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NON-CROSSING TREES, QUADRANGULAR DISSECTIONS, TERNARY TREES, AND

DUALITY PRESERVING BIJECTIONS

NIKOS APOSTOLAKIS

ABSTRACT. Using the theory developed in [1] we define an involutory duality for non-crossing trees
and provide a bijection between the set of non-crossing trees with n vertices and quadrangular dissec-
tions of a 2n-gon by n− 1 non-crossing diagonals that transforms that duality to reflection across an
axis connecting the midpoints of two diametrically opposite sides of the 2n-gon. We also show that
this bijection fits well with well known bijections involving the set of ternary trees with n− 1 internal
vertices and the set of Flagged Perfectly Chain Decomposed Binary Ditrees.

Further by analyzing the natural dihedral group action on the set of quadrangular dissections of
a 2n-gon we provide closed formulae for the number of quadrangular dissections up to rotations
and up to rotations and reflections, the set of non-crossing trees up to rotations and up to rotations
and reflections, the number of self-dual non-crossing trees, and the number of oriented and unori-
ented unlabeled self-dual non-crossing trees. With the exception of the formula giving the number of
unoriented unlabeled non-crossing trees, these formulae are new.

1. THE BIJECTIONS

In [1] we introduced a notion of duality (called mind-body duality) for factorizations in a sym-
metric group Sn, and interpreted it in terms of e-v-graphs (that is graphs with ordered edges and
vertices) and pegs (that is graphs properly embedded in surfaces with boundary). In this paper we
focus on vertex-labeled trees pegged on a disk, or as they are more commonly known, non-crossing
trees. We start by fixing conventions and definitions and recalling some basic facts from [1], and
refer the reader there for more details.

By a non-crossing tree we mean a labeled tree t pegged in D
2 the 2-dimensional disk endowed

with the counterclockwise orientation, and we denote the set of non-crossing trees with n vertices
by Nn. We assume that the vertices of t form the vertices of a regular n-gon and that the order
induced by their labels is compatible with the cyclic order of the boundary circle induced by the
orientation of the disk, and to be concrete for each n we fix the vertices of a regular n-gon with a
standard labeling and we assume that all non-crossing trees have those vertices and that all edges
are embedded as chords of the circle. We emphasize that the orientation of the disk is part of the
definition and we denote by N ⊺

n the set of trees with n vertices pegged in
(
D
2
)⊺

, the disk endowed
with the clockwise orientation. We assume that the elements of N ⊺

n have the same vertices as the
elements of Nn but with their labels reflected across the diameter that passes through the vertex
labeled 1. For a t ∈ Nn we denote by t⊺ the element of N ⊺

n that has the same underlying vertex
labeled tree, see the left and middle of Figure 1 for an example. On the other hand the element of
Nn that is obtained from t by reflecting the edges of t across the diameter passing through 1 will
be denoted t̄, in other words t̄ has an edge (n + 2 − i, n + 2 − j) (addition is taken (mod n)) for
every edge (i, j) of t. We will sometimes denote by s : Nn → Nn the map t 7→ t̄. Figure 1 illustrates
these conventions and definitions.

The set Fn−1 of factorizations of the n-cycle ζn := (nn − 1 . . . , 1) ∈ Sn as a product of minimal
number of transpositions, is in bijection with the set E∗

n of rooted e-trees with n vertices (that is
rooted trees with their edges labeled with labels from the set [n− 1]). An e-tree t can be pegged in
an oriented disk, in such a way that the local order of the edges around every vertex is consistent
with the cyclic order, and declaring the root of t to have label 1 while labeling the other vertices so
that going around the boundary circle in the counterclockwise direction we get the order 1, 2, . . . , n,
gives a non-crossing tree, with labeled edges. Forgetting the e-labels defines a surjection E∗

n → Nn.
Composing this surjection with the bijection Fn → E∗

n gives a surjection πn : Fn → Nn.
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FIGURE 1. A non-crossing tree and its reverses

The braid group on n − 1 strands Bn−1 acts from the right on E∗

n and a duality (the mind-body
duality) was defined in [1] that can be expressed via the this action as

t∗ = (t∆)⊺

where ∆ is the Garside element ofBn−1, and t⊺ stands for the reverse of t, that is the e-tree obtained
by relabeling the edges of t via i→ n− i. A related notion of duality was also defined via

t∗̄ = (t∆−1)⊺

It is known (see [11] and [6]) that two factorizations belong to the same fiber of πn if and only if
they differ by a sequence of interchanges of consecutive commuting factors. A single such inter-
change can be effected by the action of a braid generator σi, and since ∆σi = σn−1−i∆ it follows
that the action of ∆ descends to a map δ : Nn → Nn, and therefore so do the dualities ∗ and ∗̄;
since no confusion is likely we will continue to use ∗ and ∗̄ to denote these dualities even at the

level of Nn
1. In what follows we will also use the notations r(t) and r̄(t)) to denote the image of a

non-crossing tree under ∗ and ∗̄ respectively.
It is easily seen that δ coincides with the dual defined in [8], and was used in [4] to explain

enumerative coincidences. It is also easy to see that

(1) t∗ = s (δ(t)) , t∗̄ = s
(
δ−1(t)

)

See Figure 2 for an example.
It was shown in [1] that the action of ∆ on E∗

n has order 2n, and so it follows that δ also has order
2n; actually as was also observed in [4] δ2 coincides with the map induced in Nn by rotation by
2π/n radians. From this and Equation 1 it follows that the group generated by the involutions r
and s is isomorphic to D2n the dihedral group of order 4n.

It is known that Nn is counted by the generalized Catalan numbers for p = 3 that among many
other objects also count the set Q2n of quadrangular dissections of a labeled 2n-gon by n − 1
dissecting diagonals (see for example [9]). We use νn to denote the generalized Catalan numbers,
so that

|Nn| = νn :=
1

2n− 1

(
3(n − 1)

n− 1

)

There is an obvious D2n-action on Q2n induced by the defining action of D2n on the circle, and
it turns out that there is a simple bijection φ : Q2n → Nn which explains the D2n-action on Nn.
Indeed we can prove that:

Theorem 1.1. There is a bijection φ : Q2n → Nn such that δ is the push forward under φ of rotation by
π/n radians, and r is the push forward under φ of the reflection r1 2 across the axis through the midpoints of
the edges 1 2 and n+1 n+2. Furthermore s is the push forward of the reflection across the axis through 1.

Proof. Let q be a quadrangular dissection of a 2n-gon. Then q has n − 1 quadrangular cells, and
n− 2 dissecting diagonals. Since there are 2n vertices and n− 1 cells, there is at least one cell with
boundary containing three edges of the polygon. By inductively removing such extremal cells one

1We emphasize that we refer to the mind-body duality at the level of rooted e-trees, and not mind-body duality at
the level of factorizations which maps factorizations of ζn to factorizations of ζ−1

n
. Mind-body duality at the level of

factorizations descends to a duality Nn → N
⊺

n
given by by t 7→ δ(t)⊺, see the discussion in Section 5 of [1].



DUALITY PRESERVING BIJECTIONS 3

b

1

b 2

b 3

b
4

b5

t

b

1
b

1∗

b 2

b 2∗

b 3

b
3∗

b
4

b4∗

b5

b5∗

b

1
b

1∗

b 2

b 5∗

b 3

b
4∗

b
4

b3∗

b5

b2∗

b

1

b 2

b 3

b
4

b5

δ(t)

b

1

b 2

b 3

b
4

b5

t∗

FIGURE 2. A non-crossing tree t on the left, δ(t) on top right, and t∗ on bottom right

can see that each dissecting diagonal connects two vertices of opposite parity, and so each cell has
a diagonal that connects two odd vertices and a diagonal that connects two even vertices. The
non-crossing tree φ(q) is the tree obtained by taking the “odd” diagonals of the cells, deleting the
even vertices, and relabeling the odd vertices via 2i− 1 7→ i. Notice that this construction with the
even diagonals will give δ(φ(q)), thus showing that δ is the push-forward of rotation by π/n.

To obtain φ−1(t), for a non-crossing tree t, start by pegging t on the disk with vertices labeled
1, 3, . . . , 2n − 1, and construct δ(t) with vertices labeled 2, 4, . . . , 2n. We get a decomposition of
the 2n-gon into 2n triangles and n − 2 quadrangulars, and each of the quadrangulars has two
opposite vertices on the boundary and two opposite internal vertices. The dissecting diagonals of
φ(t) are the diagonals of the quadrangulars that connect the boundary vertices. See Figure 3, for
an example of this construction.

To see that r is the push forward of that reflection r1 2, notice that r1 2 interchanges “even” and
“odd” diagonals, and maps the vertex labeled i to the vertex labeled 2n + 3 − i (mod 2n), so that
the 2i − 1 (the label of the i-th vertex of t) is mapped to 2(n + 2 − 1) (the label of the i∗-th label of
t∗). Similarly we see that s is the push forward of the reflection across the diameter through 1. �

It is well known that the generalized Catalan numbers νn also count the set Tn−1 of ternary trees
with n − 1 internal vertices. They also count Pn−1 the set of Flagged Perfectly Chain Decomposed
Binary Ditrees with n − 1 vertices defined in [1] and reviewed bellow. We will show that there is a
commutative diagram of bijections:

(2)

Q2n Nn

Tn−1 Pn−1

φ

ψ M

τ

σ



4 NIKOS APOSTOLAKIS

b
7

b8

b9

b10

b

1
b

2

b 3

b 4

b 5

b
6

q

b
7

b8

b9

b10

b

1
b

2

b 3

b 4

b 5

b
6

b
4

b5

b

1

b 2

b 3

φ(q)

b
4

b5

b

1

b 2

b 3

b
4

b4∗

b5

b5∗

b

1
b

1∗

b 2

b 2∗

b 3

b
3∗

b
7

b8

b9

b10

b

1
b

2

b 3

b 4

b 5

b
6

t φ−1(t)

FIGURE 3. The construction of φ : Q2n → Nn (top) and its inverse (bottom)

All of the sets in (2) carry a duality ∗: for Nn and Pn−1 this is the mind-body duality, for Q2n it
is the reflection r1 2 across the diameter through the midpoints of 1 2 and n n+ 1, and for Tn−1 we

define t∗ to be obtained from t recursively by interchanging left and right children at every node2

We’ve already seen that φ preserves duality, and we will actually see that all the maps in (2) are
duality preserving.

The bijection ψ : Q2n → Tn−1 is defined in [9]. Essentially ψ(q) is a sort of dual of q viewed as a
graph embedded in the disk with all its vertices mapped on the boundary circle: the disk is divided
into n − 1 quadrangulars (the cells of the dissection q) and 2n bigons formed by the edges of the
polygons and the arcs of the boundary circle. Let T be the 4-valent plane tree that has a vertex
for each of these regions, and an edge between two vertices if the corresponding regions share an
edge. See Figure 4, where, in the middle, a vertex that correspond to a cell is drawn in the interior
of that cell, and a vertex that corresponds to a bigon is drawn in the boundary arc of that bigon.
Clearly bigons give leaves of T and cells give internal vertices. The ternary tree ψ(t) is obtained
from T by removing the leaf that comes from the bigon that contains the edge 1 2, declaring the
vertex it was attached to be the root of the remaining tree, and using the orientation of the disk to
order the children of any internal vertex. See Figure 4 for an example of this construction.

Clearly the process of obtaining ψ(q) can be reversed: starting with a ternary tree t construct a 4-

valent plane tree T by attaching a new leaf labeled 1 2 bellow the root3. Then list the leaves of T in
preorder (starting at 1 2) and label them by the edges of the 2n-gon in the order 1 2, 2 3, . . . , 2n 1,
and label the corresponding pendant edges by the same label. Since t has 2n − 1 leaves and only
n− 1 internal vertices there is at least one internal vertex with all its children being leaves; if such
a vertex has children (from right to left) i i + 1, i + 1 i + 2, i + 2 i + 3, label it i i + 1 i + 2 i + 3
and the the edge connecting it to its parent i i+ 3. Proceeding recursively we can label all internal
vertices with (the vertices of) a quadrangular, and all non-pendant edges of T with a diagonal
of the polygon. From this decorated tree we can reconstruct the quadrangular dissection, for an
example see Figure 5, where ψ−1(t) is shown as a 4-cluster in the sense of [7].

It is clear that ψ is duality preserving.

2This definition was given in [3]. See also the remark following Theorem 2.2.
3We consider ternary trees growing upwards, as in the right side of Figure 4
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FIGURE 4. The construction of ψ : Q2n → Tn−1

The bijection σ : Nn → Tn−1 is (modulo obvious modifications due to different conventions)
the bijection defined in [5]. The definition of σ there is recursive for n ≥ 3 and it depends on an
arbitrary choice of one of the six bijections N3 → T2. For the rest of this section we recast this
definition as a composition τ ◦ M of two bijections defined for all n ≥ 1, thus eliminating that
arbitrary choice, and then prove that σ = ψ ◦ φ−1.

We note that the construction of ψ−1 can be expressed in terms of ternary algebra: the label of
an internal vertex v of the intermediate tree T is obtained by applying the ternary operator S3

n →
Sn : (a, b, c) 7→ abc to the labels of the outgoing edges of v viewed as transpositions, while the label
of an edge to an internal vertex is obtained by applying the ternary operator S3

n → Sn : (a, b, c) 7→
cba.

Let A be an algebra with one ternary operator Υ: A3 → A freely generated by one element λ,
and let Am stand for the set of elements of A with level m, that is those elements of A that are
obtained bym applications of Υ. There is an obvious and well known (see for example [10], or any
“Discrete Mathematics for Computer Science” textbook) bijection Tm → Am defined by labeling
all the leaves of a ternary tree t by λ and then recursively labeling each internal vertex by the
result of Υ applied to its children; the image of t is then just the label of the root. In the literature
(e.g. [9]) the elements of An−1 are often referred to as ways of parenthesizing n− 1 applications of
a ternary operation. Actually the standard recursive definition of T :=

⋃
m∈N

Tm can be construed
as defining a (tautological) ternary algebra freely generated by the ternary tree λ with one vertex
and no edges. The duality of ternary trees is then defined by λ∗ = λ and

(3) Υ(tl, tm, tr)
∗ = Υ(t∗r, t

∗

m, t
∗

l )

We recall from [1] that a binary ditree is a digraph whose underlying graph is a tree and the in and
out degree of every vertex is at most 2. A vertex of binary ditree is called internal if both its in and
out degrees are at least 1. A Perfect Chain Decomposition (PCD) of a binary ditree t is a decomposition
of the edges of t into chains where trivial chains consisting of only one vertex are allowed, with
the property that every edge of t belongs to exactly one chain and every vertex to exactly two. A
Perfectly Chain Decomposed Binary Ditree is a pair (t, C) consisting of a binary ditree endowed with a
PCD. A flagged Perfectly Chain Decomposed Binary Ditree is a triple (t, C, f) where (t, C) is a Perfectly
Chain Decomposed Binary Ditree and f ∈ C a distinguished chain called its flag. We will use the
abbreviation PCDD to stand for a Flagged Perfectly Chain Decomposed Binary Ditree, and we will
use the same notation (typically t) to denote the PCDD and its underlying binary ditree, and in
that case the flag will be denoted by f(t). For a chain c ∈ C we use the notation α(c) (resp. ω(c))
to stand for the first (resp. last) vertex of c, and for a PCDD t we use the notation α(t) and ω(t) to
stand for α(f) and ω(f) respectively, where f is the flag of t.

The PCD of the PCDD is determined by making a binary choice at every internal vertex, one has
to chose which incoming edge is connected to which outgoing edge. The dual of a PCD C is the
PCD C∗ obtained by making the opposite choice at every internal vertex. The mind-body dual t∗
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FIGURE 5. The construction of ψ−1 : Tn−1 → Q2n

of (t, C, f) ∈ Pm is (t, C∗, f∗) where f∗ is the chain of C∗ determined as follows: α(f∗) = α(f) and
if f is the only chain that starts at α(f) then f∗ is the only chain of t∗ that starts at α(f), otherwise
the first edge of f∗ is the outgoing edge incident at α(f) that does not belong to f , if no such edge
exist then f∗ is a trivial chain. Similarly, t∗̄ is (t, C, f ∗̄), where the definition of f ∗̄ is obtained by the
definition of f∗ by replacing “start” with “end” and α with ω.

The duality-preserving bijection M : Nn → Pn−1 was defined in [1]: given a non-crossing tree t,
the star of each vertex inherits a linear order from the orientation of the disk, and the medial ditree
M(t) is defined as the binary ditree with vertices the edges of t, and there is a dart e1 → e2 if and
only if, e1 and e2 are consecutive edges in the star of a vertex of t. The chains of M(t) are the stars
of the vertices of t, and the flag is the star of 1. For a PCDD d, M−1(d) has vertices the chains of d,
two chains being connected by an edge if they have a vertex of d in common, and the local edge
orders inherited by the chains give M−1(t) a leo structure which pegs it into a disk. The vertex
corresponding to the flag of d is labeled 1 and the orientation of the disk gives us a labeling or the
remaining vertices.

We extend the definition of PCDD to include the following two degenerate4 cases:

4The first one may even be called pointless.
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Definition 1.2. The empty PCDD λ is the triple (∅, {∅} , ∅) consisting of the empty ditree, the perfect
chain decomposition consisting of the empty chain, and the empty chain as flag. The functions α
and ω are not defined for the empty flag, and therefore not for λ either.

The point PCDD p is the triple (p, {p, p} , p), consisting of a ditree with one vertex and no edges,
a chain decomposition consisting of two identical trivial chains, and the unique chain as a flag.

The non-crossing trees that corresponds to λ and p are the unique non-crossing trees with one
and two vertices respectively.

If c is a chain and v a vertex not in cwe will use the notation v → c to denote the trivial chain {v}
if c is empty, and the chain consisting of the edges of c together with an edge v → α(c). Similarly
c→ v is the trivial chain {v} if c is empty, and c augmented by edge ω(c) → v if c is non-empty.

Definition 1.3. Let tl, tm, tr be PCDDs. Their fusion is defined to be the PCDD Υ(tl, tm, tr) where:

• The underlying ditree has vertices the (disjoint) union of the vertices of tl, tm, tr, plus a new
vertex v0. The edges are the edges of tm, tl, tr plus, provided that the corresponding flags
are not empty, edges connecting v0 to α(t1) and α(tr) and an edge connecting ω(tm) to v0.

• The chains are the non-flag chains of tl, tm and tr, and two additional chains: fm → v0 → fr,
and v0 → fl

• The flag is v0 → fl.

Notice that with this definition Υ(λ, λ, λ) = p. An other example is shown in Figure 6: ditrees
are drawn with the convention that the edges are directed upwards, and the flag of each PCDD is
drawn in red.
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FIGURE 6. An example of the fusion of PCDDs

Starting with a non-empty PCDD t and removing α(t) we obtain three PCDDs: tm induced
by the vertices of t that are bellow α(t), tl induced by those vertices of t that are above α(t) and
were connected to α(t) by the first edge of f , and tr induced by the remaining vertices. Clearly
t = Υ(tl, tm, tr), and since t is finite it’s clear that by recursively continuing this process we will
eventually find an expression for t that consists of applications of Υ and λ, and that such expression
is unique. So we have:

Theorem 1.4. The set P :=
⋃

m∈N
Pm endowed with the ternary operator Υ is isomorphic to A. In

particular, every non-empty PCDD t is Υ(tl, tm, tr) for some unique tl, tm, tr.

Theorem 1.4 provides a bijection Pm → Tm but that bijection is not duality-preserving, since
Equation (3) does not quite hold in P, instead we have:

Lemma 1.5. For PCDDs tl, tm, and tr we have:

Υ(tl, tm, tr)
∗ = Υ(t∗r, t

∗̄

m, t
∗

l )

Proof. By the local nature of ∗, for vertices different than v0, α(tl), ω(tm), and α(tr) switching the
connections of edges at every vertex can be done either before or after fusing the PCDDs. Switching
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the connections at ω(tm) means that we connect f
(
t∗̄
)

to v0, and by the switching at v0 the resulting
chain continues by connecting v0 to f(t∗̄l ). The other chain in Υ(tl, tm, tr)

∗ containing v0, which by
definition has to be the flag, connects v0 to f

(
t∗̄r
)
. �

Definition 1.6. We define τ : Pm → Tm recursively: τ(λ) = λ and

τ (Υ(tl, tm, t4)) = Υ(τ (tl) , τ
(
tm

)
, τ (tr))

Now using the fact that t∗̄ = t̄∗ we can inductively prove that τ(t)∗ = τ (t∗). Indeed:

τ (Υ (tl, tm, tr)
∗) = τ

(
Υ
(
t∗r, t

∗̄

m, t
∗

m

))

= Υ
(
τ (t∗r) , τ

(
tm

∗
)
, τ (t∗l )

)

= Υ
(
τ (tr)

∗ , τ
(
tm

)
∗
, τ (tl)

∗
)

= Υ
(
τ (tr) , τ

(
tm

)
, τ (tl)

)
∗

= τ (Υ (tl, tm, tr))
∗

In terms of the non-crossing tree T = M−1(t), v0 corresponds to the right-most edge 1 k incident
to 1, TL = M−1(tl) to the tree to the left of 1, Tm = M−1(tm) to the tree to the left of k, and
Tr = M−1(tr) to the tree to the right of k, see the left side of Figure 7. To see that σ = ψ ◦ φ−1,
notice that the edge of T ∗ dual to 1 k, is mapped to a diagonal 2 l of the 2n-gon, and therefore the
cell of φ−1 (T ) determined by those two dual edges has the edge 1 2 of the 2n-gon in its boundary,
and therefore it corresponds to the root of ψ

(
φ−1 (T )

)
. Clearly the left child of the root is the root

of ψ (φ (Tl)), the middle child is the root of ψ (φ (Tm)), and the right child is the root of ψ (φ (Tr));
see the right side of Figure 7.

b
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Tr
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Tl b

b

b

b

1 2

2k − 1

l Tr

Tm

Tl

FIGURE 7. σ = ψ ◦ φ−1

So we have proved:

Theorem 1.7. Diagram (2) commutes and all arrows are duality preserving.

We close this section by remarking that φ can be generalized to bijections between graphs
pegged on an arbitrary surface with boundary and quadrangular dissections of that surface. One
such generalization, for graphs pegged in an annulus will be explored in a future work (see [2]).

2. ENUMERATIONS

We start by enumerating the set of self-dual non-crossing trees, i.e. non-crossing trees satisfying
t∗ = t. Since σ is duality preserving we can work with self-dual ternary trees instead. Since T is
a free ternary algebra, Equation (3) implies that a ternary tree t is self-dual if and only if it has the
form

(4) t = Υ(t0, t1, t
∗

0)

where t1 is self-dual. It follows that
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Theorem 2.1. The set Sm of self-dual ternary trees with m internal vertices is in bijection with the set Tm

2

for m even, and with the set of ordered pairs of ternary trees with a total number of m−1

2
internal vertices

when m is odd.

Proof. We will recursively define a bijection β that sends a ternary tree t with m vertices to an
ordered triple of ternary trees when m is even and an ordered pair of ternary trees when m is
odd. For m = 0, 1 all relevant sets have one element so β is defined. Assume then that β has
been defined for all values less than m and let t be a self-dual ternary tree with m internal vertices.
Express t = Υ(t0, t1, t

∗

0), where t1 is self-dual, and notice that if m is even then t1 has an odd
number of internal vertices so we can define β(t) = (t0, β(t1)), while if m is odd then t1 has an
even number of internal vertices and so we can define β(t) = (t0,Υ(β(t1))). �

The number of pairs of ternary trees is given by sequence A006013 in the Online Encyclopedia
of Integer Sequences, see also [10]. So as a corollary have the following explicit formula for the
number of self-dual non-crossing trees.

Theorem 2.2. The number of self-dual labeled non-crossing trees (i.e. non-crossing trees t such that t∗ = t)
is

sn =





1

n+ 1

(
3n/2

n/2

)
if n is even

2

n+ 1

(
(3n − 1)/2

(n− 1)/2

)
if n is odd

Obviously sn is also the number of non-crossing trees on [n] such that t∗̄ = t.

We remark that Equation (4) was used in [3] to deduce the formula of Theorem 2.2 using a
generating function argument. In that paper the authors prove that sn is the number of self-dual
ternary trees with n− 1 internal vertices.

Next we take a closer look at the dihedral group action on the set of quadrangular dissections
of a 2n-gon. If δ stands for the rotation by π

n
radians, and r for the reflection r1 2 then D2n ={

δi rj : i = 0, . . . , 2n − 1, j = 0, 1
}

. Note that if s = δ r, then the subgroup
〈
δ2, s

〉
is isomorphic

to Dn, and the restriction of the D2n-action on Q2n on that subgroup coincides with the standard
action of Dn to Nn, where δ2 is rotation by 2π

n
radians and s is reflection across the diameter that

passes through 1.

Theorem 2.3. Every reflection inD2n fixes sn elements of Q2n. Rotation by π radians has nsn fixed points
if n is odd, and nsn

2
if n is even. When n ≡ 2 (mod 4), rotations by ±π

2
have n

2
sn

2

fixed points. No other

rotation has fixed points.

Proof. The basic observation is that the center of the polygon is fixed by all rotations and reflections,
and for a quadrangular dissection q of a 2n-gon fixed by an element of D2n we have two cases: the
center is in the interior of a cell or it’s the midpoint of a dissecting diagonal (which has then to be
a diameter of the circle) of q, and that cell or dissecting diagonal has then to be invariant.

We first examine rotations. If the center is on a dissecting diameter, then since all dissecting
diagonals connect vertices of opposite parity, this can happen if and only if n is odd. This diameter
has to be invariant under the rotation and it follows that the rotation is by π radians. Then q
consists of two dissections (one a rotation by π of the other) of the (n + 1)-gon, glued together
along an edge. See Figure 8 for an example of a rotation invariant dissection of a octadecagon: the
diameter 1 10 is a dissecting diagonal, and q consists of a dissection of a decagon, glued along an
edge to its rotation.

There are n diameters that could be dissecting diagonals, and there are νn+1 = s2n dissections of
the (n+1)-gon. It follows that the central rotation by π has nsn fixed points, and no other rotation
has fixed points.

If on the other hand the center belongs to an invariant cell, then the two diagonal of the cell
are diameters and the rotation either fixes them or rotates one into the other. In the first case we
have rotation by π and in the second by π

2
. The number of cells that are to the south or east of the

invariant cell equals the number of cells to the west or north, and thus there is is an odd number

https://oeis.org/A006013
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FIGURE 8. A rotation invariant quadrangular dissection of the octadecagon

of total cells. It follows that this case occurs only when n is even. For a dissection invariant under
rotation by π radians one can see that it consists of a pair of smaller dissections (not necessarily
both non-empty), one to the south which rotates to the one in the north, and one to the east that
rotates to the one on the west. See Figure 9 for two examples in the case n = 8.

It follows that for a given invariant cell, there are as many invariant dissections as pairs of
invariant dissections with total number of cells equal to 2n − 2, which is counted by s2n. Now an
invariant cell is determined by a pair of invariant diagonals (the two dual edges of the pair of dual
non-crossing trees) and there are n

2
such pairs of dual edges.

Thus rotation by π has ns2n
2

invariant dissections.

b

1

b 2

b 3

b 4

b 5

b 6

b
7b

8
b
9

b
10

b11

b12

b13

b14
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FIGURE 9. Quadrangular dissections of the decahehaxon invariant under rotation

Notice that if n = 2k with k-odd, those pairs that consist of two equal dissections, are also
invariant under rotation by ±π

2
, see for example Figure 10 for a dissection of a dodecagon invariant

under π
2

rotation.
The analysis for reflection invariant dissections is analogous. There are two conjugacy classes

of reflections in D2n: those whose axis passes trough two diametrically opposite vertices, and
those whose axis passes through the midpoints of two diametrically opposite edges. The second
conjugacy class is represented by r1 2 and it has been dealt with in Theorem 2.2.

For a reflection whose axis passes through two diametrically opposite vertices, we observe that
if n is odd, there can be no invariant cell (because there is an even number of them) and so the
axis of reflection is a dissecting diagonal. The whole dissection then consists of a dissection of a
(n + 1)-gon glued to its reflection along an edge. So there are νn+1 = sn of invariant dissections,
for each of the n diameters. For example, Figure 11 displays the three dissections of a decagon that
are invariant under reflection across the axis 1 6.
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FIGURE 11. The three dissections of the decagon invariant under under reflection
across 1 6

If n is even, because we have an odd number of cells, the axis of symmetry cannot be one of the
dissecting diagonals, and there has to be an invariant cell, one of whose diagonals is the axis of
symmetry. That means that at in one of the fixed vertices (say 1) we have two (reflections of each
other) dissecting chords, and the invariant cell is completed by an other pair of reflected dissecting
chords meeting at the other vertex. An invariant dissection is then determined by an ordered pair
of dissections, one to the left of the chord 1 j and the other to the left of the chord j n+ 1. So there
are sn such invariant dissections of each of the n vertex axes. For example Figure 12 shows all the
invariant quadrangular dissections of a dodecagon invariant under reflection across the axis 1 7.

�

Let Q′

2n be the set of unlabeled oriented quadrangular dissections of the 2n-gon, that is quadran-

gular dissections up to rotation, and Q̃2n the set of unlabeled unoriented quadrangular dissections
that is quadrangular dissections up to rotations and reflections. The number of such dissections
q′2n and q̃2n respectively, are sequences A005034 and A005036 respectively, in the Online Encyclo-
pedia of Integer Sequences [14]. Using Theorem 2.3 and Burnside’s lemma we obtain the following
explicit formulas:

Theorem 2.4. The number quadrilateral dissections of a 2n-gon up to rotations is

q
′

2n =





1

2n
(νn + nsn) if n ≡ 1 (mod 2)

1

4n

(
νn + n

2
sn
)

if n ≡ 0 (mod 4)

1

4n

(
νn + n

2
sn + nsn

2

)
if n ≡ 2 (mod 4)

https://oeis.org/A005034
https://oeis.org/A005036
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FIGURE 12. Dissections of the dodecagon invariant under reflection across 1 7

The number quadrilateral dissections of a 2n-gon up to rotations and reflections is

q̃2n =





1

4n
(νn + 3nsn) if n ≡ 1 (mod 2)

1

4n

(
νn + 5n

2
sn
)

if n ≡ 0 (mod 4)

1

4n

(
νn + 5n

2
sn + nsn

2

)
if n ≡ 2 (mod 4)
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We use the notation N
′

n to denote the set of unlabeled oriented non-crossing trees, in other words

an element of N
′

n is an orbit of the action of
〈
δ2
〉
∼= Z/n, and Ñn to denote the set of unlabeled un-

oriented non-crossing trees, in other words an element of Ñn is an orbit of the action of the dihedral
group Dn =

〈
δ2, s

〉
. So Theorem 2.3 allow us to calculate the number of unlabeled oriented and

unoriented non-crossing trees as well. We note that for n even the central element of D2n (rotation
by π) belongs to Dn while for odd n it doesn’t, so that for even n there are no rotation invariant

non-crossing trees. So we have the following theorem, proved in [12]5.

Theorem 2.5 (Noy [12]). The number of non-crossing trees with n vertices up to rotations is

ν
′

n =





νn
2n

if n is odd

1

2n

(
νn + nsn

2

)
if n is even

The number of unlabeled non-crossing trees with n vertices is

ν̃n =





1

2n
(νn + nsn) if n is odd

1

2n

(
νn + 3n

2
sn
)

if n is even

Finally we can use a generalization of Burnside’s Lemma, the ”Counting Lemma” of [13], to
count the number of self-dual unlabeled oriented or unoriented trees. That lemma states that if a
groupG acts on a setX endowed with a permutation r such that rG = Gr, so that r is well defined
in the orbits of G, then N(G, r) the number of orbits fixed by r is given by:

N(G, r) =
1

|G|

∑

g∈G

|{x ∈ G : grx = x}|

Applying this theorem in our case with G =
〈
δ2
〉
∼= Z/n and G =

〈
δ2, r

〉
∼= Dn we get:

Theorem 2.6. The number of self-dual unlabeled oriented non-crossing trees with n vertices is

s
′

n = sn

The number of self-dual unlabeled unoriented self-dual non-crossing trees with n vertices is

s̃n =





sn if n ≡ 1 (mod 2)

sn
2

if n ≡ 0 (mod 4)

sn+sn

2

2
if n ≡ 2 (mod 4)

Proof. For the case of oriented non-crossing trees we need to look at the fixed points of δ2ir for
i = 0, . . . , n − 1. Each of these elements is a reflection in D2n and so by Theorem 2.3 has sn fixed
element.

For the case of unoriented unlabeled non-crossing trees, we need in addition to take into account
the fixed points of δ2is r for i = 0, . . . , n − 1. Since s r = δ−1 this means that we have to take into
account all the fixed points of odd powers of δ, so the result follows from Theorem 2.3. �

Call t ∈ N ′

n anti-self-dual if t∗ = t̄. Clearly an anti-self-dual non-crossing tree is fixed by δi for
some odd power i. So we have:

Theorem 2.7. The number of anti-self-dual non-crossing trees with n vertices is

an =





sn if n ≡ 1 (mod 2)

0 if n ≡ 0 (mod 4)

sn

2

if n ≡ 2 (mod 4)

5The enumeration of oriented unlabeled trees is not explicitly stated there but a formula can be deduced from the
calculations.
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