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Abstract

As a report of a teaching experience, we analyse Haskell programs computing two integer
sequences: the Hamming sequence and the Ulam sequence. For both of them, we investigate
two strategies of computation: the first is based on filtering out those natural numbers that
do not belong to the sequence, whereas the second is based on the direct generation of num-
bers that belong to the sequence. Advocating cross-fertilisation among ideas emerging when
programming in different programming paradigms, in the background, we sketch out some
considerations about corresponding C programs solving the same two problems.

1 Prologue

Prof. Ivano Salvo (writing to a colleague): [. . . ] Teaching can be very boring. Starting to teach
a new course, the first year, one decides what to do according to the course program. The second
year, one tries to arrange things that did not work so well during the previous year, probably taking
into account comments in student evaluation forms, or working on students’ lack of preparation as
highlighted by exams. The third year, one makes it perfect. At least from his or her point of view.
And then. . . ? How one can save himself, and of course his students, from tedium?

I think that you will agree with me that one possible therapy is transforming teaching into
learning and/or “research”. Here, “research” can mean “find new solutions to old problems”, or
just “find some amusing new examples”, sometimes just searching throughout books or the web
and adapt or re-think their solution for your course. . In any case, every year I prefer to choose a
theme, a leitmotif that drives my research of new topics [. . . ].

Prof. Salvo (first lecture, course presentation): Dear pupils, welcome to the course “Functional
and Imperative Programming Pearls”. In this course, we will introduce C and Haskell core lan-
guages, and we will discuss imperative and functional programming styles, by comparing several
solutions to programming problems solved in both these two languages.

This semester, I will get inspiration from the work of Edsger W. Dijkstra. Many intriguing
programming examples presented during lectures and/or proposed as homework assignments will
be chosen from Dijkstra’s classic book “A Discipline of Programming” [Dij76] and from Dijkstra’s
“digitalised” manuscripts [Dij18].
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Exactly twenty years ago, when I was a first year Ph.D. student, I attended a computer science
summer school on Formal Methods for Software Engineering. In one course of that school, prof.
Dijkstra presented some brilliant solutions to small (but not trivial at all) programming exercises.
I can remember quite well only one of them, about determining whether two arrays are equal
modulo shift (and of course, as soon as I became a teacher, I included (an adaption of) it as
optional material in my programming courses), but I can never forget the magic atmosphere of
prof. Dijkstra’s lectures.

At the beginning of each lecture, he would just put a blank slide on the projector (at that time
Power Point was already very popular, but prof. Dijkstra was a tireless amanuensis) and start
to write the post-conditions that the program should satisfy at the bottom of the slide. Then he
started writing commands (obviously in Dijkstra’s guarded command language) mixed with logical
assertions backward from the bottom to the top, until (just below the name of the function) function
reasonable pre-conditions would appear.

2 The Hamming Problem

Prof. Salvo: In “A Discipline of Programming” ([Dij76], Chapter 17, “An Exercise Attributed to
R. W. Hamming”), prof. Dijkstra proposed the following problem:

“To generate in increasing order the sequence 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, . . . of all
numbers divisible by no primes other than 2, 3, or 5. Another way of stating which
values are in the sequence is by means of three axioms:

1. 1 is in the sequence.

2. If x is in the sequence, so are 2x, 3x, and 5x.

3. The sequence contains no other values than those that belong to it on account of 1
and 2.

[. . . ] Being interested only in terminating programs, we shall make a program generating
only the, say, first 1000 values of the sequence.”

Working in Haskell, the last sentence looks funny: thanks to lazy evaluation, we can “easily”
write a program manipulating infinite data structures and, in this case, we can write a program
that generates the infinite list representing the desired sequence.

To make this exercise more intriguing, I want you to solve a generalisation of this problem, so
I ask you to write a program that generates “all numbers divisible by no primes other than those
in a given set P of primes”. We call CP the ordered sequence of numbers that are product of 0 or
more primes in P . Treating CP as a set for convenience, we can concisely define CP as the smallest
set such that 1 ∈ CP , and for all c ∈ CP and for all p ∈ P we have that c · p ∈ CP . In other words,
CP is simply the smallest set closed under products of primes in P .

2.1 A filter program for the Hamming problem

Ms. Agnese Pacifico: I have already written an easy Haskell program during your explanations of
the problem (Fig. 1): this program filters numbers that cannot be factorised by using only numbers
in p out of the list of all natural numbers.
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compositeOf p 1 = True

compositeOf [] n = False

compositeOf (x:xs) n

| mod n x == 0 = compositeOf (x:xs) (div n x)

| otherwise = compositeOf xs n

cp p = filter (compositeOf p) [1..]

Figure 1: A filter solution to the Hamming problem.

Function compositeOf p n adapts a function I wrote as a solution to a past homework: it checks
if n is a composite of the numbers in the list p only. By using the higher order function filter, we
can write a one line Haskell definition of the (generalised) Hamming sequence.

Prof. Salvo: Unfortunately, performances of your program are very poor. The fact is that
composites of a finite set of natural numbers are quite sparse inside natural numbers. This is
immediately evident if we consider the set P = {2}: in this case, CP is the sequence of powers of 2.
Only a really dummy programmer would compute powers of two by checking all natural numbers,
verifying one by one if they can be factorised by using 2 only.

The same holds for many other integer sequences, such as Fibonacci numbers and, I suppose,
for all sequences with density 0 and a reasonably simple generating rule.

Calling A(n) the number of terms of a sequence smaller than n, the density of a sequence is

defined as limn→∞
A(n)
n . For example, the number A(n) for regular numbers, as mathematicians

call composites of 2, 3, and 5, is estimated as log2 n log3 n log5 n
6 and hence Hamming numbers’ density

is 0. Intuitively, this is true for any finite set of primes P .
Even though you correctly follow the Haskell idiom to name a list pattern x:xs, I prefer (probably

because I’m an ML native speaker) to adhere to the following name convention: if x is the name
of a list, I call hx its head (‘head of x’) and tx its tail (‘tail of x’). I find it useful to use patterns
of the form x@(hx:tx) whenever the whole list x is needed in the right hand side of a definition.
This is, of course, a matter of taste, and an exception with respect to my usual suggestion to follow
consolidated language idioms.

2.2 Generative solutions to the Hamming problem

Prof. Salvo: The solution suggested by prof. Dijkstra, of course derived by analysing logical
assertions, and essentially based on monotonicity of the product function, is the following: having
computed the first n numbers in the sequence, let’s say c1, c2, . . . , cn, the number cn+1 can be
computed as the minimum of {2ci | 1 ≤ i ≤ n & 2ci > cn}∪{3ci | 1 ≤ i ≤ n & 3ci > cn}∪{5ci | 1 ≤
i ≤ n & 5ci > cn}. To find cn+1 however, by monotonicity, it is enough to compute the minimum
of the set {2ci+1, 3cj+1, 5ck+1} where 2ci (and 3cj , 5ck respectively) is the last composite of 2 (and
3, 5 respectively) already inserted in the sequence. And, more or less, the same line of reasoning I
expected from you, in your C programs of your homework.

The main obstruction in writing a Haskell program that applies this idea is understanding how to
deal with the infinite list under construction and how to “record” the information about the indices
i, j, k of the last multiples of 2, 3, and 5 inserted in the sequence. The first issue is quite easy,
once you have understood some basic and classical examples of lazy programs, such as Fibonacci
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nextH :: (Ord t, Num t) => t -> t -> [t] -> [t] -> [t]

nextH x y cx@(hcx:tcx) cy@(hcy:tcy)

| fx < fy = fx:nextH x y tcx cy

| fx > fy = fy:nextH x y cx tcy

| otherwise = fx:nextH x y tcx tcy

where

fx = x * hcx

fy = y * hcy

cp = 1:nextH 2 3 cp cp

Figure 2: A generative solution to the Hamming problem. Two numbers version.

numbers or the Sieve of Eratosthenes. At first glance, the second issue is a bit more complex, but
again, the Fibonacci example can provide some useful hints to you.

Agnese: I did it! To simplify the problem, I started by considering the case in which the set P
has just two elements, let’s say P = {x, y}. I have defined a four parameters function nextC x y cx

cy (Fig. 2), where x and y are the numbers in P , and cx and cy are two tails of the (infinite) list
cp under construction representing CP . The first element of cx (i.e. hcx), is the first element of cp

such that fx=x*hcx has not yet been added so far to cp and, similarly, the first element of cy (i.e.
hcy), is the first element of cp such that fy=y*hcy has not yet been added so far to cp. Therefore,
fx and fy are the next candidates to be inserted in the sequence of composites. We choose the
minimum between them and we make a step forward on the corresponding list in the recursive call
of nextH. Of course, fx can be equal to fy. In this case, we can insert indifferently one of them and
make a step forward on both lists.

Prof. Salvo: Along the same lines, you can solve the classical version of the Hamming problem
with P = {2, 3, 5} by defining a function of six parameters that, at each recursive call, computes
the minimum among three numbers and distinguishes all combinations of numbers equal to such
minimum. . . but its code would be unnecessarily cumbersome. It would be much better to approach
the general problem, assuming the set P has an arbitrary cardinality.

Agnese: First of all, it is clear that parameters x and y are useless. Laziness allows us to define
the sequence of composites of x as map (x*) hns (the name hns stands for Hamming numbers).
Therefore, we can consider the list of infinite lists of composites, one for each element in P , that
can be computed as map (\x->(map (x*) hns) p. We can: (1) compute the next element to add to
hns as the minimum m of the finite list of heads of such lists, and (2) make a step forward on all
those lists whose head is m.

As for (1), we can select the list of list heads with (map (\z-> (head z)) c) and computing its
minimum by properly folding the min function. . .

Prof. Salvo: The η–rule, Ms. Pacifico! Do not forget the η–rule from the λ-calculus, Ms.
Pacifico.

Agnese: Right! I’m sorry. . . As for (2), we remove all list heads that are equal to the just
computed new Hamming number, again by using the higher order function map (Fig. 3).

Other Student: Are you confident that no productivity problems arise in your program?
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nextHG :: Ord a => [[a]] -> [a]

nextHG c = m:nextHG y where

m = foldr1 min (map head c)

y = map (\x@(hx:tx)->if hx==m then tx else x) c

cp p = hns

where hns = 1:nextHG (map (\x-> map (x*) hns) p)

Figure 3: A generative solution to the Hamming problem. General version I.

Agnese: Yes, because function nextHG at each invocation computes always a new element of
the resulting infinite list cp and consumes at most one element of each list in the list of lists c.
Therefore, the head of all lists in c of Hamming candidates is always computed before it is needed
in nextHG.

Prof. Salvo Right. Analysing your program, by selecting the minimum of heads of a list of lists,
you have implicitly generalised the merge function to an arbitrary finite number of lists. Maybe
better to call it union, since we need to avoid duplicates in the resulting list. Essentially, you have
just re-discovered the classic functional solution to the Hamming problem (with numbers 2, 3, 5)
in the Bird-Wadler book [BW88].

Agnese (searching frenetically in a book): Oh... yes. A good idea could be to make this explicit,
by defining the union of an arbitrary number of lists, by folding the binary union function inside a
list of ordered lists (Fig. 4). This, essentially, solves the Exercise 7.6.5 in [BW88] and works also if
p contains non-prime numbers.

Prof. Salvo: Excellent, Ms. Pacifico. To be honest, I do not know anything about prof.
Dijkstra’s attitude towards recursive programs and functional programming. After all, all problems
in his book are solved by iterative programs. . .

Agnese: I have found some documents on this topic! At the beginning, he was rather skepti-
cal about functional programming. For example, he firmly criticised John Backus Turing Award
lecture [Bac78] in one of his writings [Dij77]. But some years later he supported Haskell against
Java [Dij01] as a good choice as a programming language in an introductory programming course.
Notwithstanding this, Java was chosen instead of Haskell all the same!

union :: Ord a => [a] -> [a] -> [a]

union x@(hx:tx) y@(hy:ty)

| hx == hy = hx:union tx ty

| hx < hy = hx:union tx y

| hx > hy = hy:union x ty

cp p = hns

where hns = 1:foldr1 union (map (\x-> map (x*) hns) p)

Figure 4: A generative solution to the Hamming problem. General version II.
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Prof. Salvo: Nevertheless, I think he would have appreciated the elegance of these programs. It
is hard to think of an imperative program solving the same problem as much small and elegant as
them. Their “holistic” style in manipulating an infinite list (and a list of infinite lists) as a whole
is perfectly in agreement with the functional style promoted by John Backus in his seminal work
[Bac78] and beloved by functional programmers.

3 Ulam Numbers

Prof. Salvo: Also in teaching activity, research often means leaving known and prefigured paths.
Until now, I have proposed to you several problems from Dijkstra’s writings. However, a sentence
written by prof. Dijkstra in the presentation of the Hamming problem ([Dij76], Chapter 17):

“We include this exercise because its structure is quite typical for a large class of prob-
lems.”

led me to look for some other intriguing integer sequences to be computed. My attention has been
captured by Ulam numbers [Ula64].

The Ulam sequence is defined as follows: u1 = 1, u2 = 2 and un+1 is the least strictly greater
than un number that is a unique sum of two distinct earlier terms. It defines the following infinite
sequence (here all terms up to 100):

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, . . .

For a quick summary of properties (and mainly unanswered questions and unproven conjectures)
of this sequence, you can refer to the Ulam page in The On-line Encyclopedia of Integer Sequences
(OEIS) [Slo18a]. Just to quickly understand this sequence, 5 is not in the sequence because 5 =
3+2 = 4+1 and 1, 2, 3, 4 are all already in the sequence: therefore 5 can be obtained as two distinct
sums of distinct earlier terms. There are also numbers that are not in the sequence because no pair
of earlier numbers gives them as their sum. These numbers form themselves an infinite sequence
[Slo18b], let’s call it v, that starts with the number v1 = 23 (here all terms up to 100):

23, 25, 33, 35, 43, 45, 67, 92, 94, 96, . . .

Despite being quite rare up to 100, they are “more” than Ulam numbers. For example, up to
u1000 = 12294, we have 2173 numbers that are not sums of two Ulam numbers, and v2173 = 12287.

Computing the fascinating Ulam sequence has received attention recently [GM17, Knu16]: mo-
tivated by computing up to trillions of terms in reasonable time, these works investigate heuristics
relying on some unproven properties (but checked experimentally) of Ulam numbers distribution.
These works are far from our main goal here, which is writing programs based on “direct” methods,
i.e. just by applying definitions and some immediate optimisations.

As the definition of the Ulam sequence immediately suggests, Ulam numbers can be computed by
following an approach based on filtering. Indeed, having u1, u2, . . . , un in your hands, it is intuitive
to check if un + 1 is un+1, by checking how many distinct sums of pairs of distinct numbers among
u1, u2, . . . , un give as result un + 1. If un + 1 cannot be obtained as a sum of earlier terms, or it can
be obtained by more than one pair of earlier terms, then we try with un +2 and we have to continue
until we find un+1 that can be at worst un + un−1: this sum is strictly greater than any other sum
that we can get from a pair of numbers in the increasing sequence u1, u2, . . . , un. Incidentally, I
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Figure 5: Ulam program of 67 characters from Code Golf [Aut17]

observe here that this argument proves that Ulam numbers form an infinite sequence. You should
prepare as Homework, a C function: int nextU(listDL L); that, assuming as a precondition that
the doubly linked list L contains the first n Ulam numbers, returns as a result un+1, adding at the
same time un+1 at the end of L.

We will discuss Haskell solutions to the Ulam numbers computation in the next lecture.

3.1 Searching the WEB

Agnese: I have found on the WEB this one-line horrific code [Aut17] of 67 characters only (Fig. 11):

Elena: This abnormal program belongs to the Code Golf community, that is those Haskell, C, or
other language programmers that love challenges like writing a program with the minimum number
of characters. Other virtuosities include, for example, self-reproducing code.

Prof. Salvo: Any interested student is invited to understand what this program exactly does. . .

Dario: Roughly speaking, it selects Ulam numbers from the sequence of natural numbers, by
selecting those numbers x such that the list of y such that there exists z such that x = y+z is a list
of just one element (of course, y and z are taken from the list of already computed Ulam numbers).
Unfortunately, this program is so slow that even computing u8 takes several seconds on the GHCi

Haskell interpreter. . .

Prof. Salvo: So, for exercise, try to prove its termination. I’m not sure it terminates for n > 9.
Some virtuoso Haskell programmer can try to write an equivalent program of 66 characters or less!

Agnese: I found on the OEIS page [Slo18a] another Haskell program computing the Ulam
sequence attributed to Reinhard Zumkeller (Fig. 6). This program follows the filtering approach
you have hinted to us for writing the C function.

The core of this program is the function f: it has three arguments, e, z, and a tail v of the
finite list of already computed Ulam numbers. Function f checks if the Ulam candidate z is the
next Ulam number. To do this, the first parameter e is used to count how many distinct sums of
terms in v give as result z. If this number is 1 it returns z as the next Ulam number, otherwise
f calls itself recursively to verify if z+1 is the next Ulam number. To save computations, as soon
as the first parameter e becomes 2, it discards z and it starts to consider z+1 as the next Ulam
candidate. Function f finds a new sum giving z as result, by checking if z-v belongs to us’ (calling
the standard Prelude function elem). The list us’ another copy (not local to f) of the list of already
computed Ulam numbers.

The function ulam is the engine that produces Ulam numbers. It takes three arguments, n, u, us,
which are, respectively, the number of elements of the sequence already known, the last computed
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Figure 6: Filter-based program from OEIS that computes Ulam numbers [Slo18a].

Ulam number (that is needed to start the computation of f), and an (infinite) list whose first n

elements are the first n Ulam numbers.
At first sight, too many copies of already computed Ulam numbers!

3.2 Generating Ulam Numbers

Prof. Salvo: On the basis of what we learned from the Hamming problem, it is worth investigating
whether a generative solution to the problem of computing Ulam numbers could be more effective
than a filtering one, even though filtering will be always part of any Ulam numbers computation.

Things are interesting here, because we are in a different scenario, now. Even though Ulam
himself conjectured that the density of this sequence is 0, experimentally we know that its density
converges to 0.074, that is un tends to be 13.51n.

Agnese: I’ve just done something! Getting inspiration from my original generative Hamming
solution (Fig. 3), I wrote a program that selects the next Ulam number, let’s say un+1 from a list
c = [c1, . . . , cn] of n infinite lists of candidates, where each ci is an infinite suffix of [ui + ui+1, ui +
ui+2, . . .]. My program (Fig. 7): (1) computes the list chs of heads of lists in c, (2) computes the
minimum m in chs, (3) computes the number k of occurrences of m in chs. (4) then, if k is strictly
greater than 1, it simply calls recursively nextU, on the list of candidates c’ obtained from c by
removing occurrences of m (that appears as the head of some lists); (5) otherwise, if k is 1, m is the
new Ulam number and a new list cn+1 = [un+1 + ui+2, un+1 + un+3, . . .] is added to c’. . . (Agnese
has just pushed a button on her laptop, probably to run her program, and now she is staring at the
screen) Unfortunately...

Prof. Salvo: . . . It fails to compute u4 = 6, I suppose. Because your program tries to get the
head of a not already computed list. Your informal argument to prove that no productivity issues
arise in your solution to the Hamming problem does not work here. Your Ulam program can repeat
head extractions more than once, before computing a new number.

Agnese: Yes. . . But we need only sums of pairs among u1, u2, . . . , un, so I can add to each list a
number. . .

Prof. Salvo: Of course, Ms. Pacifico. I’m pretty sure that you can quickly arrange your code
and make it work. But your program will be even murkier than it is now!

What we really need to compute un+1 are the increasing finite list of all sums ui + uj , for
1 ≤ i < j ≤ n.
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nextU :: (Ord a, Num a) => [a] -> [[a]] -> [a]

nextU u@(hu:tu) c = if k>1 then nextU u c’

else m:nextU tu c’’

where

chs = map head c

m = foldr1 min chs

k = foldl1 (+)(map (\x->if x==m then 1 else 0) chs)

c’ = map (\x@(hx:tx)->if hx==m then tx else x) c

c’’ = map (hu+) tu:c’

ulam = 1:2:nextU tu [map (1+) tu] where tu = tail ulam

Figure 7: Generative solution to compute Ulam numbers. Wrong solution (productivity problems).

Agnese That’s right: it is enough, whenever a new Ulam number is generated, to generate the
finite list of sums with its predecessors!

The basic idea of my new generative program (Fig. 8) is the following: whenever un has been
computed, it generates all sums u1 +un, u2 +un, . . . , un−1 +un and it inserts them in a list of Ulam
candidates. I have defined a sum type UlamC to distinguish numbers that have been obtained as
the sum of just one pair of earlier terms (Unique n) from those that are sum of more than one pair
(Duplic n).

Each recursive call of the engine nextU assumes that the first element of the list of candidates
is the next Ulam number. To guarantee this precondition: (1) we insert all sums generated by the
new Ulam number with its predecessors preds (selected by takeWhile (<u) ulam) into the tail tc of
the list c of candidates; (2) function insert takes care to correctly classify new sums into Unique

and Duplic and keep them in increasing order; (3) finally, the prefix of duplicated sums is removed
from the list of candidates by dropWhile (isNotUlam) c’ to ensure that c’’ satisfies preconditions
of nextU in the nextU recursive call.

Unfortunately, we can not remove a number from the list of Ulam candidates as soon as we find
at least two distinct pairs that give it as their sum, simply because this number could be generated
again as the sum of a pair containing an Ulam number that will be computed later.

Prof. Salvo: Not bad, Ms. Pacifico: the main benefit of your program, compared to any program
based on a filtering approach, is to avoid checking numbers that are not the sum of any pair of
Ulam numbers, i.e. all numbers that belong to the above mentioned sequence v (see Section 3).
Its computational complexity is clearly quadratic in n (to compute un) as it computes n(n− 1)/2.
Experimentally it performs much better than the Reinhard Zumkeller program of Fig. 6 (see Section
3.4 later on).

3.3 Back to the Filtering Approach

Prof. Salvo: As I told you several times, writing programs in different languages can give you new
insights into solving a problem. When I assigned to you the problem of writing a C function that
computes the Ulam sequence, I had in mind essentially a filtering approach. And almost all of you
followed this path of reasoning (perhaps influenced by my implicit or explicit hints in classroom
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data UlamC = Unique Int | Duplic Int

value (Duplic x) = x

value (Unique x) = x

isNotUlam (Duplic x) = True

isNotUlam (Unique x) = False

insert :: [Int] -> [UlamC] -> [UlamC]

insert s [] = map (\x->(Unique x)) s

insert [] c = c

insert s@(hs:ts) c@(hc:tc)

| hs < m = (Unique hs):insert ts c

| hs == m = (Duplic hs):insert ts tc

| otherwise = hc:insert s tc

where m = value hc

nextU :: [UlamC] -> [Int] -> [Int]

nextU ((Unique u):tc) ulam = u:nextU c’’ ulam where

preds = takeWhile (<u) ulam

c’ = insert (map (+u) preds) tc

c’’ = dropWhile isNotUlam c’

ulam = 1:2:nextU [(Unique 3)] ulam

Figure 8: Generative solution to the computation of Ulam numbers.

problem discussions).
Therefore, after writing the Haskell generative program in Fig. 8, it has been natural for me to

implement its corresponding C program and to check if the generative C program is faster than the
C program based on a filtering approach.

Agnese: I did it too, and the answer is no. My filtering based C program (see Appendix,
Fig. 15) runs significantly faster than my generative C program (see Appendix, Fig. 16). For a
while, I interpreted this surprising fact as a nice property of the lazy computational mechanism
behind Haskell that automatically avoids computing not needed sums. I have spent the last week
trying to improve my generative C program in order to get a program that carefully computes only
needed sums. At the end of the week, I gave up.

Prof. Salvo: Unfortunately for you, the moral is not that your generative C program is not
good enough, but rather than the OEIS Haskell filtering program is not good enough!

Indeed, upon closer inspection, my filtering C program (and I suppose your filtering C program
too) is essentially based on a slightly refined idea, that came natural in my mind the first time I
designed a C program to compute Ulam numbers: let us suppose z be a candidate to be un+1 and
that we are examining ui and uj (1 ≤ i < j ≤ n). If ui + uj < z, then we should continue by
checking if ui+1 +uj > ui +uj is equal to z. Symmetrically, if ui +uj > z, then we should continue
by checking if ui +uj−1 < ui +uj is equal to z. Finally, if z = ui +uj and this is the first sum that
gives z as result, we check if there exist other sums, starting from ui+1 + uj−1. If ui + uj is not the
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reverseK k l = revKAux k l [] where

revKAux 0 l m = m

revKAux k (h:t) m = revKAux (k-1) t (h:m)

howManySums n [] _ = 0

howManySums n _ [] = 0

howManySums n u@(hu:tu) r@(hr:tr)

| hr <= hu = 0

| hu+hr == n = 1+howManySums n tu tr

| hu+hr < n = howManySums n tu r

| otherwise = howManySums n u tr

nextU n k l =

if howManySums n l (reverseK k l)==1

then n:nextU (n+1) (k+1) l

else nextU (n+1) k l

ulam = 1:2:nextU 3 2 ulam

Figure 9: Näıve filtering program.

first sum encountered so far giving z as result, we can immediately conclude that z is not un+1. If
j ≥ i and if z has been obtained just once, then we can conclude that z is un+1, otherwise (that is,
if no sum has been found giving z as a result), we can again conclude that z is not un+1. Starting
this process with i = 1 and j = n, we can efficiently (even though still linear in n) verify whether
z is un+1 or not.

To implement this idea, we need to scan the sequence u1, . . . , un in both directions, and not
without reason, I required to you, in your C program, to store Ulam numbers in a double-linked
list, in the hope that you would have exploited the possibility of scanning a double linked list in
both directions (using arrays, this idea works almost the same).

Now, our key question is finally clear: how to efficiently implement this idea when working with
Haskell lists, which can be visited only forwards?

Agnese: I’ve got it: we need both Ulam numbers and the list of Ulam numbers computed so
far in the reversed order. Referring to your analysis, incrementing i means advance on the Ulam
sequence, decrementing j means advance on the reversed Ulam sequence, and finally, since u is an
increasing sequence, the condition i < j is equivalent to the condition ui < uj , and therefore we
have to continue until the head of the Ulam sequence is strictly less than the head of its reversed
counterpart.

I have made a first attempt to do this (Fig. 9). This program is much faster than the OEIS
program (Fig. 6), but it still performs rather worse than the generative version (Fig. 8).

Prof. Salvo: Your program has essentially two problems: (1) function howManySums n l m always
computes all possible sums (without stopping when it finds the second one equal to n) and, more
importantly, (2) it reverses the list of Ulam numbers computed so far, at each invocation of function
nextU, that is each time it starts to examine if a new candidate is the next Ulam number.

We can solve both these problems by using standard tricks in functional programming that can
be summarised in the slogan that was often repeated by my Maestro, prof. Corrado Böhm: “func-
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nextUlam :: (Num a, Ord a) => a -> [a] -> [a] -> [a]

nextUlam n u uR

| isUlam n 0 u uR = n:nextUlam (n+1) u (n:uR)

| otherwise = nextUlam (n+1) u uR

where

isUlam n 2 _ _ = False

isUlam n h u@(hu:tu) r@(hr:tr)

| hr<=hu = h == 1

| hr+hu==n = isUlam n (h+1) tu tr

| hr+hu<n = isUlam n h tu r

| otherwise = isUlam n h u tr

ulam = 1:2:nextUlam 3 ulam [2,1]

Figure 10: Optimised filtering solution.

tional programming is stateless, but function parameters are stateful”, meaning that parameters
can be used to store intermediate results of some computations.

Agnese: Oh right... and we can use the same trick in Zumkeller’s function f (Fig. 6) and the
trick in the reverseK function (Fig. 9). Function howManySums can be defined with a supplementary
parameter! Anyway, I have written a new boolean function isUlam n h u r that uses the parameter
h to transmit information to its recursive calls on how many sums equal to n have been found so
far, and immediately returns False as soon as the value of h is 2.

We can avoid reversing the Ulam sequence at each invocation of function nextU just by adding
a supplementary parameter to it that keeps the reversed list of Ulam numbers computed so far.
This, in turn, makes the parameter k of nextU old version useless, as it was needed in the program
of Fig. 9 to reverse just the first k elements of the potentially infinite list of Ulam numbers.

Function nextU n u r now has three parameters: the next candidate to be checked, the Ulam
sequence under construction, and the finite reversed list of Ulam numbers computed so far. The
precondition that r is the reverse of u is guaranteed by the first call and then it is maintained since
whenever nextU produces a new Ulam number, we add it in front of r.

This program is also as short as the OEIS program and, in my opinion, even cleaner!

Prof. Salvo: Excellent work, Ms. Pacifico. To reward your brilliant contributions to our class
discussion in these lectures about integer sequences, I want you to prepare some experimental results
and some discussion about computational complexity of all Ulam programs discussed so far. Next
Monday, for the last lecture, you will give a classroom presentation.

Agnese (screaming): But Prof. Salvo! It’s Friday afternoon...

Prof. Salvo: Yes, I know. So, Ms. Pacifico, the moral is: don’t was-te ti-me scream-ing!

3.4 Complexity Considerations and Experiments

Agnese: It is known that the computation of un+1 having u1, . . . , un costs at least O(n). Since
computing un requires to know all its predecessors, it takes O(n2) to compute the first n terms of
the sequence. Therefore, as observed in [GM17], any “direct” algorithm is at best quadratic in n.
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Figure 11: Program running time (up to n = 20.000)

This is true, only if one properly takes advantage of storing Ulam numbers in ordered lists, as it is
natural. All our programs do this, and hence they are all quadratic.

By contrast, to check if a candidate z is un+1, the OEIS program calls, for all i ≤ n, the linear
function elem to verify if z − ui is one of u1, . . . , un. Therefore, it computes un+1 in O(n2) and the
first n Ulam numbers in O(n3). This is confirmed by my experimental results (see Fig. 11).

I run all programs by using the compiler GHC 8.2.1 on my laptop, TOSHIBA SATELLITE
Z30-B-100, Windows 8.1, CPU Intel R©CoreTM x64, i-5-5200U, 2.20GHz, 8GB of RAM. Here I have
plotted running times of all programs we considered in the last two lectures up to n = 20.000.

Prof. Salvo: Strictly speaking, this is not true, Ms. Pacifico. I don’t see in your picture any
mention to the running time of the 67 characters program!

Agnese: But. . . Prof. Salvo, the first experiment with n = 1000 is still running after 3 days!

Prof. Salvo: You could plot some dots in the up-left corner of your picture, but please, go on.

Agnese: Besides näıve filtering, generative, and optimised filtering, I have considered also two
more programs, each of which makes use of just one of our two optimisations leading from näıve
filtering to its optimised version: one avoids reversing the list of Ulam numbers at each nextU

invocation (“no reverse, all sums”), and the other one discards the candidate at hand as soon as
it finds two sums of earlier terms equal to it (“reverse, stops at h = 2”). Interestingly, in Fig. 11,
we can see that the generative program looks faster than both of these two “partially optimised”
programs.

To refine our theoretical analysis, we need to get rid of O notation and to include constants
multiplying n2 into play. This is a risky game, in the sense that now we must be as careful as possible
to estimate these constants. We assume the following experimental evidence: un is approximately
13.5n and up to un we have about 2.5n numbers that are not sums of two Ulam numbers.

The näıve filtering program computes un+1 checking (on average) 13.5 candidates. For each of
them, it invokes functions howManySum and reverseK and both of them cost n. Applying the Gauss
formula for the sum of the first n naturals, we get that computing un costs 13.5 · 2

∑n
i=0 i, that is

13.5n2. Avoiding reverseK, the cost decreases to 6.75n2. It is not clear to me how to estimate the
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impact of stopping at h = 2 but it is really relevant, as it is clear from experimental results.
As for the generative program, the computation of un+1 requires (1) to discard prefix of duplicate

sums in the candidate list (this can be ignored, since it does not depend on n, requiring on average
11 (= 13.5− 2.5) steps), (2) to compute sums of the new Ulam number with its predecessors that
costs n, and (3) inserting such sums into the list of candidates: function insert is a sort of merge

between a list of numbers in the interval [un + 1, un + un−1] ≈ [13.5n, 27n], but again without
numbers that are not sums of Ulam numbers, and a list of n numbers. Therefore, insert costs
about 12n. Putting everything together as before with Gauss formula, we have about 6.5n2.

The running time of the Haskell generative program is very close to that of the optimised Haskell
filtering program. Interestingly, the C program based on filtering is more than 6 times faster than
C generative program for n = 20.000.

Elena: Excuse me, Agnese, I have many questions for you: (1) Only extraction of the next Ulam
number forces the list of candidates to be really computed by the lazy evaluation of Haskell. How this
come into play? This could be related to your observations about comparison between corresponding
C programs. (2) Long time ago, you showed me a paper about the Sieve of Eratosthenes [O’N09]:
there, advanced data structures were used instead of lists. Could these data structures improve
running time of your programs? (3) Could we think about a hybrid approach?

Prof. Salvo Prime numbers, Sieve of Eratosthenes, making use of advanced data structures,
complexity analysis of lazy programs. . . exciting topics for holiday homework assignments! Excel-
lent work, Ms. Pacifico. We stop here: for this year, it’s enough.

4 Epilogue

Prof. Salvo (farewell speech): It has been a great pleasure for me to have all of you as students
in my course of “Functional and Imperative Programming Pearls”. Working together, we learned
several lessons:

• reading old books, especially when written by inspired authors, can transmit new ideas;

• asymptotic analysis of computational complexity is a solid foundation that you must never
forget. Nevertheless, writing good and effective programs sometimes requires some ingenuity, even
if you are implementing the best available algorithm to solve a given problem;

• Programming Languages are also conceptual tools: writing (and thinking) programs in dif-
ferent languages may help us to stay away from artless results. As an example, getting inspiration
from functional programming, you can write C code as clean as possible. Similarly, some code
optimisations could be more easily figured out when thinking a program as a sequence of memory
transformations: then you can find how to apply such ideas in your functional code;

• Beauty is important: often (unfortunately not always) a small and elegant solution demon-
strates that you have grasped the core of a problem, instead of loosing yourself in analysing useless
corner cases;

• it is important to write programs according to language’s etiquette or idiom: this helps you
to quickly understand code written by other smart programmers and (possibly) collaborate with
them.

And of course, don’t forget your holiday homework assignments!

14



Acknowledgment

We wish to thank anonymous reviewers of an earlier version of this paper for their useful comments
and suggestions.

References

[Aut17] Anonymous Author. Code golf. https://codegolf.stackexchange.com/questions/

37438/generate-ulam-numbers, 2017.

[Bac78] John Backus. Can programming be liberated from the von neumann style?: A functional
style and its algebra of programs. Commun. ACM, 21(8):613–641, August 1978.

[Bir15] Richard S. Bird. How to mingle streams. J. Funct. Program., 25, 2015.

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

[Dij76] Esdger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[Dij77] Esdger W. Dijkstra. Ewd692: A review of the 1977 Turing Award lecture by John Backus.
http://www-cs-faculty.stanford.edu/uno/programs.html, 1977.

[Dij01] Esdger W. Dijkstra. Letter to the members of the budget council. http://www.cs.

utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html, April 2001.

[Dij18] Esdger W. Dijkstra. E. W. Dijkstra Archive: The manuscript of E. W. Dijkstra. http:

//www.cs.utexas.edu/~EWD/, 2018.

[GM17] Philip Gibbs and Judson McCranie. The ulam numbers up to one trillion. http://vixra.
org/abs/1711.0134, November 2017.

[Knu16] Donald Knuth. Documentation of program ulam-gibbs. http://www-cs-faculty.

stanford.edu/uno/programs.html, 2016.

[O’N09] Melissa E. O’Neill. The genuine sieve of erathosthenes. J. Funct. Program., 19(1):95–106,
2009.

[Slo18a] N. J. A. Sloane. The on-line encyclopedia of integer sequences. https://oeis.org/

A002858, 2018.

[Slo18b] N. J. A. Sloane. The on-line encyclopedia of integer sequences. https://oeis.org/

A033629, 2018.

[Ula64] Stanislaw M. Ulam. Problems in Modern Mathematics. Dover Phoenix Editions, 1964.

15

https://codegolf.stackexchange.com/questions/37438/generate-ulam-numbers
https://codegolf.stackexchange.com/questions/37438/generate-ulam-numbers
http://www-cs-faculty.stanford.edu/ uno/programs.html
http://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html
http://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html
http://www.cs.utexas.edu/~EWD/
http://www.cs.utexas.edu/~EWD/
http://vixra.org/abs/1711.0134
http://vixra.org/abs/1711.0134
http://www-cs-faculty.stanford.edu/ uno/programs.html
http://www-cs-faculty.stanford.edu/ uno/programs.html
https://oeis.org/A002858
https://oeis.org/A002858
https://oeis.org/A033629
https://oeis.org/A033629


5 Afterword

Agnese, Elena, and Dario are together at the end of summer.

Agnese: You look so blissful, guys. What about holiday homework assignments? I’m struggling
with an exercise given by Prof. Salvo. I do not understand how to compute prime numbers taking
advantage of my nice program that computes composites. . .

Elena: I found something similar in [O’N09]: in the Epilogue there is a sharp program credited
to Richard S. Bird.

Agnese: Yes, I read that paper, but that program works with multiples of primes: I would like
to program the Sieve of Eratosthenes in such a way that each composite is crossed over just once!
I’m trying to work with a list whose first element is the list of composites of two, the second element
is the list of numbers that are composite of three but not of two, and so on... and then complement
the merge of such lists, probably applying techniques in [O’N09] and [Bir15].

Dario: Yes, but doing so, one need to complement several times infinite lists. I did some
work in this direction as you, for example, have a look to this program (Fig. 12). I wrote also
some optimised versions, but while the code gets more and more obscure, improvements are very
little. . . trial division performs always much better than my sieves! My laptop got hot and GCHi got
crazy because of garbage collector!

minus (x:xs) (y:ys)

| x==y = minus xs ys

| x<y = x:minus xs (y:ys)

| x>y = minus (x:xs) ys

mySieve (x:xs) = x:mySieve (minus xs (map (x*) (x:xs)))

primes = mySieve [2..]

Figure 12: Sieve of Eratosthene I. Inefficient version.

Agnese: You are right! It is not trivial to generate all composites of primes without comple-
menting infinite lists, as your program does by using function minus.

Maybe that a new approach to the Hamming problem could help (Fig. 13): the idea is that
composites of x1, . . . xn are the powers P = {x1, x21, x31, . . .} of x1, plus all the composites C of
{x2, . . . , xn}, plus all the products of elements in P with elements in C, that is the set {p · c | p ∈
P, c ∈ C}.

Elena: Since Haskell allow one to mimic set comprehension via list comprehension, why don’t
you define allProducts simply as:

allProducts xs zs = [x*z | x<-xs, z<-zs]

Agnese: You are right, but again, due to productivity problems, this does not work in the
solution of this problem. I take inspiration from the Sieve of Eratosthenes of prof. Bird in [O’N09]:
we know that the first element of map (x*) z is always smaller than the first element of allProducts

xs z and I take advantage of this fact to compute a new product even when products computed by
recursive calls are not ready.
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unionP (x:xs) ys = x:union xs ys

allProducts x [] = []

allProducts [] z = z

allProducts (x:xs) z = map (x*) z ‘unionP‘ allProducts xs z

hammingAux [] = []

hammingAux (x:xs) = p ‘unionP‘ h ‘unionP‘ allProducts p h where

p = x : map (*x) p

h = hammingAux xs

hamming l = 1:hammingAux l

Figure 13: Hamming problem, revisited.

To do so, I borrow the merge’ function of prof. Bird, that always take the first element from the
first parameter (here I call it unionP, and union in its definition is the function defined in Fig. 4,
with standard equations for empty lists). Having this idea in mind, we observe that prime numbers
satisfy this recursive equation: primes = N≥2 \ (composites primes), that in turn is equivalent to:

primes = {2} ∪ N≥3 \ (composites primes)

useful to start the lazy computation of the sequence of primes. This is the main idea of my efficient
prime numbers generator (Fig. 14), that generates just once each composite number. Finally, we
have to take care to avoid to generate prime numbers in function composites, but to use them in
new products! Therefore, the function composites is slightly more complicated than the function
hammingAux in the solution of the Hamming problem: it removes x from the sequence of powers of
x, but it insert prime numbers greater than x in the set of composites of successors of x to multiply
them with powers of x.

Dario: Nice work, but. . . what about its performance?

Agnese: Rather good. It is about twice faster than Bird’s program to compute the first 100.000
primes and almost three times faster to compute the first 500.000 primes. Therefore, I conjecture
that it is asymptotically faster.

I should calculate its complexity carefully, but now, I’m really tired. After all, tomorrow is
another day.

allProducts (x:xs) z = map (x*) z ‘unionP‘ allProducts xs z

composites (x:xs) =

tail p ‘unionP‘ allProducts p (union xs c) ‘unionP‘ c

where

p = x : map (*x) p

c = composites xs

primes = 2:([3..] ‘minus‘ composites primes)

Figure 14: Sieve of Eratosthene II. Efficient version.
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A C programs

For the sake of completeness, in this section we show C programs for computing Ulam numbers
we refer to in the paper text. In Fig. 15, we show C implementation of function nextU based on
filtering. It implements the same algorithm as the Haskell program in Fig. 10.

Ulam numbers are stored in a double linked list. The type listDL allow us to scan a list in both
direction (using pointers next and previous) and to have direct access to the first and the last node
of a list (using pointers first and last in the list descriptor).

In Fig. 16, we show a C implementation of the generative approach of the Haskell program
in Fig. 8. Here, we use an array to store Ulam numbers. Since direct access is not important in
these computations and (probably) thanks to optimised memory allocation implemented in the C
run-time environment, experimentally, using arrays speeds-up running time just about 5% with
respect to list-based implementations.

The functions insert mimics the Haskell insert function, and function elim implements the
elimination of prefixes of non-Ulam numbers in the list of candidates performed by the line dropWhile

isNotUlam c’ in the Haskell program.

int nextU(listDL u){

listDL inf;

listDL sup;

int new = u->last->val;

do { new++;

inf = u->first;

sup = u->last;

int nt = 0;

while (nt<2 && inf->val<sup->val){

int v=inf->val + sup->val;

if (v==new){

nt++;

inf=inf->next;

sup=sup->prev;

} else if (v>new) sup=sup->prev;

else inf=inf->next;

}

} while (nt!=1);

addLast(new, u);

return new;

}

Figure 15: Filtering C program computing Ulam numbers, implemented with double linked lists.
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typedef unsigned long int bigint;

list elim(list c){

if (!c || c->occ==1) return c;

c=tail(c);

return elim(c);

}

list insert(list c, bigint u[], int k, int j){

bigint v = u[k]+u[j];

if (j==k) return c;

if (!c || v<c->val)

return cons(v,insert(c,u,k,j+1));

if (c->val < v)

c->next = insert(c->next,u,k,j);

else {

c->occ++;

c->next = insert(c->next, u, k, j+1);

}

return c;

}

void nextU(bigint u[], int k, list* c){

list d = elim(*c);

u[k] = d->val;

d = tail(d);

*c = insert(d, u, k, 0);

}

Figure 16: Generative C program computing Ulam numbers (stored in an array) and a simple list
of pairs (number, number of occurrences) for Ulam candidates.
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