 benzenoid triangles, T`,

each with a matching of size
⌊
(`+1)(`+3)

3

⌋
. Their union augmented by a matching along the break

edges of size at most 4(`+1) plus an addition edge needed for the remaining edges on the cap yields
the desired upper bound.

(c) By Lemma 2.4, CNa
2 (`) has 4 break edges and can be split into 3 T`’s each with a matching

of size
⌊
(`+1)(`+3)

3

⌋
and an additional T`−1 with a matching of size

⌊
`(`+2)

3

⌋
. The break edges require

at most 4(`+ 1) edges after which the cap requires 1 additional edge.
(d) By Lemma 2.4, CN s

3 (`) has 3 break edges and can be split into 3 T`’s each with a matching

of size
⌊
(`+1)(`+3)

3

⌋
. The break edges union the cap of the nanocone require at most an additional

3(`+ 1) + 1 edges.
(e) Again using Lemma 2.4, CNa

3 (`) has 3 break edges and can be split into T`+1, T`, and a
subgraph of T`+1, which in total require at most

2

⌊
(`+ 2)(`+ 4)

3

⌋
+

⌊
(`+ 1)(`+ 3)

3

⌋
matched edges. The break edges need at most 3(`+ 1) edges and the cap requires at most 2 edges,
proving the desired bound.

(f) Lemma 2.4 gives that CN s
4 (`) has 2 break edges. So CN s

4 (`) can be split into two pieces
which turn out to be subgraphs of T`+1, and each subgraph has a maximal matching of size at most⌊
(`+2)(`+4)

3

⌋
. The union of these matchings augmented by a matching of the break edges of size at

most 2(`+1) along with a matching of size 3 for the remaining edges of the cap provides the desired
maximal matching.

(g) Similar to the case in (f), CNa
4 (`) can be split into subgraphs of T`+1 and T`+2 requiring at

most ⌊
(`+ 3)(`+ 5)

3

⌋
+

⌊
(`+ 2)(`+ 4)

3

⌋
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matched edges. The break edges again require at most 2(`+ 1) matched edges, after which the cap
needs at most 4 edges.

(h) By Lemma 2.4, CNa
5 (`) has 1 break edge and contains a subgraph of T`+4, which according

to Lemma 2.5 has a maximal matching of size at most
⌊
(`+5)(`+8)

3

⌋
. The break edges require at

most (`+ 1) matched edges and the cap needing an additional 6 matched edges.

5 Proofs for nanotubes

Proof (of Corollary 2.8). It follows that ZT (`,m) has 2m` + 2m total vertices and two external
defects at the ends of the cylinder. The external defects each have m vertices of degree 2, for a total
of 2m degree 2 vertices. Now Theorem 2.1 gives that

s(ZT (`,m)) ≥ 2m`+ 2m

3
− 2m

6

=
m(2`+ 1)

3
.

Proof (of Corollary 2.10). The armchair tubulene AT (m, `) has 2m` + 2` total vertices and 2`
vertices of degree 2. Theorem 2.1 gives that

s(AT (m, `)) ≥ 2m`+ 2`

3
− 2`

6

=
`(2m+ 1)

3
.
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[10] T. Došlić, Saturation number of fullerene graphs, J. Math. Chem. 43 (2008), 647–657.
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