The Formal Inverse of the Period-Doubling Sequence

Narad Rampersad*
Department of Mathematics and Statistics University of Winnipeg
n.rampersad@uwinnipeg.ca
Manon Stipulanti ${ }^{\dagger}$
Department of Mathematics
University of Liège
m.stipulanti@uliege.be

August 1, 2018

Abstract

If p is a prime number, consider a p-automatic sequence $\left(u_{n}\right)_{n \geq 0}$, and let $U(X)=$ $\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{F}_{p}[[X]]$ be its generating function. Assume that there exists a formal power series $V(X)=\sum_{n \geq 0} v_{n} X^{n} \in \mathbb{F}_{p}[[X]]$ which is the compositional inverse of U, i.e., $U(V(X))=X=V(U(X))$. The problem investigated in this paper is to study the properties of the sequence $\left(v_{n}\right)_{n \geq 0}$. The work was first initiated for the Thue-Morse sequence, and more recently the case of two variations of the Baum-Sweet sequence has been treated. In this paper, we deal with the case of the period-doubling sequence. We first show that the sequence of indices at which the period-doubling sequence takes value 0 (resp., 1) is not k-regular for any $k \geq 2$. Secondly, we give recurrence relations for its formal inverse, then we easily show that it is 2 -automatic, and we also provide an automaton that generates it. Thirdly, we study the sequence of indices at which this formal inverse takes value 1 , and we show that it is not k-regular for any $k \geq 2$ by connecting it to the characteristic sequence of Fibonacci numbers. We leave as an open problem the case of the sequence of indices at which this formal inverse takes value 0 . We end the paper with a remark on the case of generalized Thue-Morse sequences.

1 Introduction

Let us consider the following problem. Let p be a prime number. Let $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ be a p automatic sequence and let $U(X)=\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{F}_{p}[[X]]$ be its generating function. Assume

[^0]that there exists a formal power series $V(X)=\sum_{n \geq 0} v_{n} X^{n} \in \mathbb{F}_{p}[[X]]$ which is the compositional inverse of U, i.e., $U(V(X))=X=V(U(X))$. What can be said about properties of the sequence $\boldsymbol{v}=\left(v_{n}\right)_{n \geq 0}$?

In [10], the authors initiate the work on this problem and they consider the case where $\boldsymbol{u}=\boldsymbol{t}$ where \boldsymbol{t} is the well-known Prouhet-Thue-Morse sequence. More precisely, they study the sequence $\boldsymbol{c}=\left(c_{n}\right)_{n \geq 0}$ which is the sequence of coefficients of the compositional inverse of the generating function of the sequence \boldsymbol{t}. They call this sequence \boldsymbol{c} the inverse Prouhet-Thue-Morse sequence. The 2 -automaticity of \boldsymbol{c} is easily deduced using Christol's theorem [6], but then they exhibit some recurrence relations satisfied by \boldsymbol{c} and provide an automaton that generates \boldsymbol{c}. They study two increasing sequences $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ and $\boldsymbol{d}=\left(d_{n}\right)_{n \geq 0}$ respectively defined by

$$
\left\{a_{n} \mid n \in \mathbb{N}\right\}=\left\{m \in \mathbb{N} \mid c_{m}=1\right\}
$$

and

$$
\left\{d_{n} \mid n \in \mathbb{N}\right\}=\left\{m \in \mathbb{N} \mid c_{m}=0\right\}
$$

In particular, they prove that \boldsymbol{a} is 2 -regular, but that \boldsymbol{d} is not k-regular for any $k \geq 2$.
More recently, the work has been extended to two sequences closely related to the BaumSweet sequence [11]. The author obtains results similar to [10] for two variations of the Baum-Sweet sequence.

In this paper, we consider the case where $\boldsymbol{u}=\boldsymbol{d}$ is the period-doubling sequence. This sequence is defined by $d_{n}:=v_{2}(n+1) \bmod 2$, where the function v_{2} is the exponent of the highest power of 2 dividing its argument.

2 Background

In this section, we recall the necessary background for this paper; see, for instance, [5, 12, 13] for more details.

2.1 Combinatorics on words

Let A be a finite alphabet, i.e., a finite set consisting of letters. A (finite) word w over A is a finite sequence of letters belonging to A. If $w=w_{n} w_{n-1} \cdots w_{0} \in A^{*}$ with $n \geq 0$ and $w_{i} \in A$ for all $i \in\{0, \ldots, n\}$, then the length $|w|$ of w is $n+1$, i.e., it is the number of letters that w contains. We let ε denote the empty word. This special word is the neutral element for concatenation of words, and its length is set to be 0 . The set of all finite words over A is denoted by A^{*}, and we let $A^{+}=A^{*} \backslash\{\varepsilon\}$ denote the set of non-empty finite words over A. For any $n \geq 0$, we let A^{n} denote the set of length- n words in A^{*}.

A finite word $w \in A^{*}$ is a prefix of another finite word $z \in A^{*}$ if there exists $u \in A^{*}$ such that $z=w u$. If A is ordered by $<$, the lexicographic order on A^{*}, which we denote by $<_{\text {lex }}$, is a total order on A^{*} induced by the order $<$ on the letters and defined as follows: $u<_{\text {lex }} v$ either if u is a strict prefix of v or if there exist $a, b \in A$ and $p \in A^{*}$ such that $a<b, p a$ is a prefix of u and $p b$ is a prefix of v.

If L is a subset of A^{*}, then L is called a language and its complexity function $\rho_{L}: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $\rho_{L}(n)=L \cap A^{n}$.

An infinite word \boldsymbol{w} over A is any infinite sequence over A. The set of all infinite words over A is denoted by A^{ω}. Note that in this paper infinite words are written in bold. To avoid any confusion, the infinite word $\boldsymbol{w}=w_{0} w_{1} w_{2} \cdots$ will be written as $\boldsymbol{\boldsymbol { w }}=w_{0}, w_{1}, w_{2}, \ldots$ if necessary.

If $\boldsymbol{w} \in A^{\omega}$, we define its sequence of run lengths to be an infinite sequence over $\mathbb{N} \cup\{\infty\}$ giving the number of adjacent identical letters. For example, the sequence of run lengths of $01^{2} 0^{3} 1^{4} 0^{5} \cdots$ is $1,2,3,4,5, \ldots$.

A morphism on A is a map $\sigma: A^{*} \rightarrow A^{*}$ such that for all $u, v \in A^{*}$, we have $\sigma(u v)=$ $\sigma(u) \sigma(v)$. In order to define a morphism, it suffices to provide the image of letters belonging to A. A morphism $\sigma: A^{*} \rightarrow A^{*}$ is k-uniform if $|\sigma(a)|=k$ for all $a \in A$. A 1 -uniform morphism is called a coding. If there is a subalphabet $C \subset A$ such that $\sigma(C) \subset C^{*}$, then we call the restriction $\sigma_{C}:=\left.\sigma\right|_{C^{*}}: C^{*} \rightarrow C^{*}$ of σ to C a submorphism of σ.

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is said to be prolongable on a letter $a \in A$ if $\sigma(a)=a u$ with $u \in A^{+}$and $\lim _{n \rightarrow+\infty}\left|\sigma^{n}(a)\right|=+\infty$. If σ is prolongable on a, then $\sigma^{n}(a)$ is a proper prefix of $\sigma^{n+1}(a)$ for all $n \geq 0$. Therefore, the sequence $\left(\sigma^{n}(a)\right)_{n \geq 0}$ of finite words defines an infinite word \boldsymbol{w} that is a fixed point of σ. In that case, the word \boldsymbol{w} is called pure morphic. A morphic word is the morphic image of a pure morphic word.

Let M be a matrix with coefficients in \mathbb{N}. There exists permutation matrix P such that $P^{-1} M P$ is a upper block-triangular matrix with square blocks M_{1}, \ldots, M_{s} on the main diagonal that are either irreducible matrices or zeroes. The Perron-Frobenius eigenvalue of M is $\max _{1 \leq i \leq s} \lambda_{M_{i}}$ where $\lambda_{M_{i}}$ is the Perron-Frobenius eigenvalue of the matrix M_{i}.

Let $f: A^{*} \rightarrow A^{*}$ be a prolongable morphism having the infinite word \boldsymbol{w} as a fixed point. Let α be the Perron-Frobenius eigenvalue of M_{f}. If all letters of A occur in \boldsymbol{w}, then \boldsymbol{w} is said to be a (pure) α-substitutive word. If $g: A^{*} \rightarrow B^{*}$ is a coding, then $g(\boldsymbol{w})$ is said to be an α-substitutive word.

We say that two real numbers $\alpha, \beta>1$ are multiplicatively independent if the only integers k, ℓ such that $\alpha^{k}=\beta^{\ell}$ are $k=\ell=0$. Otherwise, α and β are multiplicatively dependent. The following result can be found in [8].

Theorem 1 (Cobham-Durand). Let $\alpha, \beta>1$ be two multiplicatively independent real numbers. Let \boldsymbol{u} (resp., v) be a pure α-substitutive (resp., pure β-substitutive) word. Let gand g' be two non-erasing morphisms. If $\boldsymbol{w}=g(\boldsymbol{u})=g^{\prime}(\boldsymbol{v})$, then \boldsymbol{w} is ultimately periodic. In particular, if an infinite word is α-substitutive and β-substitutive, i.e., in the special case where g and g^{\prime} are codings, then it is ultimately periodic.

2.2 Abstract numeration systems, automatic sequences and regular sequences

An abstract numeration system (ANS) is a triple $S=(L, A,<)$ where L is an infinite regular language over a totally ordered alphabet $(A,<)$. The map rep ${ }_{S}: \mathbb{N} \rightarrow L$ is the one-to-one correspondence mapping $n \in \mathbb{N}$ onto the ($n+1$)st word in the genealogically ordered language L, which is called the S-representation of n. The S-representation of 0 is the first word in L. The inverse map is denoted by $\operatorname{val}_{S}: L \rightarrow \mathbb{N}$. If w is a word in $L, \operatorname{val}_{S}(w)$ is its S-numerical value. For instance, the base- k numeration system is an ANS; the Zeckendorff numeration system based on the Fibonacci numbers (with initial conditions 1 and 2) is also an ANS.

A deterministic finite automaton with output (DFAO) is a 6 -tuple $\mathscr{A}=\left(Q, q_{0}, A, \delta, B, \mu\right)$, where Q is a finite set of states, $q_{0} \in Q$ is the initial state, A is a finite input alphabet, $\delta: Q \times A \rightarrow Q$ is the transition function, B is a finite output alphabet, and $\mu: Q \rightarrow B$ is the output function. If $S=(L, A,<)$ is an ANS, we say that an infinite word $\boldsymbol{w}=w_{0} w_{1} w_{2} \cdots \in B^{\mathbb{N}}$ is S-automatic if there exists a $\mathrm{DFAO} \mathscr{A}=\left(Q, q_{0}, A, \delta, B, \mu\right)$ such that $x_{n}=\mu\left(\delta\left(q_{0}, \mathrm{rep}_{S}(n)\right)\right)$ for all $n \geq 0$. The automaton \mathscr{A} is called a $S-D F A O$.

When the $A N S$ is the base- k numeration system with $k \geq 2$, we have the following theorem of Cobham [7].

Theorem 2 (Cobham's theorem on automatic sequences). An infinite word $\boldsymbol{w} \in B^{\mathbb{N}}$ is k automatic if and only if there exist a k-uniform morphism $f: A^{*} \rightarrow A^{*}$ prolongable on a letter $a \in A$ and a coding $g: A^{*} \rightarrow B^{*}$ such that $\boldsymbol{w}=g\left(f^{\omega}(a)\right)$.

Let $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ be an infinite sequence and let $k \geq 2$ be an integer. We define the k-kernel of \boldsymbol{u} to be the set of subsequences

$$
\mathscr{K}_{k}(\boldsymbol{u})=\left\{\left(u_{k^{i} \cdot n+r}\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq r<k^{i}\right\} .
$$

We say that a sequence \boldsymbol{u} is k-regular if there exists a finite set S of sequences such that every sequence in $\mathcal{K}_{k}(\boldsymbol{u})$ is a \mathbb{Z}-linear combination of sequences of S. The following properties can be found in [5, 14].

Proposition 3. Let $k \geq 2$ be an integer.
(1) If a sequence differs only in finitely many terms from a k-automatic sequence, then it is k-automatic.
(2) For all $m \geq 1$, a sequence is k-automatic if and only if it is k^{m}-automatic.
(2) If the integer sequence $\left(u_{n}\right)_{n \geq 0}$ is k-regular, then for all integers $m \geq 1$, the sequence $\left(u_{n} \bmod m\right)_{n \geq 0}$ is k-automatic.
(3) A sequence is k-regular and takes on only finitely many values if and only if it is k automatic.
(4) Let $\left(u_{n}\right)_{n \geq 0}$ be a k-regular sequence. Then for $a \geq 1$ and $b \geq 0$, the sequence $\left(u_{a n+b}\right)_{n \geq 0}$ is k-regular.
(5) Let $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ be a sequence, and let $\boldsymbol{v}=\left(u_{n+1}-u_{n}\right)_{n \geq 0}$ be the first difference of \boldsymbol{u}. Then \boldsymbol{u} is k-regular if and only if \boldsymbol{v} is k-regular.

2.3 Formal power series

Let $k \geq 2$. The ring $\mathbb{F}_{k}[[X]]$ of formal power series with coefficients in the field $\mathbb{F}_{k}=\{0,1, \ldots, k-$ 1 \} is defined by

$$
\mathbb{F}_{k}[[X]]=\left\{\sum_{n \geq 0} a_{n} X^{n} \mid a_{n} \in \mathbb{F}_{k}\right\} .
$$

Figure 1: The 2-DFAO generating the period-doubling sequence \boldsymbol{d}.

We let $\mathbb{F}_{k}(X)$ denote the the field of rational functions. We say that a formal series $A(X)=$ $\sum_{n \geq 0} a_{n} X^{n}$ is algebraic (over $\mathbb{F}_{k}(X)$) if there exist an integer $d \geq 1$ and polynomials $P_{0}(X)$, $P_{1}(X), \ldots, P_{d}(X)$, with coefficients in \mathbb{F}_{k} and not all zero, such that

$$
P_{0}+P_{1} A+P_{2} A^{2}+\cdots+P_{d} A^{d}=0
$$

With an infinite sequence $\boldsymbol{w}=\left(w_{n}\right)_{n \in \mathbb{N}}$ over $\{0,1, \ldots, k-1\}$, we can associate a formal series $W(X)=\sum_{n \geq 0} w_{n} X^{n}$ over $\mathbb{F}_{k}[[X]]$, which is called the generating function of \boldsymbol{w}. In the case where $k=p$ is a prime number, and if $w_{0}=0$ and w_{1} is invertible in \mathbb{F}_{p}, then the series $W(X)$ is invertible in $\mathbb{F}_{p}[[X]]$, i.e., there exists a series $U(X) \in \mathbb{F}_{p}[[X]]$ such that $W(U(X))=$ $X=U(W(X)$). The formal series $U(X)$ is called the (formal) inverse of $W(X)$.

3 The period-doubling sequence

The following definition can be found in [5].
Definition 4. Consider the period-doubling sequence (indexed by A096268 in [15])

$$
\boldsymbol{d}=\left(d_{n}\right)_{n \geq 0}=010001010100010001000 \cdots .
$$

This sequence is defined by $d_{n}:=v_{2}(n+1) \bmod 2$, where the function v_{2} is the exponent of the highest power of 2 dividing its argument. Alternatively, we have $\boldsymbol{d}=h^{\omega}(0)$, where $h(0)=01$ and $h(1)=00$. Since h is a 2 -uniform morphism, then the period doubling sequence \boldsymbol{d} is 2 -automatic. The 2 -DFAO drawn Figure 1 generates the period-doubling sequence \boldsymbol{d}. Note that this automaton reads its input from least significant digit to most significant digit.

Let us define two increasing sequences $\boldsymbol{o}=\left(o_{n}\right)_{n \geq 0}$ and $\boldsymbol{z}=\left(z_{n}\right)_{n \geq 0}$ respectively satisfying $\left\{o_{n} \mid n \in N\right\}=\left\{m \in N \mid d_{m}=1\right\}$ and $\left\{z_{n} \mid n \in N\right\}=\left\{m \in N \mid d_{m}=0\right\}$. We have

$$
\begin{aligned}
& \boldsymbol{o}=1,5,7,9,13,17,21,23,25,29,31,33,37,39,41,45,49,53,55,57,61,65,69,71,73,77, \ldots \\
& \boldsymbol{z}=0,2,3,4,6,8,10,11,12,14,15,16,18,19,20,22,24,26,27,28,30,32,34,35,36,38,40, \ldots .
\end{aligned}
$$

Those two sequences are indexed by A079523 and A121539 in [15]. Observe that the binary expansions of the terms of \boldsymbol{o} (resp., \boldsymbol{z}) end with an odd (resp., even) number of 1's. This can be seen if one considers the language accepted by the 2-DFAO in Figure 1 where the final state is the one outputting 1 (resp., 0). In the following, we study the regularity of the sequences \boldsymbol{o} and \boldsymbol{z}.

Proposition 5. The sequence $\boldsymbol{z}=\left(z_{n}\right)_{n \geq 0}$ is not k-regular for any $k \in \mathbb{N} \geq 2$.
Proof. Let $\overline{\boldsymbol{d}}$ be the image of \boldsymbol{d} under the exchange morphism $E:\{0,1\}^{*} \rightarrow\{0,1\}^{*}: 0 \mapsto 1,1 \mapsto$ 0. In particular, $\overline{\boldsymbol{d}}$ is the fixed point of the morphism $h^{\prime}(0)=11$ and $h^{\prime}(1)=10$ starting with 1. We also have

$$
\boldsymbol{z}=\left\{m \in \mathbb{N} \mid d_{m}=0\right\}=\left\{m \in \mathbb{N} \mid \bar{d}_{m}=1\right\} .
$$

The sequence $\overline{\boldsymbol{d}}$ is related to the Thue-Morse sequence it the following way. Let $\boldsymbol{t}=$ $\left(t_{n}\right)_{n \geq 0}$ be the Thue-Morse sequence, i.e., the fixed point of the morphism $\tau:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$: $0 \mapsto 01,1 \mapsto 10$ which starts with 0 . In fact, the sequence $\overline{\boldsymbol{d}}$ is the first difference modulo 2 of the Thue-Morse sequence \boldsymbol{t} [4], i.e., $\overline{\boldsymbol{d}}=\left(t_{n+1}-t_{n} \bmod 2\right)_{n \geq 0}$.

In other words, the sequence \boldsymbol{z} of positions of 1 's in $\overline{\boldsymbol{d}}$ is exactly the sequence of positions in the Thue-Morse sequence \boldsymbol{t} where the letters 0 and 1 alternate. Consequently, the first difference of \boldsymbol{z}, which is the first difference between the positions of 1's in $\overline{\boldsymbol{d}}$, gives the length of the blocks of consecutive identical letters in \boldsymbol{t}, i.e., it is the sequence of run lengths of \boldsymbol{t}.

However, the sequence of run lengths of \boldsymbol{t} is the sequence $\boldsymbol{p}=\left(p_{n}\right)_{n \geq 0}$ which is the fixed point of the morphism $f:\{1,2\}^{*} \rightarrow\{1,2\}^{*}: 1 \mapsto 121,2 \mapsto 12221$ which starts with 1 [3]. This sequence \boldsymbol{p} is not 2 -automatic [2], and by Proposition3, \boldsymbol{p} is not 2^{m}-automatic for any $m \geq 1$. Let us show that \boldsymbol{p} is not k-automatic for any integer $k \geq 2$. Suppose that \boldsymbol{p} is k-automatic for some integer $k \geq 2$ which is not a power of 2 . Then, by Theorem 2, \boldsymbol{p} is the image under a coding of the fixed point of a k-uniform morphism whose Perron-Frobenius eigenvalue is k. Since the Perron-Frobenius eigenvalue of f is 2 , then by Theorem 1, \boldsymbol{p} is ultimately periodic, which is impossible.

Now since \boldsymbol{p} takes only two different values, \boldsymbol{p} is not k-regular for any $k \geq 2$ by Proposition 3. Since \boldsymbol{p} is the first difference of \boldsymbol{z}, then \boldsymbol{z} is not k-regular for any $k \geq 2$ again by Proposition 3 ,

The next lemma gives two other morphisms that generate the period-doubling sequence \boldsymbol{d}. Those morphisms are helpful to locate the positions of 1's in \boldsymbol{d}.

Lemma 6. Let $f:\{2,4\}^{*} \rightarrow\{2,4\}^{*}: 2 \mapsto 242,4 \mapsto 24442$ and $g:\{2,4\}^{*} \rightarrow\{0,1\}^{*}: 2 \mapsto 01,4 \mapsto$ 0001. For all $n \geq 1$, we have $h^{2 n+1}(0)=g\left(f^{n}(2)\right)$ and $h^{2 n+1}(10)=g\left(f^{n}(4)\right)$. In particular, $\boldsymbol{d}=h^{\omega}(0)=g\left(f^{\omega}(2)\right)$.

Proof. We proceed by induction on $n \geq 1$. The case $n=1$ can easily be checked by hand. Now assume that $n \geq 1$ and suppose that the result holds true for all $m \geq n$. We have

$$
h^{2(n+1)+1}(0)=h^{2 n+1}(0100)=h^{2 n+1}(0) h^{2 n+1}(10) h^{2 n+1}(0) .
$$

Now, by induction hypothesis, we find

$$
h^{2(n+1)+1}(0)=g\left(f^{n}(2)\right) g\left(f^{n}(4)\right) g\left(f^{n}(2)\right)=g\left(f^{n}(242)\right)=g\left(f^{n+1}(2)\right),
$$

as expected. Similarly, we have

$$
h^{2(n+1)+1}(10)=h^{2 n+1}(01010100)=h^{2 n+1}(0) h^{2 n+1}(10) h^{2 n+1}(10) h^{2 n+1}(10) h^{2 n+1}(0)
$$

and by induction hypothesis, we get

$$
h^{2(n+1)+1}(0)=g\left(f^{n}(2)\right) g\left(f^{n}(4)\right) g\left(f^{n}(4)\right) g\left(f^{n}(4)\right) g\left(f^{n}(2)\right)=g\left(f^{n}(24442)\right)=g\left(f^{n+1}(4)\right) .
$$

The particular case can be deduced from the first equality of the statement.

Proposition 7. The sequence $\boldsymbol{o}=\left(o_{n}\right)_{n \geq 0}$ is not k-regular for any $k \in \mathbb{N} \geq 2$.
Proof. By Lemma6, we know that $\boldsymbol{d}=g\left(f^{\omega}(2)\right)$ with $f:\{2,4\}^{*} \rightarrow\{2,4\}^{*}: 2 \mapsto 242,4 \mapsto 24442$ and $g:\{2,4\}^{*} \rightarrow\{0,1\}^{*}: 2 \mapsto 01,4 \mapsto 0001$. Observe that $|g(2)|=2$ and $|g(4)|=4$, and the letter 1 occurs only once at the end of $g(2)$ (resp., $g(4)$). Consequently, the first difference of the positions of 1's in \boldsymbol{d} - which is the first difference of \boldsymbol{o} - is given by the shift of the sequence $f^{\omega}(2)$, i.e., we drop the first term. By the proof of Proposition 5, we know that $f^{\omega}(2)$ is not k-regular for any $k \geq 2$. By Proposition 3, o is not k-regular for any $k \geq 2$.

Remark 8. Using an argument similar to the one of the proof of Proposition 7, one can also get another way of proving Proposition 5,

4 The formal inverse of the period-doubling word

Let $D(X)=\sum_{n \geq 0} d_{n} X^{n}$ be the generating function of the period-doubling sequence \boldsymbol{d}. Since $d_{0}=0$ and $d_{1}=1$ is invertible in \mathbb{F}_{2}, then the series $D(X)$ is invertible in $\mathbb{F}_{2}[[X]]$, i.e., there exists a series

$$
U(X)=\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{F}_{2}[[X]]
$$

such that $D(U(X))=X=U(D(X))$. We want to describe the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$. Mimicking [10], the first step is to get recurrence relations for the coefficients $\left(u_{n}\right)_{n \geq 0}$ of the series $U(X)$. To that aim, recall the following result; see [6, p. 412].

Lemma 9. The generating function $D(X)=\sum_{n \geq 0} d_{n} X^{n}$ of the period-doubling sequence \boldsymbol{d} satisfies

$$
X\left(1+X^{2}\right) D(X)^{2}+\left(1+X^{2}\right) D(X)+X=0
$$

over $\mathbb{F}_{2}[[X]]$.
Proof. Observe that, since $\boldsymbol{d}=h^{\omega}(0)$, we have $d_{2 n}=0$ and $d_{2 n+1}=1-d_{n}$ for all $n \geq 0$. Thus we have

$$
D(X)=\sum_{n \geq 0} d_{n} X^{n}=\sum_{n \geq 0} d_{2 n} X^{2 n}+\sum_{n \geq 0} d_{2 n+1} X^{2 n+1}=X \sum_{n \geq 0} X^{2 n}-X \sum_{n \geq 0} d_{n} X^{2 n}
$$

Now recall that, for any prime p and for any series $F(X)$ in $\mathbb{F}_{p}[[X]]$, we have $1 /(1-X)=$ $\sum_{n \geq 0} X^{n}$. Consequently,

$$
D(X)=\frac{X}{1-X^{2}}-X D\left(X^{2}\right)
$$

Now working over $\mathbb{F}_{2}[[X]]$, we have

$$
X\left(1+X^{2}\right) D\left(X^{2}\right)+\left(1+X^{2}\right) D(X)+X=0,
$$

and since for any prime p and for any series $F(X)$ in $\mathbb{F}_{p}[[X]]$, we have $F(X)^{p}=F\left(X^{p}\right)$, we find

$$
X\left(1+X^{2}\right) D(X)^{2}+\left(1+X^{2}\right) D(X)+X=0
$$

as desired.

To prove the next result, we follow the method from [10].
Proposition 10. The series $U(X)=\sum_{n \geq 0} u_{n} X^{n}$ satisfies each of the following polynomial equations

$$
\begin{aligned}
& X^{2} U(X)^{3}+X U(X)^{2}+\left(X^{2}+1\right) U(X)+X=0 \\
& X^{3} U(X)^{4}+X^{3} U(X)^{2}+U(X)+X=0
\end{aligned}
$$

over $\mathbb{F}_{2}[[X]]$. In particular, the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ verifies $u_{0}=0, u_{1}=1$, and over \mathbb{F}_{2}

$$
\left\{\begin{array}{l}
u_{2 n}=0 \quad \forall n \geq 0 \\
u_{4 n+1}=u_{2 n-1} \quad \forall n \geq 1 \\
u_{4 n+3}=u_{n} \quad \forall n \geq 0
\end{array}\right.
$$

Proof. First, let us rewrite the equation from Lemma 9 in terms of X. We get

$$
D(X)^{2} X^{3}+D(X) X^{2}+\left(D(X)^{2}+1\right) X+D(X)=0 .
$$

In this new equation, replace X by $U(X)$ to obtain

$$
D(U(X))^{2} U(X)^{3}+D(U(X)) U(X)^{2}+\left(D(U(X))^{2}+1\right) U(X)+D(U(X))=0 .
$$

Since $U(X)$ is the formal inverse of $D(X)$, we actually have

$$
\begin{equation*}
X^{2} U(X)^{3}+X U(X)^{2}+\left(X^{2}+1\right) U(X)+X=0 \tag{1}
\end{equation*}
$$

which is the first equation of the statement. This in turn implies that, over $\mathbb{F}_{2}[[X]]$,

$$
\begin{equation*}
U(X)^{3}=\frac{X U(X)^{2}+\left(X^{2}+1\right) U(X)+X}{X^{2}} . \tag{2}
\end{equation*}
$$

Now multiply (1) by $U(X)$ and replace $U(X)^{3}$ by its value (2). We obtain first

$$
X^{2} U(X)^{4}+X U(X)^{3}+\left(X^{2}+1\right) U(X)^{2}+X U(X)=0
$$

and so

$$
\begin{aligned}
& X^{2} U(X)^{4}+X\left(\frac{X U(X)^{2}+\left(X^{2}+1\right) U(X)+X}{X^{2}}\right)+\left(X^{2}+1\right) U(X)^{2}+X U(X)=0 \\
& \Rightarrow X^{3} U(X)^{4}+X U(X)^{2}+\left(X^{2}+1\right) U(X)+X+\left(X^{3}+X\right) U(X)^{2}+X^{2} U(X)=0 \\
& \Rightarrow X^{3} U(X)^{4}+\left(X^{3}+2 X\right) U(X)^{2}+\left(2 X^{2}+1\right) U(X)+X=0 .
\end{aligned}
$$

Working over $\mathbb{F}_{2}[[X]]$, this equality becomes

$$
X^{3} U(X)^{4}+X^{3} U(X)^{2}+U(X)+X=0 \Leftrightarrow X^{3} U\left(X^{4}\right)+X^{3} U\left(X^{2}\right)+U(X)+X=0
$$

which is the second equation of the statement.

Let us now prove that the recurrence relations for the sequence \boldsymbol{u} hold true. Writing $U(X)=\sum_{n \geq 0} u_{n} X^{n}$ in the second equation proven above, we find

$$
\begin{aligned}
& X^{3} \sum_{n \geq 0} u_{n} X^{4 n}+X^{3} \sum_{n \geq 0} u_{n} X^{2 n}+\sum_{n \geq 0} u_{n} X^{n}+X=0 \\
\Leftrightarrow & \sum_{n \geq 0} u_{n} X^{4 n+3}+\sum_{n \geq 0} u_{n} X^{2 n+3}+\sum_{n \geq 0} u_{n} X^{n}+X=0 .
\end{aligned}
$$

Let us inspect the coefficients in the last equality. We immediately have $u_{0}=0$ and $u_{1}=1$ over \mathbb{F}_{2}. Since the exponents $4 n+3$ and $2 n+3$ are odd for all $n \geq 0$, we also get that, over \mathbb{F}_{2},

$$
u_{2 n}=0 \quad \forall n \geq 0 .
$$

Looking at the coefficient of $X^{4 n+3}$, we obtain

$$
u_{n}+u_{2 n}+u_{4 n+3}=0 \quad \forall n \geq 0,
$$

which implies that $u_{4 n+3}=u_{n}$ over \mathbb{F}_{2} for all $n \geq 0$. Let us now find the coefficient of $X^{4 n+1}$ for $n \geq 1$. We have

$$
u_{2 n-1}+u_{4 n+1}=0 \quad \forall n \geq 1,
$$

giving $u_{4 n+1}=u_{2 n-1}$ over \mathbb{F}_{2} for all $n \geq 1$. As a consequence, the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ verifies $u_{0}=0, u_{1}=1$, and satisfies the following recurrence relations over \mathbb{F}_{2}

$$
\left\{\begin{array}{l}
u_{2 n}=0 \quad \forall n \geq 0, \\
u_{4 n+1}=u_{2 n-1} \quad \forall n \geq 1, \\
u_{4 n+3}=u_{n} \quad \forall n \geq 0 .
\end{array}\right.
$$

From now and later on, the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ will be referred to as the inverse perioddoubling sequence, iPD sequence for short (sequence A317542 in [15]). We have

$$
\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}=01000101000001000100000100000101000001000 \cdots .
$$

Remark 11. We have $d_{n}=u_{n}$ for all $n \leq 8$, but observe that

$$
1=d_{4 \cdot 2+1}=d_{9} \neq u_{9}=u_{4 \cdot 2+1} u=u_{2 \cdot 2-1}=u_{3}=0 .
$$

In the following, we show that \boldsymbol{u} is 2 -automatic, and we also provide an automaton that generates \boldsymbol{u}.

Corollary 12. The sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ is 2-automatic.
Proof. From Proposition 10, it follows that the formal power series $U(X)$ is algebraic over $\mathbb{F}_{2}(X)$. By Christol's theorem, the sequence \boldsymbol{u} is thus 2 -automatic.

Using the following recurrence relations, the 2-DFAO drawn in Figure 2 generates the iPD sequence \boldsymbol{u}. Note that this automaton reads its input from least significant digit to most significant digit.

Figure 2: The 2-DFAO generating the inverse period-doubling sequence \boldsymbol{u}.

Lemma 13. For all $n \geq 0, r_{1} \in\{0,2\}, r_{2} \in\{0,2,4,6\}$ and $r_{3} \in\{0,2,4,6,8,10,12,14\}$, we have

$$
\begin{align*}
u_{n} & =u_{4 n+3}=u_{16 n+15}, \tag{3}\\
u_{2 n} & =u_{4 n+r_{1}}=u_{8 n+r_{2}}=u_{8 n+3}=u_{16 n+r_{3}}=u_{16 n+3}=u_{16 n+9}=u_{16 n+11}=0, \tag{4}\\
u_{2 n+1} & =u_{8 n+7}, \tag{5}\\
u_{4 n+1} & =u_{8 n+5}=u_{16 n+1}=u_{16 n+7}=u_{16 n+13}, \tag{6}\\
u_{8 n+1} & =u_{16 n+5} . \tag{7}
\end{align*}
$$

Proof. We make an extensive use of the recurrence relations from Proposition 10. We show that the 2 -kernel $\mathcal{K}_{2}(\boldsymbol{u})$ is finitely generated by the sequences $\left(u_{n}\right)_{n \geq 0},\left(u_{2 n}\right)_{n \geq 0},\left(u_{2 n+1}\right)_{n \geq 0}$, $\left(u_{4 n+1}\right)_{n \geq 0}$ and $\left(u_{8 n+1}\right)_{n \geq 0}$.

The first equality in (3) is directly given by Proposition 10. For all $n \geq 0$, we have

$$
u_{16 n+15}=u_{4(4 n+3)+3}=u_{4 n+3}=u_{n}
$$

using Proposition 10 twice since $n, 4 n+3 \geq 0$.
Let us show (4). From Proposition 10, it is clear that for all $n \geq 0$,

$$
u_{2 n}=0=u_{4 n+r_{1}}=u_{8 n+r_{2}}=u_{16 n+r_{3}} .
$$

Now for all $n \geq 0$, we have

$$
\begin{gathered}
u_{8 n+3}=u_{4(2 n)+3}=u_{2 n}=0, \\
u_{16 n+3}=u_{4(4 n)+3}=u_{4 n}=u_{2 n}=0,
\end{gathered}
$$

and

$$
u_{16 n+11}=u_{4(4 n+2)+3}=u_{4 n+2}=u_{2 n}=0
$$

using Proposition 10 since $2 n, 4 n, 4 n+2 \geq 0$. Similarly, for all $n \geq 0$, we have $4 n+2 \geq 1$, thus Proposition 10 gives

$$
u_{16 n+9}=u_{4(4 n+2)+1}=u_{2(4 n+2)-1}=u_{8 n+3}=u_{2 n}=0,
$$

where the next-to-last equality comes from (4) above.
Let us prove (5). For all $n \geq 0$, we have

$$
u_{8 n+7}=u_{4(2 n+1)+3}=u_{2 n+1}
$$

using Proposition 10 since $2 n+1 \geq 0$.
Let us show that (6) holds true. For all $n \geq 0$, we have

$$
\begin{gathered}
u_{8 n+5}=u_{4(2 n+1)+1}=u_{2(2 n+1)-1}=u_{4 n+1}, \\
u_{16 n+7}=u_{4(4 n+1)+3}=u_{4 n+1},
\end{gathered}
$$

and

$$
u_{16 n+13}=u_{4(4 n+3)+1}=u_{2(4 n+3)-1}=u_{8 n+5}=u_{4 n+1},
$$

using Proposition 10 since $2 n+1,4 n+3 \geq 1$ and $4 n+1 \geq 0$. Now we prove that $u_{16 n+1}=u_{4 n+1}$ for all $n \geq 0$. The result is trivial when $n=0$ for we have $u_{16 n+1}=u_{1}=u_{4 n+1}$. Now suppose that $n \geq 1$. We first obtain from Proposition 10 that

$$
u_{16 n+1}=u_{4(4 n) n+1}=u_{2(4 n)-1}=u_{8 n-1}
$$

Writing $n=m+1$ with $m \geq 0$, we then get

$$
u_{16 n+1}=u_{8 n-1}=u_{8 m+7}=u_{2 m+1}
$$

where the last equality comes from (5) since $m \geq 0$. Consequently,

$$
u_{16 n+1}=u_{2 m+1}=u_{2(m+1)-1}=u_{2 n-1}=u_{4 n+1}
$$

using Proposition 10 for the last equality since $n \geq 1$. This gives the expected recurrence relation.

Finally, for all $n \geq 0$, we have $4 n+1 \geq 0$, so Proposition 10 implies that

$$
u_{16 n+5}=u_{4(4 n+1)+1}=u_{2(4 n+1)-1}=u_{8 n+1}
$$

which proves (7).
Since the iPD sequence \boldsymbol{u} takes the values 0 and 1, it can also be considered as a sequence of complex numbers. We now obtain the transcendence of its generating function.

Proposition 14. The formal power series $U(X)=\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{C}[[X]]$ is transcendental over $\mathbb{C}(X)$.

Proof. A classical result of Fatou states that a power series whose coefficients take only finitely many values is either rational or transcendental [9]. However, if the rational power series $A(X)=\sum_{n \geq 0} a_{n} X^{n}$ has bounded integer coefficients, then the sequence ($\left.a_{n}\right)_{n \geq 0}$ must be ultimately periodic. Since the iPD sequence \boldsymbol{u} is not ultimately periodic, we deduce that $U(X)=\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{C}[[X]]$ is transcendental over $\mathbb{C}(X)$.

5 Characteristic sequence of 1's in the iPD sequence u

In this section, we study the characteristic sequence of 1's in the iPD sequence \boldsymbol{u}. The main result is that this sequence is not k-regular for any $k \geq 2$. Surprisingly, it is related to the characteristic sequence of Fibonacci numbers.

Definition 15. Let us define an increasing sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ satisfying $\left\{a_{n} \mid n \in N\right\}=$ $\left\{m \in N \mid u_{m}=1\right\}$ (sequence A317543 in [15]). We have

$$
\boldsymbol{a}=1,5,7,13,17,23,29,31,37,49,55,61,65,71,77,95,101,113,119,125,127,133,145, \ldots .
$$

From Proposition 10, we already know that \boldsymbol{a} only contains odd integers. In the 2-DFAO in Figure 2, if the states outputting 1 are considered to be final, then the binary expansions of the terms of \boldsymbol{a} is the language

$$
L_{a}=\left\{\operatorname{rep}_{2}\left(a_{n}\right) \mid n \geq 0\right\}=\{11\}^{*} 1 \cup 1\{1,00\}^{*} 0\{11\}^{*} 1 .
$$

For instance, $\operatorname{rep}_{2}\left(a_{0}\right)=1, \operatorname{rep}_{2}\left(a_{1}\right)=101, \operatorname{rep}_{2}\left(a_{2}\right)=111, \operatorname{rep}_{2}\left(a_{3}\right)=1101$.
In the following, we obtain the complexity function of the language L_{a}. As a preliminary result, we study the language $L^{\prime}=\{1,00\}^{*}$.

To that aim, we define the sequence $(F(n))_{n \geq 0}$ of the Fibonacci numbers with initial conditions equal to 1 and 1, i.e., $F(0)=1, F(1)=1$ and, for all $n \geq 2$, let $F(n)=F(n-1)+$ $F(n-2)$. If $n \geq 1$ is an integer, a composition of n is a sequence ($a_{1}, a_{2}, \ldots, a_{k}$) of positive integers, with $k \geq 1$, such that $a_{1}+a_{2}+\cdots+a_{k}=n$. The terms $a_{1}, a_{2}, \ldots, a_{k}$ are called the parts of the composition. For example, there are eight compositions of 4 , namely ($1,1,1,1$), $(2,1,1),(1,2,1),(1,1,2),(3,1),(1,3),(2,2)$ and (4). Observe that, among all the compositions of 4 , there are $5=F(4)$ of them whose parts are equal to 1 or 2 . More generally, for all $n \geq 1$, the Fibonacci number $F(n)$ counts the number of compositions of n into parts equal to 1 or 2; see for instance [16, Chapter 1, Exercise 14]. Since this is equivalent to the number of strings of length n in L^{\prime}, we immediately have the following result.

Lemma 16. The complexity function $\rho_{L^{\prime}}: \mathbb{N} \rightarrow \mathbb{N}$ of the language L^{\prime} satisfies $\rho_{L^{\prime}}(n)=F(n)$ for all $n \geq 0$.

In the next result (easily proven by induction), we establish two useful equalities.
Lemma 17. For all $n \geq 1, \sum_{\ell=0}^{n-1} F(2 \ell)=F(2 n-1)$ and, for all $n \geq 2, \sum_{\ell=0}^{n-2} F(2 \ell+1)=F(2(n-$ 1)) -1 .

Proposition 18. The complexity function $\rho_{L_{a}}: \mathbb{N} \rightarrow \mathbb{N}$ of the language L_{a} satisfies $\rho_{L_{a}}(0)=$ $0=\rho_{L_{a}}(2), \rho_{L_{a}}(1)=1, \rho_{L_{a}}(2 n)=F(2 n-2)-1$ for all $n \geq 2$, and $\rho_{L_{a}}(2 n+1)=F(2 n-1)+1$ for all $n \geq 1$.

Proof. Let us define $L_{a, 1}=\{11\}^{*} 1$ and $L_{a, 2}=1\{1,00\}^{*} 0\{11\}^{*} 1$. Since these two languages are disjoint, we have

$$
\rho_{L_{a}}(n)=\rho_{L_{a, 1}}(n)+\rho_{L_{a, 2}}(n) \quad \forall n \geq 0 .
$$

In the remainder of the proof, we study the functions $\rho_{L_{a, 1}}$ and $\rho_{L_{a, 2}}$ separately. First, it is clear that

$$
\rho_{L_{a, 1}}(n)= \begin{cases}1, & \text { if } n \text { is odd } \\ 0, & \text { otherwise }\end{cases}
$$

Now observe that $\rho_{L_{a, 2}}(n)=0$ for $n \in\{0,1,2\}$. Any word w in $L_{a, 2}$ is of length at least 3 and can be factorized as $w=1 u 0 v 1$ where $u \in\{1,00\}^{*}$ and $v \in\{11\}^{*}$. In the following, this highlighted 0 between u and v will play an important role. Since v is of even length, then the position of 0 in $w=1 u 0 v 1$ is odd (we start indexing words at 0).

Let $n \geq 1$. Now take $w=w_{2 n} w_{2 n-1} \cdots w_{0} \in L_{a, 2}$ with $w_{i} \in\{0,1\}$ and $|w|=2 n+1$. Then we have $w_{2 n}=1=w_{0}$ and there exists an odd integer $0<i<2 n$ such that $w_{i}=0$ and

$$
w=1 w_{2 n-1} w_{2 n-2} \cdots w_{i+1} 0 w_{i-1} w_{i-2} \cdots w_{1} 1
$$

with $u=w_{2 n-1} w_{2 n-2} \cdots w_{i+1} \in\{1,00\}^{*}$ and $v=w_{i-1} w_{i-2} \cdots w_{1} \in\{11\}^{*}$. Consequently, for a fixed i, the number of different words of length $2 n+1$ of the previous form in $L_{a, 2}$ is given by the number of different words of length $|u|=2 n-1-i$ in L^{\prime}. We thus obtain

$$
\begin{aligned}
\rho_{L_{a, 2}}(2 n+1) & =\sum_{\substack{0<i<2 n \\
i \text { odd }}} \rho_{L^{\prime}}(2 n-1-i) \\
& =\sum_{j=0}^{n-1} \rho_{L^{\prime}}(2 n-1-(2 j+1))=\sum_{j=0}^{n-1} \rho_{L^{\prime}}(2(n-1-j)) \\
& =\sum_{\ell=0}^{n-1} \rho_{L^{\prime}}(2 \ell)=\sum_{\ell=0}^{n-1} F(2 \ell) \\
& =F(2 n-1)
\end{aligned}
$$

where the last two equalities come from Lemmas 16 and 17 .
Let $n \geq 2$. Now take $w=w_{2 n-1} w_{2 n-2} \cdots w_{0} \in L_{a, 2}$ with $w_{i} \in\{0,1\}$ and $|w|=2 n$. The reasoning in this case is similar to the previous one. Then we have $w_{2 n-1}=1=w_{0}$ and there exists an odd integer $0<i<2 n-1$ such that $w_{i}=0$ and

$$
w=1 w_{2 n-2} w_{2 n-3} \cdots w_{i+1} 0 w_{i-1} w_{i-2} \cdots w_{1} 1
$$

with $u=w_{2 n-2} w_{2 n-3} \cdots w_{i+1} \in\{1,00\}^{*}$ and $v=w_{i-1} w_{i-2} \cdots w_{1} \in\{11\}^{*}$. Consequently, for a fixed i, the number of different words of length $2 n$ of the previous form in $L_{a, 2}$ is given by the number of different words of length $|u|=2 n-2-i$ in L^{\prime}. We thus obtain

$$
\begin{aligned}
\rho_{L_{a, 2}}(2 n) & =\sum_{\substack{0<i<2 n-1 \\
i \text { odd }}} \rho_{L^{\prime}}(2 n-2-i) \\
& =\sum_{j=0}^{n-2} \rho_{L^{\prime}}(2 n-2-(2 j+1))=\sum_{j=0}^{n-2} \rho_{L^{\prime}}(2(n-2-j)+1) \\
& =\sum_{\ell=0}^{n-2} \rho_{L^{\prime}}(2 \ell+1)=\sum_{\ell=0}^{n-2} F(2 \ell+1) \\
& =F(2 n-2)-1
\end{aligned}
$$

where the last two equalities come from Lemmas 16 and 17 ,
Finally, we find

$$
\begin{aligned}
& \rho_{L_{a}}(0)=\rho_{L_{a, 1}}(0)+\rho_{L_{a, 2}}(0)=0+0=0, \\
& \rho_{L_{a}}(1)=\rho_{L_{a, 1}}(1)+\rho_{L_{a, 2}}(1)=1+0=1, \\
& \rho_{L_{a}}(2)=\rho_{L_{a, 1}}(2)+\rho_{L_{a, 2}}(2)=0+0=0, \\
& \rho_{L_{a}}(2 n+1)=\rho_{L_{a, 1}}(2 n+1)+\rho_{L_{a, 2}}(2 n+1)=1+F(2 n-1) \quad \forall n \geq 1, \\
& \rho_{L_{a}}(2 n)=\rho_{L_{a, 1}}(2 n)+\rho_{L_{a, 2}}(2 n)=0+F(2 n-2)-1=F(2 n-2)-1 \quad \forall n \geq 2 .
\end{aligned}
$$

The sequence $\left(a_{n} \bmod 3\right)_{n \geq 0}$ shows a particularly unexpected behavior as explained in the next two results.

Lemma 19. Let $n \geq 0$. Then $a_{n} \bmod 3 \equiv r$ with $r \in\{1,2\}$. More precisely, let $w_{n}:=\operatorname{rep}_{2}\left(a_{n}\right)$. If $w_{n} \in L_{a, 1}$, or if $w_{n} \in L_{a, 2}$ and $\left|w_{n}\right|$ is even, then $a_{n} \bmod 3 \equiv 1$; if $w_{n} \in L_{a, 2}$ and $\left|w_{n}\right|$ is odd, then $a_{n} \bmod 3 \equiv 2$.

Proof. First, we have

$$
\begin{equation*}
\left(2^{n} \bmod 3\right)_{n \geq 0}=(1,-1,1,-1,1,-1, \ldots) . \tag{8}
\end{equation*}
$$

Now let $n \geq 0$ and set $w_{n}:=\operatorname{rep}_{2}\left(a_{n}\right)$. If $w_{n} \in L_{a, 1}$, then from (8) we deduce that $a_{n} \bmod 3 \equiv 1$. Assume that $w_{n} \in L_{a, 2}$ and write $w_{n}=p_{n} s_{n}$ with $p_{n} \in 1\{1,00\}^{*}$ and $s_{n} \in 0\{11\}^{*} 1$. Since $\left|s_{n}\right|$ is even, then (8) shows that $\operatorname{val}_{2}\left(s_{n}\right) \bmod 3 \equiv 1$.

As first case, suppose that $\left|w_{n}\right|$ is odd. Then $\left|p_{n}\right|$ is also odd, and so p_{n} contains an odd number of 1's separated by even-length blocks of 0's. Because the 0's blocks have even length, the contributions of successive 1 's in p_{n} alternate in value between $+1 \bmod 3$ and $-1 \bmod 3$. Since $\left|s_{n}\right|$ is even, after reading s_{n} then reading p_{n} gives an additional $+1 \bmod 3$. Consequently, both p_{n} and s_{n} together give $2 \bmod 3$, i.e., $a_{n} \bmod 3 \equiv \operatorname{val}_{2}\left(p_{n} s_{n}\right) \bmod 3 \equiv 2$.

As a second case, assume that $\left|w_{n}\right|$ is even. Then $\left|p_{n}\right|$ is even, and so p_{n} contains an even number of 1's separated by even-length blocks of 0's. Again the 1's in p_{n} contribute alternating $+1 \bmod 3$ and $-1 \bmod 3$, and since there is an even number of them, the 1 's in p_{n} contribute $0 \bmod 3$ in total. Thus, in this case, $a_{n} \bmod 3 \equiv \operatorname{val}_{2}\left(p_{n} s_{n}\right) \bmod 3 \equiv 1$.

Proposition 20. The sequence $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is given by the infinite word

$$
1^{F(0)} 2^{F(1)} 1^{F(2)} 2^{F(3)} 1^{F(4)} 2^{F(5)} \ldots
$$

In particular, the sequence of run lengths of $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is the sequence of Fibonacci numbers $(F(n))_{n \geq 0}$.

Proof. Recall that $L_{a}^{n}=L_{a} \cap\{0,1\}^{n}$ denotes the set of length- n words in L_{a}. We can order the words of L_{a}^{n} by lexicographic order, i.e.,

$$
L_{a}^{n}=\left\{w_{n, 1}<_{\operatorname{lex}} w_{n, 2}<_{\text {lex }} \cdots<_{\operatorname{lex}} w_{n, \# L_{a}^{n}}\right\}
$$

By Proposition 18, $\# L_{a}^{0}=0=\# L_{a}^{2}, \# L_{a}^{1}=1=F(0), \# L_{a}^{2 n}=F(2 n-2)-1$ for all $n \geq 2$, and $\# L_{a}^{2 n+1}=F(2 n-1)+1$ for all $n \geq 1$.

Let us first consider $L_{a}^{2 n}$ for $n \geq 2$. From Lemma 19, we know that val ${ }_{2}\left(w_{2 n, i}\right) \bmod 3 \equiv 1$ for all $i \in\{1,2, \ldots, F(2 n-2)-1\}$. In other terms, we get

$$
\left(\operatorname{val}_{2}\left(w_{2 n, i}\right) \bmod 3\right)_{1 \leq i \leq F(2 n-2)-1}=1^{F(2 n-2)-1} .
$$

Let us now study $L_{a}^{2 n+1}$ for $n \geq 0$. In the case where $n=0$, then $L_{a}^{1}=\left\{w_{1,1}\right\}$ with $w_{1,1}=1$, which of course gives $\operatorname{val}_{2}\left(w_{1,1}\right) \bmod 3=1^{F(0)}$. Assume that $n \geq 1$. Since the words of $L_{a}^{2 n+1}$ are ordered lexicographically, we know that $w_{2 n+1, i} \in L_{a, 2}$ for all $i \in\{1,2, \ldots, F(2 n-1)\}$, and $w_{2 n+1, F(2 n-1)+1}=1^{2 n+1} \in L_{a, 1}$. From Lemma 19, we obtain that $\operatorname{val}_{2}\left(w_{2 n+1, i}\right) \bmod 3 \equiv 2$ for all $i \in\{1,2, \ldots, F(2 n-1)\}$, and $\operatorname{val}_{2}\left(w_{2 n+1, F(2 n-1)+1}\right) \bmod 3 \equiv 1$. In fact, we obtain

$$
\left(\operatorname{val}_{2}\left(w_{2 n+1, i}\right) \bmod 3\right)_{1 \leq i \leq F(2 n-1)+1}=2^{F(2 n-1)} 1
$$

Observe that, for any $n \geq 1$, concatening the sequences $\left(\operatorname{val}_{2}\left(w_{2 n+1, i}\right) \bmod 3\right)_{1 \leq i \leq F(2 n-1)+1}$ and $\left(\operatorname{val}_{2}\left(w_{2 n+2, i}\right) \bmod 3\right)_{1 \leq i \leq F(2 n)-1}$ gives $\left(2^{F(2 n-1)} 1\right) \cdot\left(1^{F(2 n)-1}\right)=2^{F(2 n-1)} 1^{F(2 n)}$. Now putting everything together, we find

$$
\begin{aligned}
\left(a_{n} \bmod 3\right)_{n \geq 0} & =1^{F(0)} \cdot 2^{F(1)} 1 \cdot 1^{F(2)-1} \cdot 2^{F(3)} 1 \cdot 1^{F(4)-1} 2^{F(5)} 1 \cdots \\
& =1^{F(0)} 2^{F(1)} 1^{F(2)} 2^{F(3)} 1^{F(4)} 2^{F(5)} \cdots,
\end{aligned}
$$

as expected.
To show that \boldsymbol{a} is not k-regular for any $k \geq 2$, the idea is to study the sequence of consecutive differences in $\left(a_{n} \bmod 3\right)_{n \geq 0}$. Let us define the sequence $\boldsymbol{\delta}=\left(\delta_{n}\right)_{n \geq 0}$ by

$$
\delta_{n}= \begin{cases}1, & \text { if }\left(a_{n+1}-a_{n}\right) \bmod 3 \neq 0 \\ 0, & \text { otherwise. }\end{cases}
$$

From Proposition 20, we know that $\delta_{n}=1$ if and only if there exists $n=F(m)-2$ for some $m \geq 0$. If we let \boldsymbol{x} denote the characteristic sequence of Fibonacci numbers, i.e., x_{n} equals 1 if n is a Fibonacci number, 0 otherwise, then $\boldsymbol{\delta}=\left(x_{n}\right)_{n \geq 2}$ since for all $n \geq 0$

$$
\delta_{n}=1 \Leftrightarrow n=F(m)-2 \text { for some } m \geq 0 \Leftrightarrow n+2=F(m) \text { for some } m \geq 0 \Leftrightarrow x_{n+2}=1 \text {. }
$$

The goal is now to show that \boldsymbol{x} is not k-automatic for any $k \geq 2$; then the non- k-automaticity of $\boldsymbol{\delta}$ can easily be deduced. What follows is widely inspired by [12, 13]. In our context, we consider the ANS $\left(L_{F},\{0,1\},<\right)$ where $L_{F}=\{\varepsilon\} \cup 1\{0,01\}^{*}$ is the language of Fibonacci representations of nonnegative integers with $0<1$. Observe that the DFA \mathscr{A} in Figure 3 accepts the regular language L_{F}.

Lemma 21. The characteristic sequence of Fibonacci numbers \boldsymbol{x} is Fibonacci-automatic.
Proof. The Fibonacci-DFAO \mathscr{B} in Figure 4 generates the sequence \boldsymbol{x} in the Zeckendorff numeration system. In particular, this shows that \boldsymbol{x} is Fibonacci-automatic.

When a word is S-automatic for some ANS S, then it is in fact morphic [13].
Theorem 22. An infinite word \boldsymbol{w} is morphic if and only if \boldsymbol{w} is S-automatic for some ANS S.

Figure 3: The DFA \mathscr{A} accepting the language $\{\varepsilon\} \cup 1\{0,01\}^{*}$.

Figure 4: The Fibonacci-DFAO \mathscr{B} generating \boldsymbol{x}.

From Lemma 21 and Theorem 22, we easily deduce that \boldsymbol{x} is morphic. More precisely, we want to build the morphisms that generate \boldsymbol{x}. We follow the constructive proof of Theorem[22(we refer the reader to [13, Chapter 2] for more details).

Lemma 23. Let $f:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*}$ be the morphism defined by $f(z)=$ $z a_{0}$ and

$$
\begin{array}{c|cccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline f\left(a_{i}\right) & a_{1} a_{2} & a_{1} a_{4} & a_{3} a_{7} & a_{3} a_{6} & a_{4} a_{7} & a_{5} a_{6} & a_{5} a_{7} & a_{7} a_{7}
\end{array} .
$$

We also define the morphism $g:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\{0,1\}^{*}$ by $g(z)=g\left(a_{1}\right)=g\left(a_{4}\right)=g\left(a_{7}\right)=\varepsilon$, $g\left(a_{0}\right)=g\left(a_{5}\right)=g\left(a_{6}\right)=0$ and $g\left(a_{2}\right)=g\left(a_{3}\right)=1$. Then $\boldsymbol{x}=g\left(f^{\omega}(z)\right)$. In particular, the word \boldsymbol{x} is morphic.

Proof. First recall that the DFA \mathscr{A} in Figure 3 accepts the language $L_{F}=\{\varepsilon\} \cup 1\{0,01\}^{*}$, and the Fibonacci-DFAO \mathscr{B} in Figure 4 generates the sequence \boldsymbol{x}. Then, the product automaton $\mathscr{P}=\mathscr{A} \times \mathscr{B}$ is drawn in Figure 5. If we set

$$
\begin{aligned}
& a_{0}:=\left(A, 0_{0}\right), a_{1}:=\left(E, 0_{0}\right), a_{2}:=(B, 1), a_{3}:=(C, 1), \\
& a_{4}:=(E, 1), a_{5}:=\left(C, 0_{1}\right), a_{6}:=\left(D, 0_{1}\right), a_{7}:=\left(E, 0_{1}\right),
\end{aligned}
$$

then we can associate a morphism $\psi_{\mathscr{P}}:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*}$ with \mathscr{P} as follows. It is defined by $\psi \mathscr{P}(z)=z a_{0}$ and

$$
\begin{array}{c|cccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \psi_{\mathscr{P}}\left(a_{i}\right)=\delta_{\mathscr{P}}\left(a_{i}, 0\right) \delta_{\mathscr{P}}\left(a_{i}, 1\right) & a_{1} a_{2} & a_{1} a_{4} & a_{3} a_{7} & a_{3} a_{6} & a_{4} a_{7} & a_{5} a_{6} & a_{5} a_{7} & a_{7} a_{7}
\end{array}
$$

where $\delta_{\mathscr{P}}$ is the transition function of \mathscr{P}. Notice that $\psi_{\mathscr{P}}=f$. We also define the morphism

$$
g:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\{0,1\}^{*}: z, a_{1}, a_{4}, a_{7} \mapsto \varepsilon ; a_{0}, a_{5}, a_{6} \mapsto 0 ; a_{2}, a_{3} \mapsto 1
$$

It is well known that $\boldsymbol{x}=g\left(f^{\omega}(z)\right)$, which shows that \boldsymbol{x} is morphic.

Figure 5: The DFA \mathscr{P} which is the product of \mathscr{A} and \mathscr{B}.

Observe that the morphism g in Lemma 23 is erasing, i.e., the image of some letter is the empty word. In the following lemma (see [12, Chapter 3]), we get rid of the erasure and we later obtain two new non-erasing morphisms that generate \boldsymbol{x}.

Lemma 24. Let $\boldsymbol{w}=g\left(f^{\omega}(a)\right)$ be a morphic word where $g: B^{*} \rightarrow A^{*}$ is a (possibly erasing) morphism and $f: B^{*} \rightarrow B^{*}$ is a non-erasing morphism. Let C be a subalphabet of $\{b \in B \mid$ $g(b)=\varepsilon\}$ such that f_{C} is a submorphism of f. Let $\lambda_{C}: B^{*} \rightarrow B^{*}$ be the morphism defined by $\lambda_{C}(b)=\varepsilon$ if $b \in C$, and $\lambda_{C}(b)=b$ otherwise. The morphisms $f_{\varepsilon}:=\left.\left(\lambda_{C} \circ f\right)\right|_{(B \backslash C)^{*}}$ and $g_{\varepsilon}:=\left.g\right|_{(B \backslash C)^{*}}$ are such that $\boldsymbol{w}=g_{\varepsilon}\left(f_{\varepsilon}^{\omega}(a)\right)$.

Proposition 25. Let $\phi:\{a, b, c, d, e\}^{*} \rightarrow\{a, b, c, d, e\}^{*}$ be the morphism defined by

$$
\phi:\{a, b, c, d, e\}^{*} \rightarrow\{a, b, c, d, e\}^{*}:\left\{\begin{array}{rlc}
a & \mapsto & a b, \\
b & \mapsto & c, \\
c & \mapsto & c e, \\
d & \mapsto & d e \\
e & \mapsto & d
\end{array}\right.
$$

and let $\mu:\{a, b, c, d, e\}^{*} \rightarrow\{0,1\}^{*}: a, d, e \mapsto 0 ; b, c \mapsto 1$ be a coding. Then $\boldsymbol{x}=\mu\left(\phi^{\omega}(a)\right)$.
Proof. We make use of Lemmas 23] and 24. First, we have

$$
\left\{b \in\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\} \mid g(b)=\varepsilon\right\}=\left\{z, a_{1}, a_{4}, a_{7}\right\}
$$

so we choose $C=\left\{a_{1}, a_{4}, a_{7}\right\}$ for f_{C} is a submorphism of f. Then the morphism

$$
f_{\varepsilon}:\left\{z, a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*} \rightarrow\left\{z, a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*}
$$

is defined by $f_{\varepsilon}(z)=z a_{0}, f_{\varepsilon}\left(a_{0}\right)=a_{2}, f_{\varepsilon}\left(a_{2}\right)=a_{3}, f_{\varepsilon}\left(a_{3}\right)=a_{3} a_{6}, f_{\varepsilon}\left(a_{5}\right)=a_{5} a_{6}$ and $f_{\varepsilon}\left(a_{6}\right)=a_{5}$, while the morphism $g_{\varepsilon}:\left\{z, a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*} \rightarrow\{0,1\}^{*}$ is given by $g_{\varepsilon}(z)=\varepsilon, g_{\varepsilon}\left(a_{0}\right)=g_{\varepsilon}\left(a_{5}\right)=$
$g_{\varepsilon}\left(a_{6}\right)=0$ and $g_{\varepsilon}\left(a_{2}\right)=g_{\varepsilon}\left(a_{3}\right)=1$. We also have $\boldsymbol{x}=g_{\varepsilon}\left(f_{\varepsilon}^{\omega}(z)\right)$. Note that $\left.f_{\varepsilon}\right|_{\left\{a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*}}$ is a submorphism of f_{ε}.

Let us define the morphism $f_{\varepsilon}^{\prime}:\left\{a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*} \rightarrow\left\{a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*}$ by $f_{\varepsilon}^{\prime}\left(a_{0}\right)=a_{0} a_{2}$, and $f_{\varepsilon}^{\prime}=\left.f_{\varepsilon}\right|_{\left\{a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*}}$. From that definition, f_{ε}^{\prime} is prolongable on a_{0}. Also consider the morphism $g_{\varepsilon}^{\prime}:\left\{a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*} \rightarrow\{0,1\}^{*}$ given by $g_{\varepsilon}^{\prime}=\left.g_{\varepsilon}\right|_{\left\{a_{0}, a_{2}, a_{3}, a_{5}, a_{6}\right\}^{*}}$. We have

$$
\begin{aligned}
f_{\varepsilon}^{\omega}(z) & =z a_{0} f_{\varepsilon}\left(a_{0}\right) f_{\varepsilon}^{2}\left(a_{0}\right) f_{\varepsilon}^{3}\left(a_{0}\right) f_{\varepsilon}^{4}\left(a_{0}\right) \cdots \\
& =z a_{0} f_{\varepsilon}\left(a_{0}\right) f_{\varepsilon}\left(f_{\varepsilon}\left(a_{0}\right)\right) f_{\varepsilon}^{2}\left(f_{\varepsilon}\left(a_{0}\right)\right) f_{\varepsilon}^{3}\left(f_{\varepsilon}\left(a_{0}\right)\right) \cdots \\
& =z a_{0} a_{2} f_{\varepsilon}\left(a_{2}\right) f_{\varepsilon}^{2}\left(a_{2}\right) f_{\varepsilon}^{3}\left(a_{2}\right) \cdots \\
& =z a_{0} a_{2} f_{\varepsilon}^{\prime}\left(a_{2}\right)\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{2}\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{3} \cdots
\end{aligned}
$$

thus we get

$$
\begin{aligned}
\boldsymbol{x} & =g_{\varepsilon}\left(f_{\varepsilon}^{\omega}(z)\right) \\
& =g_{\varepsilon}(z) g_{\varepsilon}\left(a_{0}\right) g_{\varepsilon}\left(a_{2}\right) g_{\varepsilon}\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right) g_{\varepsilon}\left(\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{2}\right) g_{\varepsilon}\left(\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{3}\right) \ldots \\
& =\varepsilon g_{\varepsilon}^{\prime}\left(a_{0}\right) g_{\varepsilon}^{\prime}\left(a_{2}\right) g_{\varepsilon}^{\prime}\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right) g_{\varepsilon}^{\prime}\left(\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{2}\right) g_{\varepsilon}^{\prime}\left(\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{3}\right) \ldots \\
& =g_{\varepsilon}^{\prime}\left(a_{0} a_{2} f_{\varepsilon}^{\prime}\left(a_{2}\right)\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{2}\left(f_{\varepsilon}^{\prime}\left(a_{2}\right)\right)^{3} \cdots\right) \\
& =g_{\varepsilon}^{\prime}\left(\left(f_{\varepsilon}^{\prime}\right)^{\omega}\left(a_{0}\right)\right) .
\end{aligned}
$$

Up to a renaming of the letters, we have proven the claim.
Corollary 26. Let $\varphi=\frac{1}{2}(\sqrt{5}+1)$ be the golden ratio. The word \boldsymbol{x} is φ-substitutive.
Proof. Let

$$
M_{\phi}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

be the matrix associated with the morphism ϕ. The Perron-Frobenius eigenvalue of M_{ϕ} is $\varphi=\frac{1}{2}(\sqrt{5}+1)$. Since all the letters of $\{a, b, c, d, e\}$ occur in $\phi^{\omega}(a)$, then \boldsymbol{x} is φ-substitutive by Proposition 25 ,

Proposition 27. The sequence \boldsymbol{x} is not k-automatic for any $k \in \mathbb{N}_{\geq 2}$.
Proof. Proceed by contradiction and suppose that there exists an integer $k \geq 2$ such that \boldsymbol{x} is k-automatic. Then, by Theorem2, \boldsymbol{x} is also k-substitutive. Indeed, it is not difficult to see that the Perron-Frobenius eigenvalue of the matrix associated with a k-uniform morphism is the integer k. Clearly, k and φ are two multiplicatively independent real numbers. Thus, by Theorem 1, \boldsymbol{x} is ultimately periodic. This is impossible.

Corollary 28. The sequence $\left(a_{n}\right)_{n \geq 0}$ is not k-regular for any $k \in \mathbb{N}_{\geq 2}$.
Proof. Suppose that the sequence $\left(a_{n}\right)_{n \geq 0}$ is k-regular for some $k \geq 2$. Then by Proposition 3, the sequence $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is k-automatic, and so is \boldsymbol{x}. This contradicts Proposition 27,

We end this section with the following open problem.
Problem 29. Let us define an increasing sequence $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$ satisfying $\left\{b_{n} \mid n \in N\right\}=\{m \in$ $\left.N \mid u_{m}=0\right\}$ (sequence A317544 in [15]). We have

$$
\boldsymbol{b}=0,2,3,4,6,8,9,10,11,12,14,15,16,18,19,20,21,22,24,25,26,27,28,30,32,33,34,35, \ldots .
$$

Is the sequence $\boldsymbol{b} k$-regular for some $k \geq 2$?

6 A remark on the case of generalized Thue-Morse sequences

Let p be a prime number and define $s_{p}: \mathbb{N} \rightarrow \mathbb{N}$ to be the sum-of-digits function in base p. Define the sequence $\left(t_{p}(n)\right)_{n \geq 0}$ by $t_{p}(n)=s_{p}(n) \bmod p$. When $p=2$, then $\left(t_{2}(n)\right)_{n \geq 0}$ is the Thue-Morse sequence. For that reason, the sequences $\left(t_{p}(n)\right)_{n \geq 0}$ are called generalized Thue-Morse sequences [5]. For a fixed p, also define the generating function $T_{p}(X)=$ $\sum_{n \geq 0} t_{p}(n) X^{n}$ of $\left(t_{p}(n)\right)_{n \geq 0}$. Observe that, for all primes p, we have $t_{p}(0)=s_{p}(0) \bmod p=0$ and $t_{p}(1)=s_{p}(1) \bmod p=1$. Since 1 is invertible in \mathbb{F}_{p}, the series $T_{p}(X)$ is invertible in $\mathbb{F}_{p}[[X]]$, i.e., there exists a series

$$
U_{p}(X)=\sum_{n \geq 0} u_{p, n} X^{n} \in \mathbb{F}_{p}[[X]]
$$

such that $T_{p}\left(U_{p}(X)\right)=X=U_{p}\left(T_{p}(X)\right)$. Now, from [5, Example 12.1.3], we know that

$$
\begin{equation*}
(1-X)^{p+1} T_{p}(X)^{p}-(1-X)^{2} T_{p}(X)+X=0 . \tag{9}
\end{equation*}
$$

Studying $T_{p}(X)$ and $U_{p}(X)$ is part of [10, Problem 5.5].
As a first attempt, one could try to use the method from [10], mimicking the case of the classical Thue-Morse sequence. In (9), the leading exponent of X is $p+1$ since $\binom{p+1}{p+1}=1$ in \mathbb{F}_{p}. Thus the first step of the method presented in [10] gives an equation with a leading term (in terms of X) equal to $T_{p}(X)^{p} X^{p+1}$. When replacing X by $U_{p}(X)$, we get a new equation with a leading term (in terms of $U_{p}(X)$ this time) equal to $X^{p} U_{p}(X)^{p+1}$. Multiplying this by $U_{p}(X)$ gives a term involving U_{p}^{p+2}, which cannot be compared to $U_{p}\left(X^{p+2}\right)$ in $\mathbb{F}_{p}[[X]]$ for a general p.

The goal is to transform the polynomial equation that we initially obtain for $U_{p}(X)$ into one where the powers of $U_{p}(X)$ all have exponents that are powers of p (as we did, for example, in the second equation of Proposition 10). In fact, such a polynomial equation always exists: this claim is known as Ore's Lemma (see [5, Lemma 12.2.3]) and is an important step in the proof of Christol's Theorem. Adamczewski and Bell [1, Lemmas 8.1, 8.2] give an effective procedure for obtaining a polynomial equation of this form, which provides one possible strategy for analyzing the series $U_{p}(X)$; however, the method described by Adamczewski and Bell could result in a polynomial equation for $U_{p}(X)$ whose coefficients (which are elements of $\left.\mathbb{F}_{p}[X]\right)$ might potentially have quite large degrees.

References

[1] B. Adamczewski and J. P. Bell, "On vanishing coefficients of algebraic power series over fields of positive characteristic", Invent. Math. 187 (2012), no. 2, 343-393.
[2] G. Allouche, J.-P. Allouche and J. Shallit, "Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpiński et morphismes de monoïde", Ann. Inst. Fourier (Grenoble) 56 (2006), no. 7, 2115-2130.
[3] J.-P. Allouche, A. André, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe and B. E. Sagan, "A relative of the Thue-Morse sequence", Discrete Math. 139 (1995), no. 1-3, 455-461.
[4] J.-P. Allouche and J. Shallit, "The ubiquitous Prouhet-Thue-Morse sequence", Sequences and their applications, $1-16$, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999.
[5] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge, 2003.
[6] G. Christol, T. Kamae, M. Mendès France and G. Rauzy, "Suite algébriques, automates et substitutions", Bull. Soc. Math. France 108 (1980), no. 4, 401-419.
[7] A. Cobham, "Uniform tag sequences", Math. Systems Theory, vol. 6, pp. 164-192, 1972.
[8] F. Durand, "Cobham's theorem for substitutions", J. Eur. Math. Soc., vol. 13, no. 6, pp. 1799-1814, 2011.
[9] P. Fatou, "Séries trigonométriques et séries de Taylor", Acta Math. 30 (1906) 335-400.
[10] M. Gawron and M. Ulas, "On formal inverse of the Prouhet-Thue-Morse sequence", Discrete Math. 339 (2016), no. 5, 1459-1470.
[11] Ł. Merta, "Composition inverses of the variations of the Baum-Sweet sequence", arXiv:1803.00292,
[12] M. Rigo, Formal languages, automata and numeration systems. 1. Introduction to combinatorics on words, Networks and Telecommunications Series, ISTE, London; John Wiley \& Sons, Inc., Hoboken, NJ, 2014.
[13] M. Rigo, Formal languages, automata and numeration systems. 2. Applications to recognizability and decidability, Networks and Telecommunications Series, ISTE, London, John Wiley \& Sons, Inc., Hoboken, NJ, 2014.
[14] L. Schaeffer, "Deciding Properties of Automatic Sequences", Ph.D. Thesis (2013).
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[16] R. P. Stanley, Enumerative Combinatorics, Volume 1, Corrected reprint of the 1986 original, Cambridge University Press, 1997.

[^0]: *The author is supported by NSERC Discovery Grant 418646-2012.
 ${ }^{\dagger}$ The author is supported by FRIA Grant 1.E030.16.

