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Abstract. When asymptotically analysing the summatory function of a q-regular sequence
in the sense of Allouche and Shallit, the eigenvalues of the sum of matrices of the linear
representation of the sequence determine the “shape” (in particular the growth) of the
asymptotic formula. Existing general results for determining the precise behavior (including
the Fourier coefficients of the appearing fluctuations) have previously been restricted by a
technical condition on these eigenvalues.

The aim of this work is to lift these restrictions by providing an insightful proof based
on generating functions for the main pseudo Tauberian theorem for all cases simultaneously.
(This theorem is the key ingredient for overcoming convergence problems in Mellin–Perron
summation in the asymptotic analysis.)

One example is discussed in more detail: A precise asymptotic formula for the amount
of esthetic numbers in the first N natural numbers is presented. Prior to this only the
asymptotic amount of these numbers with a given digit-length was known.
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1. Introduction

This extended abstract studies the asymptotic behaviour of summatory functions of q-regular
sequences. We start with a definition of q-regular sequences.

1.1. q-Regular Sequences. An introduction and formal definition of q-regular sequences
(via the so-called q-kernel) is given by Allouche and Shallit [1] and [2, Chapter 16]. We settle
here for an equivalent formulation which is the most useful for our considerations.

Let q ≥ 2 be a fixed integer and (x(n))n≥0 be a sequence. Then (x(n))n≥0 is q-regular if
and only if there exists a vector valued sequence (v(n))n≥0 whose first component coincides
with (x(n))n≥0 and there exist square matrices A0, . . . , Aq−1 ∈ Cd×d such that

v(qn+ r) = Arv(n) for 0 ≤ r < q, n ≥ 0; (1.1)
see Allouche and Shallit [1, Theorem 2.2]. This is called a q-linear representation of x(n).

We note that a linear representation (1.1) immediately leads to an explicit expression for
x(n) by induction: Let r`−1 . . . r0 be the q-ary digit expansion of n. Then

x(n) = e1Ar0 · · ·Ar`−1v(0)

where e1 =
(
1 0 . . . 0

)
.

Regular sequences are related to divide-and-conquer algorithms, therefore they have been
intensively investigated in the literature in many particular cases; see, for example, [5], [6], [7],
[8] [10], [11], [12], [13] and [14] for a more detailed overview. The best-known example for a
2-regular function is the binary sum-of-digits function.

1.2. Summatory Functions. Of particular interest is the analysis of the summatory function
(i.e., the sequence of partial sums) of a regular sequence, not least because of its relation to
the expectation of a random element of the sequence (with respect to uniform distribution on
the nonnegative integers smaller than a certain N). In [12], Prodinger and the two authors of
this extended abstract provide a theorem decomposing the summatory function into periodic
fluctuations multiplied by some scaling functions; the Fourier coefficients of these periodic
fluctuations are provided as well. Although this result is quite general, the proof in [12]
imposes a restriction on the asymptotic growth. One major aim of this work is to lift this
restriction by completely getting rid of the corresponding technical condition. We formulate
the full main theorem in Section 3 and the theorem stating the underlying pseudo-Tauberian
argument in Section 4.

1.3. The Proof. The proof of the extended pseudo-Tauberian theorem contained in this
extended abstract not only covers the previously excluded cases, but also works for the existing
theorem in [12]. In particular the proof of the main result does not need a case distinction,
but the contained proof supersedes the existing one. (Besides, it also is much shorter.) This
is reached by changing the perspective to a more general point of view; we use a generating
functions approach. Beside proving the theorem, this also gives additional insights. For
example, the cancellations in the proof in [12] seem to be a kind of magic at that point, but
with the new approach, it is now clear and no surprise anymore that they have to appear.

1.4. Esthetic Numbers. A further main contribution of this extended abstract is the precise
asymptotic analysis of q-esthetic numbers, see De Koninck and Doyon [3]. These are numbers
whose q-ary digit expansion satisfies the condition that neighboring digits differ by exactly
one. The sequence of such numbers turns out to be q-automatic, thus are q-regular and can
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also be seen as an output sum of a transducer; see the first author’s joint work with Kropf
and Prodinger [13]. However, the asymptotics obtained by using the main result of [13]—in
fact, this result is recovered as a corollary of the main result of [12]—is degenerated in the
sense that the provided main term and second order term both equal zero. On the other
hand, using a more direct approach via our main theorem brings up the actual main term
and the fluctuation in this main term. The full theorem is formulated in Section 2. Prior
to this precise analysis, the authors of [3] only performed an analysis of esthetic numbers by
digit-length (and not by the number itself).

The approach used in the analysis of q-esthetic numbers can easily be adapted to numbers
defined by other conditions on the word of digits of their q-ary expansion.

1.5. Dependence on Residue Classes. The analysis of q-esthetic numbers also brings
another aspect into the light of day, namely a quite interesting dependence of the behaviour
with respect to q on different moduli:

• The dimensions in the matrix approach of [3] need to be increased for certain residue
classes of q modulo 4 in order to get a formulation as a q-automatic and q-regular
sequence, respectively.
• The main result in [3] already depends on the parity of q (i.e., on q modulo 2). This
reflects our Theorem A by having 2-periodic fluctuations (in contrast to 1-periodic
fluctuations in the main Theorem B).
• Surprisingly, the error term in the resulting formula of Theorem A depends on the
residue class of q modulo 3. This is due to the appearance of an eigenvalue 1 in certain
cases.
• As an interesting side-note: In the same (up to this point not specified; see below)
spectrum, the algebraic multiplicity of the eigenvalue 0 changes again only modulo 2.

The spectrum above consists of the eigenvalues of the sum of matrices of the q-linear represen-
tation of the sequence.

1.6. Symmetrically Arranged Eigenvalues. The second of the four bullet points above
comes from a particular configuration in the spectrum. Whenever eigenvalues are arranged
as vertices of a regular polygon, then their influence can be collected; this results in periodic
fluctuations with larger period than 1. We elaborate on the influence of such eigenvalues in
Section 5. This is then used in the particular case of esthetic numbers, but might also be used
in conjunction with the output sum of transducers; to be precise, for obtaining the second
order term in the main result of [13].

2. Esthetic Numbers

Let again be q ≥ 2 a fixed integer. We call a nonnegative integer n a q-esthetic number (or
simply an esthetic number) if its q-ary digit expansion r`−1 . . . r0 satisfies |rj − rj−1| = 1 for
all j ∈ {1, . . . , `− 1}; see De Koninck and Doyon [3].

In [3] the authors count q-esthetic numbers with a given length of their q-ary digit expansion.
They provide an exact as well as an asymptotic formula for these counts. We aim for a more
precise analysis and head for an asymptotic description of the amount of q-esthetic numbers
up the an arbitrary value N (in contrast to only powers of q in [3]).
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Figure 2.1. Automaton A recognizing esthetic numbers.

2.1. A q-Linear Representation. The language consisting of the q-ary digit expansions
(seen as words of digits) which are q-esthetic is a regular language, because it is recognized by
the automaton A in Figure 2.1. Therefore, the indicator sequence of this language, i.e., the
nth entry is 1 if n is q-esthetic and 0 otherwise is a q-automatic sequence and therefore also
q-regular. Let us name this sequence x(n).

Let A0, . . . , Aq−1 be the transition matrices of the automaton A, i.e., Ar is the adjacency
matrix of the directed graph induced by a transition with digit r. To make this more
explicit, we have the following (q + 1)-dimensional square matrices: Each row and column
corresponds to the states 0, 1, . . . , q − 1, I. In matrix Ar, the only nonzero entries are in
column r ∈ {0, 1, . . . , q − 1}, namely 1 in the rows r − 1 and r + 1 (if available) and in row I
as there are transitions from these states to state r in the automaton A.

Let us make this more concrete by considering q = 4. We obtain the matrices

A0 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

, A1 =


0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0

, A2 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

, A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

.

We are almost at a q-linear representation of our sequence; we still need vectors on both
sides of the matrix products. We have

x(n) = eq+1Ar0 · · ·Ar`−1v(0)

for r`−1 . . . r0 being the q-ary expansion of n and chosen vectors eq+1 =
(
0 . . . 0 1

)
and

v(0) =
(
0 1 . . . 1

)>. Strictly speaking, this is not yet a regular sequence: in the case
of regular sequences, we always have that A0v(0) = v(0) which is not the case here. This
does not matter in this case: the difference leads to an additional constant in the asymptotic
analysis which is absorbed by the error term anyway.

To see that the above holds, we have two different interpretations: The first is that the row
vector w(n) = eq+1Ar0 · · ·Ar`−1 is the unit vector corresponding to the most significant digit
of the q-ary expansion of n or, in view of the automaton A, corresponding to the final state.
Note that we read the digit expansion from the least significant digit to the most significant
one (although it would be possible the other way round as well). We have w(0) = eq+1
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which corresponds to the empty word and being in the initial state I in the automaton. The
vector v(0) corresponds to the fact that all states of A except 0 are accepting.

The other interpretation is: The rth component of the column vector v(n) = Ar0 · · ·Ar`−1v(0)
has the following two meanings:

• In the automaton A, we start in state r and then read the digit expansion of n. The
rth component is then the indicator function whether we remain esthetic, i.e., end in
an accepting state.
• To a word ending with r we append the digit expansion of n. The rth component is
then the indicator function whether the result is an esthetic word.

At first glance, our problem here seems to be a special case of the transducers studied
in [13]. However, the automaton A is not complete. Adding a sink to have a formally complete
automaton, however, adds an eigenvalue q and thus a much larger dominant asymptotic term,
which would then be multiplied by 0. Therefore, the results of [13] do not apply to this case
here.

2.2. Full Asymptotics. We now formulate our main result for the amount of esthetic numbers
smaller than a given integer N . We abbreviate this amount by X(N) =

∑
0≤n<N x(n) and

have the following theorem.

Theorem A. The number X(N) of q-esthetic numbers smaller than N is

X(N) =
∑

j∈{1,2,...,d q−2
3 e}

N logq(2 cos(jπ/(q+1)))Φqj(2{logq2 N}) +O
(
(logN)[q≡−1 (mod 3)]) (2.1)

with 2-periodic continuous functions Φqj. Moreover, we can effectively compute the Fourier
coefficients of each Φqj. If q is even, then the functions Φqj are actually 1-periodic.

If q = 2, then the theorem results in X(N) = O(logN). However, for each length, the only
word of digits satisfying the esthetic number condition has alternating digits 0 and 1, starting
with 1 at its most significant digit. The corresponding numbers n are the sequence A000975
(“Lichtenberg sequence”) in The On-Line Encyclopedia of Integer Sequences [15].

Back to a general q: For the asymptotics, the main quantities influencing the growth will
turn out to be the eigenvalues of the matrix C = A0 + · · ·+Aq−1. Continuing our example
q = 4 above, this matrix is

C = A0 +A1 +A2 +A3 =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
1 1 1 1 0

,

and its eigenvalues are ±2 cos(π5 ) = ±1
2
(√

5 + 1
)

= ±1.618 . . . , ±2 cos(2π
5 ) = ±1

2
(√

5− 1
)

=
±0.618 . . . and 0, all with algebraic and geometric multiplicity 1. Therefore it turns out that
the growth of the main term is N log4(

√
5+1)− 1

2 = N0.347..., see Figure 2.2
The proof of Theorem A can be found in Appendix B.

3. Asymptotics of Summatory Functions

3.1. Main Result on the Asymptotics. We are interested in the asymptotic behaviour of
the summatory function X(N) =

∑
0≤n<N x(n).

https://oeis.org/A000975
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Figure 2.2. Fluctuation in the main term of the asymptotic expansion ofX(N)
for q = 4. The figure shows Φ1(u) (red) approximated by its trigonometric
polynomial of degree 1999 as well as X(4u)/Nu(log4(

√
5+1)− 1

2 ) (blue).

We choose any vector norm ‖ · ‖ on Cd and its induced matrix norm. We set C :=
∑q−1
r=0Ar.

We choose R > 0 such that ‖Ar1 · · ·Ar`‖ = O(R`) holds for all ` ≥ 0 and 0 ≤ r1, . . . , r` < q. In
other words, R is an upper bound for the joint spectral radius of A1, . . . , Aq−1. The spectrum
of C, i.e., the set of eigenvalues of C, is denoted by σ(C). For λ ∈ C, let m(λ) denote the
size of the largest Jordan block of C associated with λ; in particular, m(λ) = 0 if λ /∈ σ(C).
Finally, we consider the Dirichlet series1

X (s) =
∑
n≥1

n−sx(n), V(s) =
∑
n≥1

n−sv(n)

where v(n) is the vector valued sequence defined in (1.1). Of course, X (s) is the first component
of V(s). The principal value of the complex logarithm is denoted by log. The fractional part
of a real number z is denoted by {z} := z − bzc.
Theorem B. With the notations above, we have

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<m(λ)
(logqN)kΦλk({logqN})

+O
(
N logq R(logN)max{m(λ) : |λ|=R}) (3.1)

for suitable 1-periodic continuous functions Φλk. If there are no eigenvalues λ ∈ σ(C) with
|λ| ≤ R, the O-term can be omitted.

For |λ| > R and 0 ≤ k < m(λ), the function Φλk is Hölder continuous with any exponent
smaller than logq(|λ|/R).

The Dirichlet series V(s) converges absolutely and uniformly on compact subsets of the half
plane <s > logq R + 1 and can be continued to a meromorphic function on the half plane
<s > logq R. It satisfies the functional equation

(I − q−sC)V(s) =
q−1∑
n=1

n−sv(n) + q−s
q−1∑
r=0

Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k) (3.2)

1 Note that the summatory function X(N) contains the summand x(0) but the Dirichlet series cannot. This
is because the choice of including x(0) into X(N) will lead to more consistent results.
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for <s > logq R. The right side converges absolutely and uniformly on compact subsets of
<s > logq R. In particular, V(s) can only have poles where qs ∈ σ(C).

For λ ∈ σ(C) with |λ| > R, the Fourier series

Φλk(u) =
∑
`∈Z

ϕλk` exp(2`πiu)

converges pointwise for u ∈ R where

ϕλk` = (log q)k

k! Res
((x(0) + X (s)

)(
s− logq λ− 2`πi

log q
)k

s
, s = logq λ+ 2`πi

log q

)
(3.3)

for ` ∈ Z, 0 ≤ k < m(λ).

The above theorem is almost the formulation found in [12], but with the important difference
that the technical condition |λ| > max{R, 1/q} is replaced with the condition |λ| > R. The
latter condition is inherent in the problem: single summands x(n) might be as large as nlogq R

and must therefore be absorbed by the error term in any smooth asymptotic formula for the
summatory function.

Sketch of Proof of Theorem B. Use the proof of the corresponding theorem in [12], but replace
the pseudo-Tauberian argument by Theorem C. �

3.2. Fourier Coefficients & Mellin–Perron Summation. We give a heuristic and non-
rigorous argument explaining why the formula (3.3) for the Fourier coefficients is expected;
see also [4].

By the Mellin–Perron summation formula of order 0 (see, for example, [9, Theorem 2.1]),
we have ∑

1≤n<N
x(n) + x(N)

2 = 1
2πi

∫ max{logq R+2,1}+i∞

max{logq R+2,1}−i∞
X (s)N

s ds
s

.

Shifting the line of integration to the left and collecting the residues at the location of the
poles of X (s) claimed in Theorem B yields the Fourier series expansion. However, we have no
analytic justification that this is allowed, so we need to work around this issue by reducing
the problem to higher order Mellin–Perron summation; details are to be found in [12]. One
key ingredient to make tracks back to our original summation problem is a pseudo-Tauberian
theorem; see below.

4. Pseudo-Tauberian Theorem

In this section, we generalise a pseudo-Tauberian argument by Flajolet, Grabner, Kirschen-
hofer, Prodinger and Tichy [9, Proposition 6.4]. In contrast to their version, we allow for
an additional logarithmic factor, have weaker growth conditions on the Dirichlet series and
quantify the error. We also extend the result to all complex κ.

Theorem C. Let κ ∈ C and q > 1 be a real number, m be a positive integer, Φ0, . . . , Φm−1
be 1-periodic Hölder continuous functions with exponent α > 0, and 0 < β < α. Then there
exist continuously differentiable functions Ψ−1, Ψ0, . . . , Ψm−1, periodic with period 1, and a
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constant c such that∑
1≤n<N

nκ
∑

j+k=m−1
0≤j<m

(logn)k

k! Φj(logq n)

= c+Nκ+1 ∑
k+j=m−1
−1≤j<m

(logN)k

k! Ψj(logqN) +O
(
N<κ+1−β) (4.1)

for integers N →∞.
Denote the Fourier coefficients of Φj and Ψj by ϕj` :=

∫ 1
0 Φj(u) exp(−2`πiu) du and

ψj` :=
∫ 1
0 Ψj(u) exp(−2`πiu) du, respectively. Then the corresponding generating functions

fulfil ∑
0≤j<m

ϕj`Z
j =

(
κ+ 1 + 2`πi

log q + Z
) ∑
−1≤j<m

ψj`Z
j +O(Zm) (4.2)

for ` ∈ Z and Z → 0.
If qκ+1 6= 1, then Ψ−1 vanishes.

Remark 4.1. Note that the constant c is absorbed by the error term if <κ+1 > α, in particular
if <κ > 0. Therefore, this constant does not occur in the article [9].

Remark 4.2. The factor κ+ 1 + 2`πi
log q + Z in (4.2) will turn out to correspond exactly to the

additional factor s+1 in the first order Mellin–Perron summation formula with the substitution
s = κ+ 2`πi

log q +Z such that the local expansion around the pole in s = κ+ 2`πi
log q of the Dirichlet

generating function is conveniently written as a Laurent series in Z.

Proof. Notations. Without loss of generality, we assume that q<κ+1 6= qα: otherwise, we
slightly decrease α keeping the inequality β < α intact. We use the abbreviations Λ := blogqNc,
ν := {logqN}, i.e., N = qΛ+ν . We use the generating functions

Φ(u, Z) :=
∑

0≤j<m
Φj(u)Zj ,

L(N,Z) :=
∑

1≤n<N
nκ+Z Φ(logq n,Z) =

∑
1≤n<N

nκ exp
(
(logn)Z

)
Φ(logq n,Z),

Q(Z) := qκ+1+Z

for 0 ≤ u ≤ 1 and 0 < |Z| < 2r where r > 0 is chosen such that r < (α− β)/2 and such that
Q(Z) 6= 1 and |Q(Z)| 6= qα for these Z. (The condition Z 6= 0 is only needed for the case
q1+κ = 1.) We will stick to the above choice of r and restrictions for Z throughout the proof.

It is easily seen that the left-hand side of (4.1) equals [Zm−1]L(N,Z), where [Zm−1] denotes
extraction of the coefficient of Zm−1.
Approximation of the Sum by an Integral. Splitting the range of summation with respect to
powers of q yields

L(N,Z) =
∑

0≤p<Λ

∑
qp≤n<qp+1

nκ+Z Φ(logq n,Z)

+
∑

qΛ≤n<qΛ+ν

nκ+Z Φ(logq n,Z).
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We write n = qpx (or n = qΛx for the second sum), use the periodicity of Φ in u and get

L(N,Z) =
∑

0≤p<Λ
Q(Z)p

∑
x∈q−pZ
1≤x<q

xκ+Z Φ(logq x, Z) 1
qp

+ Q(Z)Λ ∑
x∈q−ΛZ
1≤x<qν

xκ+Z Φ(logq x, Z) 1
qΛ .

The inner sums are Riemann sums converging to the corresponding integrals for p→∞. We
set

I(u, Z) :=
∫ qu

1
xκ+Z Φ(logq x, Z) dx.

It will be convenient to change variables x = qw in I(u, Z) to get

I(u, Z) = (log q)
∫ u

0
Q(Z)w Φ(w,Z) dw. (4.3)

We define the error εp(u, Z) by∑
x∈q−pZ
1≤x<qu

xκ+Z Φ(logq x, Z) 1
qp

= I(u, Z) + εp(u, Z).

As the sum and the integral are both analytic in Z, their difference εp(u, Z) is analytic
in Z, too. We bound εp(u, Z) by the difference of upper and lower Darboux sums (step
size q−p) corresponding to the integral I(u, Z): On each interval of length q−p, the maximum
and minimum of a Hölder continuous function can differ by at most O(q−αp). As the
integration interval as well as the range for u and Z are finite, this translates to the bound
εp(u, Z) = O(q−αp) as p→∞ uniformly in 0 ≤ u ≤ 1 and |Z| < 2r. This results in

L(N,Z) = I(1, Z)
∑

0≤p<Λ
Q(Z)p +

∑
0≤p<Λ

Q(Z)pεp(1, Z) + I(ν, Z)Q(Z)Λ +Q(Z)ΛεΛ(ν, Z).

If |Q(Z)|/qα = q<κ+1+<Z−α < 1, i.e., <κ + <Z < α − 1, the second sum involving the
integration error converges absolutely and uniformly in Z for Λ→∞ to some analytic function
c′(Z); therefore, we can replace the second sum by c′(Z) + O

(
q(<κ+1+2r−α)Λ) = c′(Z) +

O
(
N<κ+1+2r−α) in this case. If <κ+<Z > α−1, then the second sum is O

(
q(<κ+2r+1−α)Λ) =

O
(
N<κ+1+2r−α). By our choice of r, the case <κ+ <Z = α− 1 cannot occur. So in any case,

we may write the second sum as c′(Z) +O
(
N<κ+1−β) by our choice of r. The last summand

involving εΛ(ν, Z) is absorbed by the error term of the second summand. Note that the error
term is uniform in Z and, by its construction, analytic in Z.

Thus we end up with

L(N,Z) = c′(Z) + S(N,Z) +O
(
N<κ+1−β) (4.4)

where
S(N,Z) := I(1, Z)

∑
0≤p<Λ

Q(Z)p + I(ν, Z)Q(Z)Λ. (4.5)

It remains to rewrite S(N,Z) in the form required by (4.1). We emphasise that we will
compute S(N,Z) exactly, i.e., no more asymptotics for N →∞ will play any rôle.
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Construction of Ψ. We rewrite (4.5) as

S(N,Z) = I(1, Z)1−Q(Z)Λ

1−Q(Z) + I(ν, Z)Q(Z)Λ.

We replace Λ by logqN − ν and use

Q(Z)Λ = Q(Z)logq N Q(Z)−ν = Nκ+1+Z Q(Z)−ν

to get

S(N,Z) = I(1, Z)
1−Q(Z) +Nκ+1+ZΨ(ν, Z) (4.6)

with

Ψ(u, Z) := Q(Z)−u
(
I(u, Z)− I(1, Z)

1−Q(Z)
)
. (4.7)

Periodic Extension of Ψ. It is obvious that Ψ(u, Z) is continuously differentiable in u ∈ [0, 1].
We have

Ψ(1, Z) = I(1, Z)
Q(Z)

(
1− 1

1−Q(Z)
)

= − I(1, Z)
1−Q(Z) = Ψ(0, Z)

because I(0, Z) = 0 by (4.3). The derivative of Ψ(u, Z) with respect to u is

∂Ψ(u, Z)
∂u

= −
(
logQ(Z)

)
Ψ(u, Z) + (log q)Q(Z)−uQ(Z)u Φ(u, Z)

= −
(
logQ(Z)

)
Ψ(u, Z) + (log q) Φ(u, Z),

which implies that

∂Ψ(u, Z)
∂u

∣∣∣
u=1

= ∂Ψ(u, Z)
∂u

∣∣∣
u=0

.

We can therefore extend Ψ(u, Z) to a 1-periodic continuously differentiable function in u on R.

Fourier Coefficients of Ψ. By using equations (4.7) and (4.3), Q(Z) = qκ+1+Z , and
exp(−2`πiu) = q−χ`u with χ` = 2πi`

log q , we now express the Fourier coefficients of Ψ(u, Z) in
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terms of those of Φ(u, Z) by∫ 1

0
Ψ(u, Z) exp(−2`πiu) du

= (log q)
∫

0≤w≤u≤1
Q(Z)w−u Φ(w,Z)q−χ`u dw du

− I(1, Z)
1−Q(Z)

∫ 1

0
q−(κ+1+Z+χ`)u du

= (log q)
∫

0≤w≤1
Q(Z)w Φ(w,Z)

∫
w≤u≤1

q−(κ+1+Z+χ`)u dudw

− I(1, Z)
(1−Q(Z))(log q)(κ+ 1 + Z + χ`)

(
1− 1

Q(Z)
)

= 1
κ+ 1 + Z + χ`

∫ 1

0
Q(Z)w Φ(w,Z)

(
q−(κ+1+Z+χ`)w − 1

Q(Z)
)

dw

+ I(1, Z)
Q(Z)(log q)(κ+ 1 + Z + χ`)

= 1
κ+ 1 + χ` + Z

∫ 1

0
Φ(w,Z) exp(−2`πiw) dw

− 1
Q(Z)(κ+ 1 + χ` + Z)

∫ 1

0
Q(Z)w Φ(w,Z) dw

+ I(1, Z)
Q(Z)(log q)(κ+ 1 + Z + χ`)

.

The second and third summands cancel, and we get(
κ+ 1 + χ` + Z

) ∫ 1

0
Ψ(u, Z) exp(−2`πiu) du =

∫ 1

0
Φ(w,Z) exp(−2`πiw) dw. (4.8)

Extracting Coefficients. By (4.7), Ψ(u, Z) is analytic in Z for 0 < |Z| < 2r. If qκ+1 6= 1, then
it is analytic in Z = 0, too. If qκ+1 = 1, then (4.7) implies that Ψ(u, Z) might have a simple
pole in Z = 0. Note that all other possible poles have been excluded by our choice of r. For
j ≥ −1, we write

Ψj(u) := [Zj ] Ψ(u, Z)

and use Cauchy’s formula to obtain

Ψj(u) = 1
2πi

∮
|Z|=r

Ψ(u, Z)
Zj+1 dZ.

This and the properties of Ψ(u, Z) established above imply that Ψj is a 1-periodic continuously
differentiable function.

Inserting (4.6) in (4.4) and extracting the coefficient of Zm−1 using Cauchy’s theorem and
the analyticity of the error in Z yields (4.1) with c = [Zm−1]

(
c′(Z) + I(1,Z)

1−Q(Z)
)
. Rewriting (4.8)

in terms of Ψj and Φj leads to (4.2). Note that we have to add O(Zm) in (4.2) to compensate
the fact that we do not include ψj` for j ≥ m. �
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5. Fluctuations of Symmetrically Arranged Eigenvalues

In our main results, the occurring fluctuations are always 1-periodic functions. However, if
eigenvalues of the sum of matrices of the linear representation are arranged in a symmetric
way, then we can combine summands and get fluctuations with longer periods. This is in
particular true if all vertices of a regular polygon (with center 0) are eigenvalues.

Proposition 5.1. Let λ ∈ C and k ∈ N0. For a p ∈ N0 denote by Up the set of pth roots of
unity. Suppose for each ζ ∈ Up we have a continuous 1-periodic function

Φ(ζλ)k(u) =
∑
`∈Z

ϕ(ζλ)k` exp(2`πiu)

whose Fourier coefficients are

ϕ(ζλ)k` = Res
(
D(s)

(
s− logq(ζλ)− 2`πi

log q
)k
, s = logq(ζλ) + 2`πi

log q

)
for a suitable function D(s).

Then ∑
ζ∈Up

N logq(ζλ)(logqN)kΦ(ζλ)k({logqN}) = N logq λ(logqN)kΦ(p{logqp N})

with a continuous p-periodic function

Φ(u) =
∑
`∈Z

ϕ` exp
(2`πi

p
u
)

whose Fourier coefficients are

ϕ` = Res
(
D(s)

(
s− logq λ−

2`πi
p log q

)k
, s = logq λ+ 2`πi

p log q

)
.

Note that we again write Φ(p{logqp N}) to optically emphasise the p-periodicity. Moreover,
the factor (logqN)k in the result could be cancelled, however it is there to optically highlight
the similarities to the main results (e.g. Theorem B).

In the case of a q-regular sequence which we analyse in this paper, a different point of
view is possible: The sequence is qp-regular as well (by [1, Theorem 2.9]) and therefore, all
eigenvalues ζλ of the original sequence become eigenvalues λp whose algebraic multiplicity
is the sum of the individual multiplicities but the sizes of the corresponding Jordan blocks
do not change. Moreover, the joint spectral radius is also taken to the pth power. We apply,
for example, Theorem B in our qp-world and get again 1-period fluctuations. Note that for
actually computing the Fourier coefficients, the approach presented in the proposition seems
to be more suitable.

The above proposition will be used for the analysis of esthetic numbers in Section 2. The
proof of Proposition 5.1 can be found in Appendix A.
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Appendix A. Proof of Proposition 5.1

Proof of Proposition 5.1. We set

j0 :=
⌊
−
p
(
π + arg(λ)

)
2π

⌋
+ 1

with the motive that
−π < arg(λ) + 2jπ

p
≤ π

holds for j0 ≤ j < j0 + p. This implies that for j0 ≤ j < j0 + p, the pth root of unity ζj :=
exp(2jπi/p) runs through the elements of Up such that logq(λζj) = logq(λ) + 2jπi/(p log q).
Then

N logq(ζjλ) = N logq λ exp
(2jπi

p
logqN

)
= N logq λ exp(2jπi logqp N) = N logq λ exp(2jπi{logqp N}).

We set
Φ(u) :=

∑
j0≤j<j0+p

exp
(2jπi

p
u
)
Φ(ζjλ)k(u),

thus Φ is a p-periodic function.
For the Fourier series expansion, we get

Φ(u) =
∑
`∈Z

∑
j0≤j<j0+p

Res
(
D(s)

(
s− logq λ−

2(`+ j
p)πi

log q
)k
, s = logq λ+

2(`+ j
p)πi

log q

)

× exp
(
2πi

(
`+ j

p

)
u
)

Replacing `p+ j by ` leads to the Fourier series claimed in the proposition. �

Appendix B. Proof of Theorem A

Proof of Theorem A. We work out the conditions and parameters for using Theorem B.
Joint Spectral Radius. As all the square matrices A0, . . . , Aq−1 have a maximum absolute
row sum norm equal to 1, the joint spectral radius of these matrices is bounded by 1.

Let r ∈ {1, . . . , q− 1}. Then any product with alternating factors Ar−1 and Ar, i.e., a finite
product Ar−1ArAr−1 · · · , has absolute row sum norm at least 1 as the word (r− 1)r(r− 1) . . .
is q-esthetic. Therefore the joint spectral radius of Ar−1 and Ar is at least 1. Consequently,
the joint spectral radius of A0, . . . , Aq−1 equals 1.
Eigenvalues. The matrix C = A0 + · · ·+Aq−1 has a block decomposition into

C =
(
M 0
1 0

)
for vectors 0 (vector of zeros) and 1 (vector of ones) of suitable dimension. Therefore, one
eigenvalue of C is 0 and the others are the eigenvalues of M which are the zeros

λj = 2 cos
(

jπ

q + 1

)
for j ∈ {1, . . . , q}

of the polynomials pq(x) which are recursively defined by p0(x) = 1, p1(x) = x and p`(x) =
xp`−1(x) − p`−2(x) for ` ≥ 2; see [3, Sections 4 and 5]. Note that up to replacing x by 2x,
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these polynomials p` are the Chebyshev polynomials of the second kind. This is not surprising:
Chebyshev polynomials are frequently occurring phenomena in lattice path analysis, and we
have such a lattice path here.

It can be shown that in the case of even q, the vector eq+1 lies in the sum of the left
eigenspaces to the eigenvalues 2 cos( jπ

q+1) for odd j ∈ {1, . . . , q} only. Therefore, the other
eigenvalues can be omitted and the functions Φqj are actually 1-periodic.
Asymptotics. We apply our Theorem B. We have λj = −λq+1−j , so we combine our approach
with Proposition 5.1. Moreover, we have λj > 1 iff j

q+1 <
1
3 iff j ≤ d q−2

3 e. This results in (2.1).
Fourier Coefficients. We can compute the Fourier coefficients according to Theorem B and
Proposition 5.1. �
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