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Abstract

This paper is a revision of the combinatorics of fractional exclusion statistics (FES).
More specifically, the following exact statement of the generalized Pauli principle is
derived: for an N -particles system exhibiting FES of extended parameter g = q/r (q
and r are co-prime integers such that 0 < q ≤ r), we found that the allowed occupation
number of a state is smaller than or equal to r − q + 1 and not to 1/g whenever q 6= 1
and, moreover, the global occupancy shape (merely represented by a partition of N)
is admissible if the number of states occupied by at least two particles is less than
or equal to (N − 1)/r (N ≡ 1 (mod r)). These counting rules allow distinguishing
infinitely many families of FES systems depending on the parameter g and the size
N . As an application of the main result, we study the probability distributions of
occupancy configurations. For instance, the number of occupied states is found to be
a hypergeometric random variable. Closed-form expressions for the expectation values
and variances in the thermodynamic limit are presented. By way of comparison, we
obtain parallel results regarding the Gentile intermediate statistics and demonstrate
subtle similarities and contrasts with respect to FES.
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1 Introduction

Fractional exclusion statistics (FES) is an archetype of unconventional statistics. Since it was
introduced by Haldane (1991) to explain the properties of quasi-particles in the fractional
quantum Hall effect [1], FES has been a subject of intense research and has found applica-
tions in numerous models of interacting particles. Nowadays, the literature on the topic is
voluminous; we refer, e.g., to papers [2–10] and references cited therein.

Generally, a FES system consists of a countable number of species of particles; each
species consists of a finite number of single-particle states. Haldane’s proposal is based on
a generalization of the Pauli principle. Explicitly, in the case with only one species, an Nth
(quasi-)particle added to a system of identical particles can occupy dN = K−g(N−1) single-
particle states, where K is the number of available states when N = 1 and the constant g is a
parameter of the “statistical interaction”. The number dN represents the dimension of the one-
particle Hilbert space obtained by keeping the quantum numbers of the N −1 other particles
fixed. Naturally, the conventional Bose-Einstein (BE) and Fermi-Dirac (FD) statistics are
recovered for g = 0 (no exclusion) and g = 1 (perfect Pauli exclusion), respectively. In these
notes, FES with parameter g will be referred to as FESg.

The total size of the full Hilbert space of many-particle states for FES systems is postu-
lated to be [1, 3]

Wg(K,N) =
(
dN +N − 1

N

)
, (1)

where
(
a
b

)
= a!/(b!(a − b)!) is a binomial coefficient. As mentioned by Wu, the statistical

weight (1) is a generalization of Yang-Yang state counting [11]. The thermodynamic proper-
ties of FES gazes were widely studied, primarily by Wu [3] and Isakov [4]. For instance, the
average occupation number is found to be

n̄g(ε) = 1
f(ξ) + g

<
1
g
,
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where ξ = eβ(ε−µ), ε is the single particle energy, β the inverse temperature, µ the chemical
potential of the system and the function f(ξ) satisfies the functional equation f g(1+f)1−g = ξ.

Clearly, to have a combinatorial meaning, the number of particles N has to be congruent
to 1 (mod r) so that the dimension dN , and accordingly Wg(K,N), is a whole number. Thus,
if N = rP + 1 for some integer P , then dN+r − dN = −q, viz. adding r particles reduces the
number of available states by q. The number of quantum states (1) takes now the form

Wg(K, 0) = 1, and Wg(K,N) =
(
K + (r − q)P

rP + 1

)
. (1′)

Note that Wg(K,N) = 0 if P > (K − 1)/q.
In Ref. [12], Polychronakos proposed an extensive model which accurately gives back

the statistical mechanics of FES in the thermodynamic limit. Extensivity (or multiplica-
tivity) here means that, for large K, the grand partition function is the Kth power of a
K-independent function [12]. However, the price paid for this microscopic realization is the
occurrence of negative probabilities; see also [18]. Now, it is understood that this problem
occurs because Haldane statistics is not extensive and, unlike the Pauli principle, the exclu-
sion operates on sets of levels [6]. Chaturvedi and Srinivasan [19], and subsequently Murthy
and Shankar [13], showed how negative weights may be avoided for g = 1/2 (semions) and
for g = 1/3, and indicated – without being explicit – that “there is an algorithm to derive
single-particle occupation probabilities for arbitrary g = 1/m though this gets complicated
for larger m” [13]. In this letter, we revisit and solve this problem in a closed form when
the parameter g is generally any irreducible fraction: g = q/r, where q and r are coprime
and 0 < q ≤ r. Moreover, while doing this, we revise and generalize the exclusion rules of
FES. Our approach is purely combinatorial; it leads to the following exclusion principle: An
occupancy configuration is allowed if (1) the maximal number of particles that each state can
accommodate is r − q + 1, and not to g−1 whenever q 6= 1, and (2) the configurations in
which the number of states occupied by two or more particles is greater than (N − 1)/r are
forbidden. This allows us to distinguish infinitely many families of FESg systems depending
on g and N .

In Section 2, we state our main result (Theorem 2.1) and interpret its combinatorial con-
sequences. Section 3 deals with an application to the statistics of occupancy configurations.
By way of comparison with other exotic models, we derive similar results for the Gentile
intermediate statistics. We end with some concluding remarks in Section 4.

2 The Exact combinatorics

In order to state our main result, we need some background on the theory of partitions.
A partition of a non-negative integer N is a non-increasing sequence of positive integers
whose sum is N . To indicate that λ is a partition of N , we write λ ` N and denote
λ = (1k12k2 . . . NkN ), where ∑N

i=1 iki = N and ki designates the multiplicity of the part i; the
sum `(λ) = ∑N

i=1 ki is called the length of λ. The Ferrers diagram of λ is a pattern of dots,
with the jth row having the same number of dots as the jth term in λ.
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Suppose we have N indistinguishable balls (particles) randomly distributed into K labeled
boxes (states). An occupancy configuration is said to be of shape λ = (1k12k2 . . . NkN ) ` N
if ki states are occupied by i particles (i = 1, . . . , N) and the number of non-vacant states
`(λ) is less than or equal to K. Moreover, if no parts of λ exceed a fixed integer m, the
corresponding configuration is additionally characterized by `(λ∗) ≤ m, where λ∗ stands for
the conjugate partition of λ, that is, the partition whose Ferrers diagram is obtained from λ
by reflection with respect to the diagonal so that rows become columns and columns become
rows.

2.1 The main result

The combinatorics of FES is encoded in the following result.
Theorem 2.1. For g = q/r and N ≡ 1 (mod r) , the number of microstates (1′) can be
written as

Wg(K,N) =
∑
λ`N

wg(λ) `(λ)!
k1! k2! · · · kN !

(
K

`(λ)

)
, (2)

where the sum runs over partitions of N , and

wg(λ) =

(
(N − 1)/r
`(λ)− k1

)
(
`(λ)
k1

) r−q∏
j=0

(
r − q
j

)kj+1

H[r − q + 1− `(λ∗)]; (3)

the function H being the Heaviside step function H[0] = 1).

For the sake of readability, we report the proof in Subsection 2.3.
Displayed in the form (2), Wg(K,N) may be interpreted as follows. A configuration λ

being fixed, the factor `(λ)!
k1! k2!···kN !

(
K
`(λ)

)
counts the ways to choose `(λ) non-vacant states out

of K ones and arrange ki states with i particles (i = 1, . . . , N) among them. The result is
then weighted by a configuration-dependent function wg(λ). Due to the expression (3), the
sum in Eq. (2) runs actually over restricted partitions of N .

In the case with g = 1/2, the weight (3) reads, for λ = (1k12k2) ` N , as

w1/2(λ) =
(

(N − 1)/2
k2

)(
k1 + k2

k1

)−1

,

which is exactly the formula derived by Chaturvedi and Srinivasan in their microscopic
interpretation of semion statistics [19].

Obviously, the one-configuration weight wg characterizes the studied occupancy model.
In fact, the form (2) is generic to any statistics based on “Balls-in-Boxes” models with dis-
tinguishable boxes. For instance, the number of microstates for the Gentile intermediate
statistics (GS) [14] can be cast in the form (2). Indeed, it is well known that the partition
function is [12,21]

Z(z) =
∞∑
N=0

WG(K,N)zN =
(
1 + z + . . .+ zG

)K
, (4)
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where z is the fugacity and G is the order of Gentile statistics 1. Using the multinomial
theorem to expand the power in (4) and extracting the coefficient of zN , we obtain the
identity

WG(K,N) =
∑
{ki}

K!
k1! · · · kG!(K − k1 − · · · − kG)! , (5)

where the sum runs over all G-tuples (k1, . . . , kG) subject to k1 + 2k2 + . . . + GkG = N , i.e.
over restricted partitions of N . Thus WG(K,N) can be written as (2) with a weight given
by:

wG(λ) = H[G− `(λ∗)]. (6)
In the table below, we summarize our calculations of the weight w(λ) for the most known
statistics; see also [21]. The so-called γ-statistics, introduced as an ansatz in [12, 20], in-
terpolates between FD (γ = 1), BE (γ = −1) and the classical Maxwell-Boltzmann (MB)
statistics (γ = 0).

Statistics w(λ)
BE 1
FD 1 if λ = (1N ), 0 otherwise
MB (1!k12!k2 · · ·N !kN )−1

FESq/r Eq. (3)
GSG Eq. (6)

γ-statistics γN
(γ−1

1
)k1(γ−1

2
)k2 · · ·

(γ−1

N

)kN
2.2 Interpretation of the weight wg

From the expression of wg, we underline the following features:

(1) the weights wg(λ) are fractional and non-negative definite,

(2) the weights wg(λ) depend only upon P := (N − 1)/r and the difference r − q,

(3) the allowed occupation number for a single-state does not exceed r− q+ 1 and not 1/g
whenever q 6= 1. We recall, however, that the average occupation number n̄g(ε) does
not exceed 1/g ≤ r − q + 1,

(4) Since the binomial coefficient
(

P
`(λ)−k1

)
in (3) vanishes if P <

∑m
i=2 ki , the corresponding

configuration does not contribute to the total weight.

The last observation is crucial. It stipulates that a necessary condition for permissible config-
urations is that the number of states occupied by two particles or more is less than or equal
to P , that is, the Ferrers diagram of (2k2 . . . (r − q + 1)kr−q+1), extracted from λ, fits inside
the rectangle [P × (r − q + 1)].

Let us incorporate the above-formulated rules as follows:

Generalized Exclusion Principle. A configuration of shape λ ` n is admissible if and
only if the following constraints are fulfilled:

1Throughout this letter, we set GSG to designate GS of oreder G
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C1 : `(λ) ≤ K (by definition),

C2 : `(λ∗) ≤ r − q + 1 (at most r − q + 1 particles per state),

C3 :
m∑
i=2

ki ≤
N − 1
r
≤ K − 1

q
(wg(λ) 6= 0 and dN ≥ 1).

Therefore, the exclusion operates not only on the “microscopic” level (condition C2),
but also on the “macroscopic” level (condition C3). To illustrate, we implement this in two
specific examples:
• Let g = 1/3. Here the maximal allowed occupancy of a state is 3 and

w1/3(λ) =
(

(N − 1)/3
k2 + k3

)(
k1 + k2 + k3

k1

)−1

2k2 ,

for λ = (1k12k23k3) ` N . This formula was obtained by Murthy and Shankar using an
exactly solvable model [13]. For an example, take, say, N = 10. By the constraint C2, 14
configurations may contribute (depending on K ≥ 4), among which the configurations (1224),
(25), (1233) and (2232) are forbidden by the constraint C3:

• Let g = 3/5 and N = 16. Here the maximal allowed occupancy is again 3. Among the
231 partitions of 16, only 10 may contribute to the total weight: (116), (1142), (11222), (1133),
(11023), (1112 3), (19223), (11032), (182 32), (1733), each of which contributes only if its length
is less than or equal to K ≥ 10.

Proposition 2.2. For N ≤ K, the number of permissible configurations is given by:(
(N − 1)/r + r − q

r − q

)
. (7)

Proof. Clearly, when N ≤ K the condition C1 and the inequality in the right of the constraint
C3 are satisfied. Thus, a configuration λ is likely if and only if the inequality in the left of
the condition C3 holds true. Therefore, the number of allowed configurations is the number
of solutions of k2 + k3 + · · · + km ≤ (N − 1)/r in nonnegative integers. The result follows
from the known fact that the number of solutions of x1 + x2 + · · ·+ xk ≤ p is given by

(
p+k
k

)
(cf. [17, p.103]).

By way of comparison, the exact exclusion rules for GSG are, in addition to C1, `(λ∗) ≤ G
and N ≤ GK. Thus, the number of permitted configurations is simply that of the partitions
of N with no more than K parts; no part exceeding G. This number is the coefficient of qN
in the Gaussian polynomial

[
K+G
K

]
q

[23, Chap.3]. When N ≤ K, this reduces to the number
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of partitions with largest part not exceeding G. We also emphasize that if G = r − q + 1,
then WG(K,N) majorizes Wg(K,N) since the exclusion principle of FES is more restrictive.

It is worth noting that, in view of the constraints C2 and C3, we can distinguish infinitely
many families of FES systems according to P = (N − 1)/r and the difference r − q. Indeed,
representing an N -particle system fulfilling FESg by the pair (N, g = q/r), two systems
(N, g = q/r) and (N ′, g′) are subject to the same exclusion rules if there exist an integer
j > 0 not a multiple of r − q such that

g′ = j

r − q + j
, and N ′ − 1

r − q + j
= N − 1

r
. (8)

The semions, for example, belong to the family with g = j/(j + 1), the semionic family.
Clearly, the Bose and Fermi statistics are recovered in the limits j = 0 and j → ∞ respec-
tively.

2.3 Proof of Theorem 2.1

To prove Theorem 2.1, we need the following identity:

Lemma 2.3. Let P , n and k be positive integers. Then(
kP

n

)
=
∑
{li}

P !
l1! · · · lk!(P − l1 − · · · − lk)!

k∏
i=1

(
k

i

)li
, (9)

where the sum runs over all k-tuples (l1, . . . , lk) subject to the constraint l1+2l2+. . .+klk = n.

Proof. We shall use the technique of generating function to prove the identity (9) (see [21]).
Let t be an indeterminate. On one hand, we have by application of the binomial theorem

(1 + t)kP =
kP∑
n=0

(
kP

n

)
tn, (10)

and, on the other hand, by the well-known multinomial theorem:

(1 + t)kP =
(
(1 + t)k

)P
=
(

k∑
i=0

(
k

i

)
ti
)P

=
∑

l0+l1+···lk=P

P !
l0! l1! · · · lk!

k∏
i=0

((
k

i

)
ti
)li

=
∑

(l1,...,lk)

 P !
l1! · · · lk! (P − l1 − l2 − · · · lk)!

k∏
i=0

(
k

i

)li tl1+2l2+···+klk . (11)

The identity (9) follows by equating the coefficients of tn in the two expansions (10) and (11).

Proof of Theorem 2.1. Inserting the weight wg(λ), the RHS of (2) can be displayed as

∑
λ`N

`(λ∗)≤r−q+1

 P !
k2! · · · kr−q+1!(P − k2 − · · · − kr−q+1)!

r−q∏
i=1

(
r − q
i

)ki+1
( K

`(λ)

)
,

7



where P = (N−1)/r. Taking into account that `(λ) = ∑r−q
i=1 ki = N−∑r−q

i=1 iki+1 and putting
s = ∑r−q

i=1 iki+1 (the integer s ranges from 0 to (r − q)P since kr−q+1 ≤ P ), we re-express the
last formula as a double sum:

(r−q)P∑
s=0

 ∑∑r−q
i=1 iki+1=s

P !
k2! · · · kr−q+1!(P − k2 − · · · − kr−q+1)!

r−q∏
i=1

(
r − q
i

)ki+1
( K

N − s

)
. (12)

Now we make the change of summation indices li = ki+1 to write the inner sum as the RHS
of formula (9):

∑∑r−q
i=1 ili=s

P !
l1! · · · lr−q!(P − l1 − · · · − lr−q)!

r−q∏
i=1

(
r − q
i

)li
=
(

(r − q)P
s

)
. (13)

We deduce finally that the RHS of Eq. (2) reads

(r−q)P∑
s=0

(
(r − q)P

s

)(
K

N − s

)
=
(
K + (r − q)P

N

)
= Wg(K,N), (14)

where, to obtain the last equality, we employed the well-known Vandermonde’s formula for
binomial coefficients [25].

Remark. For g > 1 (r < q), one may follow the proof above to check that Wg(K,N) can as
well be formally written in the form (2), but the constraint of maximal occupancy became
relaxed and the weights inevitably negative for some configurations. Indeed, in this case, the
weights are not positive definite since

(
r−q
i

)
< 0 for odd i.

3 The state-occupancy distributions in the thermody-
namic limit

In Balls-in-Boxes models, a problem of interest is the statistics of occupation patterns, for
example, the probability distributions of occupied/vacant cells or those accommodating a
fixed number of balls, etc. In this section, we comparatively investigate these questions and
more for FES and GS, and give a probabilistic application of our main result to the statistics
of occupancies in the thermodynamic limit (i.e. N,K →∞ and N/K is held bounded).

3.1 Two probability measures

The combinatorial expression (2) suggest the following probability measures on the set of
partitions of N ,

Pα(λ) = wα(λ)
Wα(K,N)

`(λ)!
k1! k2! · · · kN !

(
K

`(λ)

)
, (15)

the Haldane measure (α ≡ g) and the Gentile measure (α ≡ G). We regard Pα(λ) as the
probability of configuration λ. Actually, the probability so defined is the joint distribution of
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the random variables k2, k3, . . . , km (m = r − q + 1 or G). For the semionic family and GS2,
we have

Pg=1/2(λ) = 1(
P+K
N

)(P
k2

)(
K

N − k2

)
, (16)

PG=2(λ) = 1
WG=2(K,N)

(
N − k2

k2

)(
K

N − k2

)
, (17)

respectively.
Interestingly, the distribution (16) shows that k2 (or `(λ) = N − k2) is a usual hyper-

geometric random variable of parameters P , P + K and N , that is, P1/2(λ) describes the
probability of getting k2 successes in N draws without replacement where the sample popu-
lation is P +K. Each draw is either success or failure and the population consists of exactly
P successes [24]. More generally, we show that the number of occupied states follows a hy-
pergeometric law with parameters K, (r− q)P +K and N ; see Eqs. (12), (13) and (14). On
the other hand, the distribution (17) relative to GS2 is unusual.

Consider now the average number of states with i particles

〈ki〉α =
∑
λ`n

kiPα(λ), (α ≡ g,G),

and set
κ

(α)
i := lim

N,K→∞
N/K=rρ

1
K
〈ki〉α, (18)

for the proportion of states accommodating i particles. The variable ρ controls the thermo-
dynamic limit. We also define the normalized variance:

ν
(α)
i := lim

N,K→∞
N/K=rρ

1
K

(
〈k2
i 〉α − 〈ki〉2α

)
. (19)

These limits exist for both GS and FES as we will show.
Using the expressions of the expectation value and the variance of hypergeometric distri-

butions [24], we find the thermodynamic limit of the normalized mean and variance of the
number of occupied states:

lim
N,K→∞
N/K=rρ

1
K
〈`(λ)〉g = rρ

1 + (r − q)ρ, (20)

and
lim

N,K→∞
N/K=rρ

1
K

(
〈`(λ)2〉g − 〈`(λ)〉2g

)
= r(r − q)(1− qρ)ρ2

(1 + (r − q)ρ)3 , (21)

where ρ = P/K. Note that ρ ranges in the interval (0, 1/q) due to the constraint C3. For
the semion family g = (j − 1)/j, we find

κ
(g)
1 (ρ) = jρ(1− ρ)

1 + ρ
, κ

(g)
2 (ρ) = jρ2

1 + ρ
,

κ
(g)
0 (ρ) = 1− (j − 1)ρ

1 + ρ
, ν

(g)
2 (ρ) = j(1− (j − 1)ρ)ρ2

(1 + ρ)3 .
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For r−q ≥ 2, we do not have such explicit expressions. As for the Gentile statistics, we show
the following

Proposition 3.1. In the thermodynamic limit, the mean number of states with i particles is
given by

κ
(G)
i (ρ) =

(
1− x(ρ)

)
x(ρ)i

1− x(ρ)G+1 , (22)

for i = 0, 1, . . . , G, where ρ = N/(GK) and x(ρ) is the (unique) positive solution of

Gρ =
t
(
1− (G+ 1) tG +GtG+1

)
(1− t) (1− tG+1) . (23)

Moreover, the following duality relation holds true

κ
(G)
i (1− ρ) = κ

(G)
G−i(ρ). (24)

Proof. The mean number of states with i particles under the Gentile measure is given by

〈ki〉G = 1
WG(K,N)

∑∑
j
jkj=N

kiK!
k1! · · · kG!(K − k1 − · · · − kG)!

= 1
WG(K,N)

∑∑
j
jkj=N

K(K − 1)!
k1! · · · (ki − 1)! · · · kG!(K − k1 − · · · − kG)!

= K

WG(K,N)
∑∑

j
jrj=N−i

(K − 1)!
r1! · · · ri! · · · rG!(K − 1− r1 − · · · − rG)!

= K
WG(K − 1, N − i)

WG(K,N) , for all K and N . (25)

To compute the thermodynamic limit, we use the following asymptotic estimate [21] :

WG(K,N) ∼ (1 + x+ x2 + · · ·+ xG)K

xN+1
√

2πCK
, uniformly as N,K →∞, and N/K finite,

where x = x(ρ) is the positive real solution of Eq. (23) and C is a constant depending on x
only. Whence,

κ
(G)
i (ρ) = lim

N,K→∞
N/K=Gρ

WG(K − 1, N − i)
WG(K,N) = x(ρ)i

1 + x(ρ) + x(ρ)2 + · · ·+ x(ρ)G =

(
1− x(ρ)

)
x(ρ)i

1− x(ρ)G+1 ,

as desired.
The duality (24) follows immediately from the symmetry relation: WG(K,N) =

WG(K,GK −N) [22].

Consequently, the normalized average number of occupied states under the Gentile mea-
sure is

G∑
i=1

κ
(G)
i =

x(ρ)
(
x(ρ)G − 1

)
x(ρ)G+1 − 1 .
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Figure 1: (Color online) The mean numbers κ0, κ1, κ2, κ3 vs ρ, for FES1/3 and GS3.
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Figure 2: (Color online) The normalized mean numbers κi (i = 0, 1, 2) and The normalized
variance ν2 vs. ρ, for semions and GS2.

Closed explicit expressions are possible for G ≤ 4. For instance,

κ
(G=2)
1 (ρ) = −1

3 + 1
3

√
1 + 12ρ− 12ρ2,

κ
(G=2)
2 (ρ) = 1

6 + ρ− 1
6

√
1 + 12ρ− 12ρ2

κ
(G=2)
0 (ρ) = 7

6 − ρ−
1
6

√
1 + 12ρ− 12ρ2.

Comparing κ
(α)
i for semion statistics and GS2, we see in Fig. 2 that qualitatively both

models display a very close behavior. Also, the fluctuations of k2 under both measures are
comparable, although the distribution is slightly more dispersed under the Haldane one.
Particularly at half filling (ρ = 1/2), we highlight the following points: (i) For semions
statistics and GS2 all the κ(α)

i coincide. This feature, though systematic for GS, is not shared
by FESg with r − q ≥ 2 (Fig.1). (ii) It is easy to see that the unique positive solution
of Eq. (23) for ρ = 1/2 is x(1/2) = 1, and, consequently, κ(G)

i (1/2) = 1/(G + 1) for all

11



g =1/3
G= 3
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0.0
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0.8

1.0

ρ
∑ i≥

1

κ
(α

)
i

Figure 3: (Color online) The normalized mean number of occupied states vs. ρ in the
thermodynamic limit, for FES1/3 and GS3.

i = 0, . . . G, illustrating the uniform distribution of occupancies under Gentile measure at
half-filling, (iii) If g = 1/G, the mean numbers of occupied states are the same (= G/(G+1))
under the two measures (Fig. 3).

4 Conclusion

In the present work, we have shown that the generalized exclusion principle for FES cannot
be fully understood without an exact combinatorics of (1). The author believes however that
this point deserve further elucidation, and any interpretation should shed more light on the
subject. In fact, in the Haldane’s seminal paper, the interpolating formula (1) was not derived
from a concrete counting procedure as is the case for conventional statistics or GS. In Ref. [21],
the author presented several interpretations of so-called polynomial coefficients, or extended
binomial coefficients, given by (5), namely as number of restricted integer compositions,
as score in drawing balls, as counting certain directed lattice paths or spin chain models,
etc. It would be instructive to seek similar interpretations for Wg(K,N). For example, in
terms of generalized integer compositions, it has been observed [26, Sequence A078812] that
Wg=1/2(K,N) is the number of ways of writing K as the sum of P+1 strictly positive integers
when there are 1 kind of part 1, 2 kinds of part 2: 21 and 22, and so on 2. For example,
W1/2(4, 2) = 10 since there are 10 such compositions of 4: (1, 31), (1, 32), (1, 33), (31, 1),
(32, 1), (33, 1), (21, 21), (21, 22), (22, 21) and (22, 22). The main goal is to find a one-to-one
correspondence between the set of such compositions and the set occupancy configurations
for semions.

2See the comment of Emeric Deutsch on the sequence A078812 [26].
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