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Abstract

We study the behavior of the Douglas–Rachford algorithm on the graph vertex-coloring
problem. Given a graph and a number of colors, the goal is to find a coloring of the vertices
so that all adjacent vertex pairs have different colors. In spite of the combinatorial nature
of this problem, the Douglas–Rachford algorithm was recently shown to be a successful
heuristic for solving a wide variety of graph coloring instances, when the problem was cast
as a feasibility problem on binary indicator variables. In this work we consider a different
formulation, based on semidefinite programming. The much improved performance of the
Douglas–Rachford algorithm, with this new approach, is demonstrated through various
numerical experiments.

Keywords: Douglas–Rachford algorithm, graph coloring, feasibility problem, nonconvex
constraints
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1 Introduction

Let G = (V,E) be a graph with n vertices V = {1, . . . , n} that are connected by edges
E ⊂ V × V . A proper m-coloring of the graph G is a mapping c : V 7→ K := {1, . . . ,m},
assigning one of the m possible colors to each vertex, such that no two adjacent vertices share
the same color, that is,

c(i) 6= c(j) for all {i, j} ∈ E.

The graph coloring problem consists in determining whether it is possible to find a proper
m-coloring of the graph G. Many problems arising from different fields can be formulated
as graph coloring problems. Some applications include time–tabling and scheduling [28],
computer register allocation [14], radio frequency assignment [20], and printed circuit board
testing [19]. Since the graph coloring problem is proved to be NP-complete [27], most com-
monly used solvers rely on heuristics. For a basic reference on graph coloring, algorithms and
applications, see, e.g., [24, 29], or the surveys [18, 30].

The aim of this paper is to study the behavior of the Douglas–Rachford (DR) algorithm
when it is applied to the Karger–Motwani–Sudan (KMS) [26] semi-definite programming for-
mulation of the graph coloring problem. The KMS formulation is reviewed in Section 3. The
DR algorithm belongs to the family of so-called projection algorithms, which arise in convex
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optimization. Although the convergence of the DR algorithm is only guaranteed in the con-
vex setting, it has been successfully applied to many nonconvex problems, including those of
combinatorial type (see, e.g., [4, 5, 10, 16]). However, the theory in nonconvex settings is very
limited, with results on global behavior limited to special sets [6, 12]. In most applications the
constraint sets satisfy some type of regularity property, and local convergence can be proved,
see, e.g. [11, 21, 33].

This is not the first time that the DR scheme has been used to solve graph coloring
problems. It was first employed by Elser et al. [16] for edge-colorings, in particular, colorings
that avoid monochromatic triangles. In a more recent paper by Aragón and Campoy [7], the
DR algorithm was applied as a heuristic for vertex coloring. In that work, the feasibility
problem was expressed in terms of binary indicator variables, the same variables that would
be used in an integer programming formulation. This formulation was easily adapted to solve
(using DR) variants and generalizations of the graph coloring problem, including list coloring,
partial coloring, and finding Hamiltonian cycles.

Our numerical experiments indicate that the KMS formulation appears to be superior
to the indicator variable formulation, when using the DR heuristic. While we do not have
an interpretation of this result, it is empirically supported on a wide spectrum of problem
instances.

The remainder of the paper is organized as follows. In Section 2 we recall some preliminary
notions and results. The KMS formulation is reviewed in Section 3. In Section 4 we give details
on the DR implementation. Finally, in Section 5 we collect various numerical experiments
where we show the good performance of the DR algorithm for the KMS formulation.

2 Preliminaries

Let E be a finite-dimensional Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Throughout this paper the space E will be the Euclidean space Rn×m of the n×m real matrices
with inner product 〈A,B〉 = tr

(
ATB

)
. The induced norm corresponds to the Frobenius norm,

‖A‖F =
√

tr (ATA) =

√√√√ n∑
i=1

m∑
j=1

a2
ij .

We denote by Sn the set of symmetric matrices in Rn×n, while Sn+ is the set of positive
semidefinite matrices.

The projector onto a nonempty closed set C ⊆ E is the set-valued mapping PC : E ⇒ C
given by

PC(x) :=

{
p ∈ C : ‖p− x‖ = inf

c∈C
‖c− x‖

}
,

and the reflector is defined as RC := 2PC − Id, where Id denotes the identity operator. Any
element πC(x) ∈ PC(x) is said to be a best approximation or a projection of x onto C. If C is
also convex, then there exists a unique projection. In fact, a closed set in a Hilbert space is
convex if and only if its projector is everywhere single-valued (see, e.g., [3, Theorem 3.2]).

Given C1, C2, . . . , Cr ⊆ E, the feasibility problem consists in finding a point belonging to
all these sets, that is,

Find x ∈
r⋂
i=1

Ci. (1)

The DR algorithm is a powerful tool for solving feasibility problems, whenever the individ-
ual projectors onto the sets can be easily computed. The DR scheme is defined for problems
involving two sets. Next we recall its main properties in the convex setting.
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Fact 2.1. Let A,B ⊆ E be closed and convex sets and let λ ∈ ]0, 2[. Consider the DR operator
defined by

TA,B,λ :=

(
1− λ

2

)
Id +

λ

2
RBRA. (2)

Given any x0 ∈ E, define xn+1 := TA,B,λ(xn), for every n ≥ 0. Then the following holds:

(i) If A ∩B 6= ∅, then {xn} converges to a point x? with PA(x?) ∈ A ∩B.
(ii) If A ∩B = ∅, then ‖xn‖ → +∞.

Proof. (i) See, e.g., [9, Theorem 26.11] or [13, Corollary 5.2.4]. (ii) See [8, Corollary 2.2].

Although there is no guarantee of convergence when DR is applied to general (not nec-
essarily convex) closed sets, it can still be applied as a heuristic. In this framework, observe
that the DR operator may be multivalued due to the fact that the projection onto nonconvex
sets is not necessarily unique. Therefore, the equality in (2) must be replaced by an inclusion,
and the iteration takes the form

xn+1 ∈ TA,B,λ(xn) := {xn + λ(bn − an) ∈ E : an ∈ PA(xn), bn ∈ PB(2an − xn)} . (3)

Finally, we recall that any feasibility problem (1) can be reduced to a two-set problem
through Pierra’s product space reformulation [34]. This permits us to employ the scheme (2)
for solving feasibility problems involving more than two sets. The reformulation relies on the
equivalence

x ∈
r⋂
i=1

Ci ⊆ E⇔ (x, x, . . . , x) ∈ C ∩D ⊆ Er,

where the constraint sets C and D are defined as

C := C1 × C2 × . . .× Cr and D := {(x, x, . . . , x) ∈ Er : x ∈ E} .

Moreover, the projectors onto C and D are readily computable as long as the projectors onto
C1, C2, . . . , Cr are. Indeed, for any x = (x1, x2, . . . , xr) ∈ Er, we have

PC(x) = PC1(x1)× PC2(x2)× . . .× PCr(xr),

PD(x) =

(
1

r

r∑
i=1

xi,
1

r

r∑
i=1

xi, . . . ,
1

r

r∑
i=1

xi

)
;

see [34, Lemma 1.1]. For further details see, e.g., [5, Section 3].

3 Coloring graphs with vertices of the regular simplex

Karger, Motwani and Sudan [26] proposed using the geometry of the regular simplex to
formulate the graph vertex-coloring problem. This geometrical encoding of the problem,
which respects all its symmetries, is well suited to projection based algorithms.

Suppose that we have a proper m-coloring of the graph G = (V,E) given by c : V 7→ K.
The m-coloring c can be represented by a matrix as follows. Let u1, u2, . . . , um ∈ Rm−1 be the
vertices of a standard centered regular (m − 1)-simplex. Then, {u1, u2, . . . , um} are m unit
vectors whose pairwise dot products are equal to −1

m−1 , since

〈u1 + · · ·+ um, u1 + · · ·+ um〉 = 0.

Each of the vertices of the (m − 1)-simplex shall represent one of the m colors. Hence, the
m-coloring of the graph G can be recovered from the matrix

Uc :=
[
uc(1), uc(2), . . . , uc(n)

]
∈ R(m−1)×n, (4)
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whose rows are vertices of the (m − 1)-simplex (possibly repeated). Finally, let us construct
the Gram matrix associated with Wc, namely,

Wc := UTc Uc ∈ Rn×n. (5)

One can easily check that Wc satisfies the following properties (see, e.g. [22, Theorem 7.2.10]):

(P1) Wc ∈ Sn+,

(P2) rank(Wc) ≤ m− 1,

(P3) Wc ∈
{

1, −1
m−1

}n×n
and some of the entries of Wc = [wij ] are determined as follows:

wii = 1, ∀i ∈ V, and wij =
−1

m− 1
, ∀{i, j} ∈ E.

Therefore, every valid m-coloring of the graph G leads to a matrix having properties (P1)–
(P3). In fact, this is an equivalence, as we shall show after the next illustrative example.

Example 3.1. Consider a graph G = (V,E) where the set of vertices is V = {1, 2, 3, 4, 5},
and the set of edges is E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 5}}. A proper 3-coloring of G is
shown in Figure 1(a). We identify each of the colors with one of the vertices u1, u2, u3 ∈ R2

of a standard centered regular 2-simplex (see Figure 1(b)), where

u1 = (1, 0)T , u2 =
1

2

(
−1,
√

3
)T

and u3 =
1

2

(
−1,−

√
3
)T

.

Then the matrix representation of c given in (5) becomes

Wc = UTc Uc =



1 −0.5 −0.5 1 −0.5

−0.5 1 −0.5 −0.5 1

−0.5 −0.5 1 −0.5 −0.5

1 −0.5 −0.5 1 −0.5

−0.5 1 −0.5 −0.5 1


, with Uc = [u1, u2, u3, u1, u2] .

The boxed entries in Wc correspond to those determined by (P3).

1

2

3

4

5

(a) A 3-coloring of the graph

u1

u2

u3

(b) A standard centered regular 2-simplex

Figure 1: Graphical representation of Example 3.1

Proposition 3.1. Let G = (V,E) be a graph with n nodes and let K be a set of m colors.
Consider a matrix X ∈ Rn×n that verifies properties (P1)–(P3). Then, there exists a proper
m-coloring c : V 7→ K such that

X = UTc Uc,

where Uc is given by (4).
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Proof. Consider the spectral decomposition X = QΛQT , where Λ = diag(λ1, λ2, . . . , λn) is the
diagonal matrix of eigenvalues. SinceX is positive definite and has rank not greater thanm−1,
we can assume without loss of generality that λ1 ≥ λ2 ≥ · · · ≥ λm−1 ≥ 0 = λm = · · · = λn.
Then, we can express

X = QΛQT =

(
Q11 Q12

Q21 Q22

)(
Λ̂ 0
0 0

)(
QT11 QT21

QT12 QT22

)
=

(
Q11

Q21

)
Λ̂
(
QT11 QT21

)
,

with Λ̂ = diag(λ1, . . . , λm−1). Hence, we can factorize X = Y TY , with Y = Λ̂
1
2

(
QT11 QT21

)
.

Let y1, . . . , yn ∈ Rm−1 be the columns of Y , i.e., Y = [y1|y2| · · · |yn]. Observe that y1, . . . , yn
are unit vectors because X has ones on the diagonal, and thus

〈yi, yj〉 =

{
1, if yi = yj ;
−1
m−1 , if yi 6= yj ;

(6)

for all i, j = 1, . . . , n. Let us show now that there are at most m distinct vectors among them.
To this aim, suppose that yi1 , yi2 , . . . , yim+1 are m+ 1 different vectors. Consider

X̃ :=


yTi1
yTi2
...

yTim+1

 [yi1 |yi2 | · · · |yim+1

]
=


1 −1

m−1 · · · −1
m−1

−1
m−1 1 · · · −1

m−1
...

...
. . .

...
−1
m−1

−1
m−1 · · · 1

 ∈ R(m+1)×(m+1).

It holds that rank(X̃) ≤ rank(X) ≤ m − 1, since X̃ is a submatrix of X, but this is a
contradiction with the fact that

det(X̃) =

(
1− m

m− 1

)(
1 +

1

m− 1

)m
6= 0.

Therefore, it must hold that ∪nj=1{yj} = {u1, . . . , ur}, where u1, . . . , ur are r ≤ m distinct
vertices of a regular (m − 1)-simplex (a rotation of the standard simplex). Finally, define
c : V 7→ K by c(i) = {k ∈ {1, . . . , r} : yi = uk}, so that we trivially get Y = Uc, where Uc is
as in (4). According to (P3), together with (6), we have that c is a proper m-coloring of G,
as claimed.

In view of Proposition 3.1, finding a proper m-coloring of a graph with n vertices is
equivalent to finding an n× n matrix verifying properties (P1), (P2) and (P3). In this work,
the latter will be tackled by solving the following feasibility problem:

Find X ∈ C1 ∩ C2 ⊆ Rn×n, (7)

where the constraint sets are defined by

C1 :=

{
X ∈

{
1,
−1

m− 1

}n×n
: xii = 1,∀i ∈ V and xij =

−1

m− 1
, ∀{i, j} ∈ E

}
, (8a)

C2 :=
{
X ∈ Sn+ : rank(X) ≤ m− 1

}
. (8b)

Remark 3.1. One advantage of the feasibility problem (7) is the avoidance of equivalent
colorings in the following sense. Suppose that c : V 7→ K is a proper m-coloring of a graph G,
and let Wc be its associated matrix given by (5). For any permutation of the colors, σ : K 7→
K, we have that σ ◦ c is also a proper m-coloring of G, so there exist many equivalent valid
colorings. However, observe that Wσ◦c = Wc, and thus all of them lead to a unique solution
of (7).
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3.1 Modeling precoloring problems

The precoloring problem consists in obtaining a proper coloring of a graph in which the color
of some nodes are predefined. Let Ṽ ⊆ V be the subset of precolored nodes and denote by
pi ∈ K the preassigned color to node i ∈ Ṽ . The task then is to find a coloring c : V 7→ K
such that

c(i) 6= c(j), for all {i, j} ∈ E and c(i) = pi, for all i ∈ Ṽ . (9)

Notice that any coloring satisfying (9) also verifies

c(i) 6= c(j), for all {i, j} ∈ E and c(i) = c(j)⇔ pi = pj , for all i, j ∈ Ṽ . (10)

In fact, both conditions can be shown to be equivalent in the following sense. Suppose that
c : V 7→ K is a coloring verifying (10). Then, for any permutation of the colors σ : K 7→ K
such that σ(c(i)) = pi for all i ∈ Ṽ , one can easily check that σ ◦ c is a proper coloring for
which (9) holds.

Therefore, we shall focus on finding colorings fulfilling condition (10). The matrix Wc

constructed from c as in (5), shall verify now (P1), (P2) and

(P3’) Wc ∈
{

1, −1
m−1

}n×n
and some of the entries of Wc = [wij ] are determined as follows:

wij = 1, ∀{i, j} ∈ Î and wij =
−1

m− 1
, ∀{i, j} ∈ Ê;

where Î := {{i, i} : i ∈ V }∪
{
{i, j} ⊆ Ṽ : pi = pj

}
and Ê := E∪

{
{i, j} ⊆ Ṽ : pi 6= pj

}
.

The new modified property (P3’) can be incorporated into the formulation of the feasibility
problem (7) by replacing the constraint C1 by

Ĉ1 :=

{
X ∈

{
1,
−1

m− 1

}n×n
: xij = 1, ∀{i, j} ∈ Î and xij =

−1

m− 1
,∀{i, j} ∈ Ê

}
. (11)

Example 3.2 (Example 3.1 revisited). Consider the graph in Example 3.1 and suppose that
node 2 is precolored red (R), and nodes 4 and 5 are precolored blue (B). The precoloring
problem is shown in Figure 2(a). Following the notation established above, we have

Î = {{i, i} : i ∈ V } ∪ {{4, 5}} and Ê = E ∪ {{2, 4}, {2, 5}} = E ∪ {{2, 5}} .

The unique solution to the feasibility problem Ĉ1 ∩ C2 is the matrix

Wc =



1 −0.5 −0.5 1 1

−0.5 1 −0.5 −0.5 −0.5

−0.5 −0.5 1 −0.5 −0.5

1 −0.5 −0.5 1 1

1 −0.5 −0.5 1 1


,

where the boxed entries in Wc correspond to those determined by (P3’). The entries whose
values are fixed by (P3’) but not by (P3) are marked with a double-box.

Suppose that we obtain the factorization Wc = UTc Uc, with Uc = [u1, u2, u3, u1, u1]. The 3-
coloring determined by Uc is represented in Figure 2(b). Then, in order to make this coloring
consistent with the precoloring of the vertices, we need to suitably permute the set of colors.
Precisely, we require σ(G) = R and σ(R) = B. It must therefore be σ(B) = G. The per-
muted 3-coloring consistent with the precoloring, given by Uσ◦c = [u3, u1, u2, u3, u3], is shown
in Figure 2(c).
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1

2

3

4

5

(a) Precolored graph

1

2

3

4

5

(b) A 3-coloring of the graph

1

2

3

4

5

(c) A permutation consistent
with the precoloring

Figure 2: Graphical representation of Example 3.2

4 Implementation of the Douglas–Rachford algorithm

In order to apply the DR algorithm to feasibility problems, and (7) in particular, it must be
possible to efficiently compute the projections onto the two constraint sets, in our case (8).
This is indeed the case, as shown in the following results.

Proposition 4.1 (Projection onto C1). Consider any X = (xij) ∈ Rn×n. A projection of X
onto the set C1 defined in (8a) is given componentwise by(

πC1(X)
)

[i, j] =

{
1, if xij >

m−2
2(m−1) and {i, j} 6∈ E, or i = j;

−1
m−1 , if xij ≤ m−2

2(m−1) and i 6= j, or {i, j} ∈ E. (12)

A projection of X onto the set Ĉ1 in (11) is given componentwise by

(
π
Ĉ1

(X)
)

[i, j] =

{
1, if xij >

m−2
2(m−1) and {i, j} 6∈ Ê, or {i, j} ∈ Î;

−1
m−1 , if xij ≤ m−2

2(m−1) and {i, j} 6∈ Î , or {i, j} ∈ Ê.
(13)

Proof. Clearly, the projector of X onto C1 can be computed componentwise. Taking into
account the constraints in (8a), the projection of an entry xij is 1 if i = j, and is −1

m−1 if
{i, j} ∈ E. Otherwise, it is equal to P{1, −1

m−1}(xij). As the middle point between these two

values is m−2
2(m−1) , then (12) follows. The proof of (13) is analogous.

Proposition 4.2 (Projection onto C2). Let X ∈ Sn and consider its spectral decomposition
X = QΛQT , with Λ = diag(λ1, . . . , λn) and λ1 ≥ λ2 ≥ · · · ≥ λn. A projection of X onto the
set C2 defined in (8b) is given componentwise by

πC2(X) = QΛ+
m−1Q

T , (14)

where Λ+
m−1 = diag (max{0, λ1}, . . . ,max{0, λm−1}, 0, . . . , 0).

Proof. See, e.g., [35, Proposition 3.11].

Remark 4.1. According to Propositions 4.1 and 4.2, computing a projection onto C1 is a
simple rounding operation, while a projection onto C2 requires the computation of the spectral
decomposition of an n × n matrix. From a computational point of view, the former is not a
problem but the later may be time-consuming, especially for big problems. However, observe
that we do not need to compute the whole spectrum in (14), but only the m− 1 largest eigen-
values and their associated eigenvectors. In large-scale problems, m is usually much smaller
than n and hence πC2 can be computed reasonably fast.

Constraint non-convexity manifests itself in the equality case of the conditionals in Propo-
sition 4.1, and the case of degenerate eigenvalues in Proposition 4.2. Neither of these can be
acted upon in practice, given the finite precision of the computations.

7



Remark 4.2. In order to find πC2(X), Proposition 4.2 requires the matrix X to be symmetric.
Observe that, according to (12) and by definition of C2, we get that

πC1(X), πC2(X) ∈ Sn, for all X ∈ Sn.

Hence, since Sn is a subspace, the iterates generated by DR (3) will remain symmetric (with
due attention to numerical precision), as long as the initial point is chosen in Sn.

There are several options for implementing the DR algorithm. The simplest choice would
be to directly apply DR in the original space Rn×n, since the feasibility problem to be solved (7)
only involves two constraint sets. Then, we can iterate by using either TC1,C2,λ or TC2,C1,λ. On
the other hand, although the product space reformulation is typically employed for feasibility
problems involving more than two sets, it can still be applied to two sets. In this way, we
obtain two additional implementations by either using the operator TD,C,λ or TC,D,λ. The
purpose of the next section is to numerically compare these different implementations. In our
numerical tests we observed that the numerical behavior of TD,C,λ and TC,D,λ is similar; thus,
to simplify, we only show the results for the operator TD,C,λ, whose shadow PD ◦ TD,C,λ is
easier to track, as it can be identified with a sequence in the original space Rn×n.

5 Numerical experiments

In this section we run various numerical experiments to test the performance of the DR
algorithm for solving different graph coloring problems. We compare the formulation discussed
in Section 3 with the one recently proposed in [7]. To distinguish them, we shall refer to the
model proposed in [7] as the binary formulation, and to the new one developed in Section 3
as the rank formulation.

In each of the next five subsections we run illustrative experiments on different families
of graphs: the Queens n2 puzzles, random colorable graphs, the windmill graphs, Sudokus,
and the DIMACS benchmark instances. Each of these families is employed for a different
purpose. We start with a difficult coloring problem, the Queens n2 puzzle, where we show the
effect that the parameter λ has in the different implementations. We also use these puzzles
to draw attention to something that is usually overlooked: finite machine precision. Next, to
test how the method scales, we run an experiment on random colorable graphs with controlled
asymptotic complexity. The windmill graphs and the Sudoku puzzles are used to show that
the rank formulation is superior to the binary formulation, even when we allow maximal clique
information. We finish this experimental section by testing the algorithm on the DIMACS
benchmark instances, a widely used collection of diverse graph types.

Unless otherwise stated, the stopping criterion used for the implementation TA,B,λ was

ErrorA,B(xk) := ‖PB(PA(xk))− PA(xk)‖ ≤ 10−10, (15)

where xk is the current iterate, in which case the solution attempt was labeled as successful.
All codes were written in Python 2.7 and the tests were run on an Intel Core i7-4770 CPU
3.40GHz with 32GB RAM, under Windows 10 (64-bit).

5.1 Queens n2 puzzles

A well-known and challenging graph coloring problem is the Queens n2 puzzle. This puzzle
consists in covering the entire n × n chessboard with queens of different colors, so that two
queens of the same color do not attack each other. The puzzle is equivalent to finding a proper
coloring of a particular graph, which has a vertex at each cell of the chessboard and edges
between all pairs of vertices (cells) that lie on the same column, row or diagonal. In Table 1

8



n 2 3 4 5 6 7 8 9 10

χ(n) 4 5 5 5 7 7 9 10 11

Table 1: Chromatic number χ(n) of the Queens n2 graph [31]

we give the chromatic number of the graph for the first nine puzzles. The smallest open case
for which the chromatic number is currently unknown is n = 27, see [31].

In our first experiment, we analyze how both the implementation and the choice in the
relaxation parameter λ affects the behavior of DR for solving this type of puzzle. For each
n ∈ {3, 4, . . . , 10} and each λ ∈ {0.25, 0.5, . . . , 1.75}, we ran three different implementations
of DR (namely, TC1,C2,λ, TC2,C1,λ and TD,C,λ) from 10 random starting points. The results are
shown in Figure 3, where the markers correspond to the median among the solved instances.
We also show the percentage of instances solved for each value of λ, among all the problems
and repetitions. According to these results, it seems that the value of the parameter λ that
suits best each of the formulations TC1,C2,λ, TC2,C1,λ and TD,C,λ, is λ = 0.75, λ = 0.5 and
λ = 1, respectively. To corroborate this conclusion, we visualize the results using performance
profiles, which are constructed as follows (see [15] and the modification proposed in [23]).

Performance profile Let Φ denote the set of formulations, and let P be a set of N prob-
lems. For each formulation f ∈ Φ, let tf,p be the averaged time required by DR to solve
problem p ∈ P among all the successful runs, and let sf,p denote the fraction of successful
runs for problem p. Compute t?p := minf∈Φ tf,p for all p ∈ P. Then, for any τ ≥ 1, define
Rf (τ) := {p ∈ P, tf,p ≤ τt?p}; i.e., Rf (τ) is the set of problems for which formulation f is at
most τ times slower than the best one. The performance profile function of formulation f is
given by

ρf : [1,+∞) 7−→ [0, 1]
τ 7→ ρf (τ) := 1

N

∑
p∈Rf (τ) sf,p.

The value ρf (1) indicates the portion of runs for which f was the fastest formulation. When
τ → +∞, then ρf (τ) gives the fraction of successful runs for formulation f .

We show in Figure 4 the performance profiles for each value of λ and each of the three
implementations TC1,C2,λ, TC2,C1,λ and TD,C,λ. This corroborates our previous choice of best
parameters λ for each implementation. Finally, we compare TC1,C2,0.75, TC2,C1,0.5 and TD,C,1
in Figure 5, where we can clearly observe that the first implementation dominates the others.

Remark 5.1 (On the machine precision). Our numerical tests show no systematic effect of
the machine precision on the average number of iterations per solution, provided the precision
is above a modest threshold of about 6 decimal digits. This is consistent with the chaotic
dynamics displayed by DR when solving hard problems.

The behavior explained in Remark 5.1 is demonstrated in the next experiment, where
TD,C,1 was implemented for solving the Queens 62 and the Queens 72 puzzles. For each
problem, the algorithm was run from the same starting point using different values of the
machine precision. The stopping criterion (15) was decreased to 10−5 to accommodate the
reduced precision. We believe this is still adequate to recover a unique, discrete coloring from
the Gram matrix. The results of repeating this experiment for 10 different random starting
points are shown in Figure 6. In Figure 7 we plot the value of ErrorD,C in (15) with respect
to the number of iterations for up to 15 digits of precision for one particular random starting
point. While these results indicate a high sensitivity to the numerical precision, there is no
evidence of a systematic effect. For these experiments, we employed the mpmath library [25],
which drastically increases the time needed to compute the iterations of the DR algorithm.
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Figure 3: Results of the Queens n2 experiment for three implementations of DR. Each marker
corresponds to the median of the solved instances among 10 random starting points. At the
bottom of each graph, we show the percentage of solved instances for each value of λ. Instances
were considered as unsolved after 100,000 iterations
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Figure 4: Performance profiles of the Queens n2 experiment for three implementations of DR
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Figure 5: Performance profiles of the Queens n2 experiment comparing the implementations
TC1,C2,0.75, TC2,C1,0.5 and TD,C,1

5.2 Random colorable graphs

The hardness of finding a proper coloring of a graph depends on many factors, the single
most significant of which is the number of valid colorings. Random colorable graphs are easily
constructed, but to be able to draw some consequences from the experiments we run on them,
we must generate them in such a way that their complexity is controlled.

We consider the Erdös–Renyi model [17], G(α, n), which is the ensemble of all graphs
with n vertices and l = bαnc edges, where b·c denotes the integer part, endowed with the
uniform measure. Hence, α represents the averaged number of edges per node. The probability
that a random graph with this distribution is m-colorable depends on the magnitude of the
parameter α. Precisely, the expected number of proper colorings decreases as α increases.
There is an asymptotic threshold in the colorable-uncolorable transition denoted αs(m) (see [1,
Theorem 1.1]). This means that the probability an m-coloring exists tends to one as n
increases, provided that α < αs(m), and conversely, it converges to zero for α > αs(m).
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Figure 6: Comparison of the number of number of iterations and the number of digits used
in the machine precision for 10 random starting points, when TD,C,1 was employed to solve
the Queens 62 and the Queens 72 puzzles. For every starting point and every value of the
machine precision, the algorithm found a solution to the puzzle
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Figure 7: Comparison of the value of Error in (15) and the number of iterations for different
number of decimal digits used in the machine precision, when TD,C,1 was employed to solve
the Queens 62 and the Queens 72 puzzles

The asymptotic threshold is known to be upper-bounded by αs(m) ≤ ᾱs(m) := logm
log m

m−1
(see,

e.g., [2, Section 2]).
With the number of vertices n and the number of colors m fixed, random graphs sampled

from G(ᾱs(m), n) are at the m-colorability transition and expected to be hard instances, when
solvable. In order to avoid non-colorable graphs, the sampling can be modified to ensure the
existence of a coloring as follows. First, a partition of V into m groups with approximately
equal size is chosen, e.g. consider the equivalence classes defined by the congruence modulo m
of the integer vertex labels. Then, bᾱs(m)nc edges are randomly generated from the uniform
distribution over the set of all edges connecting two nodes in different groups. Algorithm 1
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contains the discussed routine that generates such graphs.

Algorithm 1: Generate an m-colorable random graph with low expected number of
m-colorings

Input: V = {1, . . . , n}, m ≥ 2
Set ᾱs(m) := logm

log m
m−1

, E := ∅ and l = 0;

while l < ᾱs(m)n do
Generate randomly e := {i, j} ∈ V × V ;
if e 6∈ E and (i− j) 6≡ 0 (mod m) then

E = E ∪ {e};
l = l + 1;

Output: G = (V,E)

The goal of our next experiment is to show how the DR algorithm complexity grows with
respect to the number of vertices in the graph. We make use of colorable random graphs with
low expected number of colors so that we have control of the complexity of our instances.
For each m ∈ {8, 9, 10} and for each n ∈ {50, 75, · · · , 200}, we generated 5 random graphs
using Algorithm 1. Then, for each graph, the DR algorithm was run from 5 different starting
points (this makes a total of 25 runs per each pair (m,n)). Based on the results in the
Queens n2 experiment, we implemented DR with TC1,C2,λ. To confirm our previous choice of
the best parameter λ = 0.75, we repeated the experiment for each λ ∈ {0.25, 0.5, . . . , 1.75}.
The results shown in Figure 8 confirm that the best choice for general purposes is λ = 0.75.
In Figure 9 we plot the number of iterations needed by TC1,C2,0.75 with respect to the size of
the graph, for each m. We observe that the number of colors does not have a noticeable effect
on the performance of the algorithm. As expected, we come upon an exponential dependence
between size and iterations, which is consistent with the NP-hardness of the problem.

5.3 Windmill graphs

We turn our attention to a very simple graph for which the binary formulation has trouble
finding solutions: the so-called windmill graph Wd(a, b), which is constructed for a ≥ 2 and
b ≥ 2 by joining b copies of a complete graph with a vertices at a shared vertex. Its chromatic
number is a, and the graph can be easily colored (there are a((a− 1)!)b different ways to do
it). Despite this abundance of valid colorings, all of them are equivalent under a permutation
of the colors. Thus, by Remark 3.1, there exists a unique solution to the rank feasibility
problem. This is not the case, however, for the binary formulation.

In our experiments with the binary formulation, the DR algorithm fails to find colorings
of windmill graphs rather often. We tentatively attribute this to the high multiplicity of
solutions in the binary formulation. In [7] we addressed this problem by augmenting the
model with information about the maximal cliques of the graph. A clique is a subset of nodes
whose induced subgraph is complete; that is, a subset where all the vertices are connected to
each other. Further, a clique is maximal if it is not contained in a larger clique. The set of
maximal cliques would normally be unknown (and difficult to find) for general graphs, so a
formulation that does not require this information would generally be preferred.

In our next experiment, whose results are shown in Table 2, we compare the binary for-
mulation with and without maximal clique information, and the rank formulation for coloring
sixteen windmill graphs of different parameters.

We observe that the addition of maximal clique information is crucial for the success of the
binary formulation. Without adding it, the DR algorithm was not able to find any solutions
for even modestly large values of a. On the other hand, the superior performance of the
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Figure 8: Results of the experiment on m-colorable random graphs for m = 8, 9, 10, for the
implementation TC1,C2,λ of DR. Each marker corresponds to the median of the solved instances
among 10 random starting points. At the bottom of each graph we show the percentage of
solved instances for each value of λ. Instances were considered as unsolved after 100,000
iterations
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Figure 9: Results of the experiment on m-colorable random graphs for m = 8, 9, 10, for DR
implemented with TC1,C2,0.75. Each marker corresponds to the median of the solved instances
among 10 random starting points, and the lines were obtained by linear regression among all
the solved instances

Wd(a, b) Binary formulation
Binary formulation Rank

with clique info. formulation

a b Success Time Iter. Success Time Iter. Success Time Iter.

5

5 10/10 0.05 226 10/10 0.02 63 10/10 0.01 20
10 10/10 0.13 375 10/10 0.04 93 10/10 0.02 33
15 9/10 0.23 503 10/10 0.06 135 10/10 0.03 43
20 9/10 0.3 521 10/10 0.1 170 10/10 0.05 51

10

5 1/10 1.12 1886 10/10 0.12 200 10/10 0.03 33
10 0/10 - - 10/10 0.27 242 10/10 0.08 54
15 0/10 - - 10/10 3.47 1729 10/10 0.24 86
20 0/10 - - 10/10 5.2 1531 10/10 0.45 109

15

5 0/10 - - 10/10 0.54 330 10/10 0.06 44
10 0/10 - - 10/10 1.69 369 10/10 0.29 92
15 0/10 - - 10/10 5.21 588 10/10 0.85 144
20 0/10 - - 10/10 13.35 949 10/10 1.69 180

20

5 0/10 - - 10/10 2.62 642 10/10 0.15 68
10 0/10 - - 10/10 12.52 1059 10/10 0.63 119
15 0/10 - - 10/10 16.95 729 10/10 1.83 170
20 0/10 - - 8/10 31.76 828 10/10 7.3 297

Table 2: Summary of the results of DR for finding proper colorings of windmill graphs. For
each formulation, we show the number of solved instances, the averaged time (in seconds) and
the averaged number of iterations. Instances were considered as unsolved after 60 seconds

rank formulation for this graph is apparent, both in terms of number of iterations and time.
We emphasize again that the rank formulation does not use maximal clique information, and
despite this, it achieved a success rate of 100%.
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5.4 Sudokus

To test the rank matrix model for precoloring stated in Section 3.1, we turn to the Sudoku
data set top951, which was the one used in the experiments in [5, 7] because it contains 95
hard Sudoku instances.

In our first experiment, we compare the rank formulation (with TC1,C2,0.75) and the binary
formulation for precoloring [7, Section 4], with maximal clique information included in the
latter. We also compare with the standard divide-and-concur formulation, where solutions
for n×n puzzles are encoded using four copies of n×n×n grids of binary indicator variables
(see [5, Section 6.2] for a more detailed explanation), which will be referred to as the cubic
formulation. For each of these three formulations and each of the 95 puzzles, the DR algorithm
was run from 10 random starting points. The performance profiles of the results is displayed
in Figure 10.

20 40 60 80 100 120
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0.8

1.0

(
)

Cubic Binary Rank

Figure 10: Performance profiles comparing the cubic, binary and rank formulations for solving
95 Sudoku problems. For each problem, 10 starting points were randomly generated. Instances
were considered as unsolved after 5 minutes.

The cubic formulation was the fastest in 86.36% of the instances. On average it solved a
Sudoku in 4.65 seconds, while the binary and rank formulations needed 35.8 and 13.79 seconds,
respectively. Regarding the success of the algorithm, the cubic and binary formulations solved
about 90% of the instances. The rank formulation was the clear winner in terms of success,
as it solved every single instance, even for those puzzles in the library on which DR has been
observed to be highly unsuccessful (see [7, Table 2]).

To further challenge the rank formulation, we performed experiments on the so-called
‘nasty’ Sudoku (shown in Figure 11). The ‘nasty’ Sudoku has very low success rate in the cubic
formulation (see [5, Section 6.5]), as the algorithm almost always enters a limit cycle (see [5,
Table 4]). This is not the case, however, for the rank formulation. In our next experiment
we compare the cubic, binary and rank formulations for solving the ‘nasty’ Sudoku from
100 random starting points. The results are summarized in Figure 11. The rank formulation
obtained again a success rate of 100%. The second most successful formulation was the binary
one, which was only able to find a solution for 19% of the starting points. So far, we have not
been able to find any Sudoku on which the rank formulation failed to find a solution for any
starting point.

1top95: http://magictour.free.fr/top95
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Time Inst. Cumul. Inst. Cumul. Inst. Cumul.

0-24 12 12% 15 15% 61 61%
25-49 0 12% 2 17% 36 97%
50-99 0 12% 1 18% 3 100%

100-299 0 12% 1 19% 0 100%

Unsolved 88 100% 81 100% 0 100%

Figure 11: Number of solved instances (right), among 100 random starting points, to find the
solution of the ‘nasty’ Sudoku (left) by DR with the cubic, binary, and rank formulations.
For each interval of time (in seconds), we show the number of solved instances and the
cummulative proportion of solved instances for each formulation. The algorithm was stopped
after a maximum of 5 minutes, in which case the problem was labeled as “Unsolved”

5.5 DIMACS benchmark instances

In our final experiment, we test the rank formulation on the widely used graph coloring library
from DIMACS benchmark instances2. This collection contains various classes of graphs, such
as random or quasi-random graphs, problems based on register allocation for variables in real
codes, or class scheduling graphs, among others.

The DR algorithm was applied to a wide sample of the aforementioned benchmark in-
stances. Guided by the results in the previous experiments, we used the implementation
TC1,C2,0.75. For each graph, the algorithm was run from 10 random starting points and was
stopped after a maximum time of one hour. In Table 3 we present the results of the ex-
periment, as well as the main features of the selected instances. The unsuccessful instances
mainly occurred on the very large graphs, on which the algorithm may have succeeded given
more time.

6 Conclusions

In the emerging field of projection-based heuristic algorithms for solving combinatorially hard
problems, the competition is usually framed to be about the choice of operator (DR, ADMM,
etc.). In this study, featuring graph vertex coloring with the DR algorithm, we have shown
that the choice of constraint formulation has a very significant effect, and in the end may
prove to be even more important than the choice of operator. This conclusion comes from
numerical experiments demonstrating, over a wide spectrum of instances, the superiority of
the rank-constrained matrix formulation [26] over a previously studied formulation based on
binary indicator variables.

The failure mechanism of projection-based heuristic algorithms is trapping on limit cycles.
Our experiments indicate that the rank-constrained matrix formulation appears to be immune
to this problem, achieving 100% success rates independent of the choice of starting point.
Most notable is the success on the so-called ‘nasty’ Sudoku (treated as a graph pre-coloring
instance), on which all other known formulations have no better than a 20% success rate.
This approach also does not come at a great cost in implementation, and is able to solve
graph coloring instances from the DIMACS benchmark collection with hundreds of vertices
and thousands of edges, often in much less than an hour.

We speculate that the good performance of the rank-constrained matrix formulation may
be linked to the elimination of the high symmetry-based solution multiplicity of competing

2DIMACS benchmark instances: http://cse.unl.edu/~tnguyen/npbenchmarks/graphcoloring.html
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Instances Vertices Edges Colors Success Iter Time (s)

fpsol2.i.1 496 11,654 65 10/10 8,984 463.94
fpsol2.i.2 451 8,691 30 10/10 13,316 495.94
fpsol2.i.3 425 8,688 30 10/10 14,454 480.27
inithx.i.1 864 18,707 54 10/10 16,174 2,443.43
inithx.i.2 645 13,979 31 10/10 20,049 1,500.45
inithx.i.3 621 13,969 31 10/10 20,604 1,432.43
le450 15a 450 8,168 15 4/10 61,365 1,944.35
le450 15b 450 8,169 15 8/10 65,537 2,076.54
le450 15c 450 16,680 15 10/10 5,464 173.1
le450 15d 450 16,750 15 10/10 19,718 619.74
le450 25a 450 8,260 25 10/10 1,938 68.93
le450 25b 450 8,263 25 10/10 1,849 65.82
le450 25c 450 17,343 25 0/10 - -
le450 25d 450 17,425 25 0/10 - -
le450 5a 450 5,714 5 10/10 3,071 82.47
le450 5b 450 5,734 5 10/10 8,885 238.33
le450 5c 450 9,803 5 10/10 3,212 86.68
le450 5d 450 9,757 5 10/10 1,644 44.49
mulsol.i.1 197 3,925 49 10/10 2,331 18.79
mulsol.i.2 188 3,885 31 10/10 8,696 63.18
mulsol.i.3 184 3,916 31 10/10 7,814 55.88
mulsol.i.4 185 3,946 31 10/10 8,584 60.71
mulsol.i.5 186 3,973 31 10/10 8,685 62.72
zeroin.i.1 211 4,100 49 10/10 3,014 27.1
zeroin.i.2 211 3,541 30 10/10 4,775 39.08
zeroin.i.3 206 3,540 30 10/10 4,286 34.51
anna 138 493 11 10/10 354 1.04
david 87 406 11 10/10 167 0.26
homer 561 1,628 13 10/10 1,222 59.01
huck 74 301 11 10/10 81 0.11
jean 80 254 10 10/10 98 0.13
games120 120 638 9 10/10 109 0.24
miles1000 128 3,216 42 10/10 570 2.43
miles1500 128 5,198 73 10/10 4,736 24.65
miles250 128 387 8 10/10 173 0.4
miles500 128 1,170 20 10/10 307 1.07
miles750 128 2,113 31 10/10 671 2.54
myciel3 11 20 4 10/10 7 0.0
myciel4 23 71 5 10/10 15 0.0
myciel5 47 236 6 10/10 41 0.03
myciel6 95 755 7 10/10 179 0.26
myciel7 191 2,360 8 9/10 377 1.52
mug88 1 88 146 4 10/10 43 0.05
mug88 25 88 146 4 10/10 46 0.05
mug100 1 100 166 4 10/10 54 0.07
mug100 25 100 166 4 10/10 47 0.06

Table 3: Summary of the results of the DR algorithm implemented with TC1,C2,0.75 for find-
ing proper colorings of a representative sample of DIMACS benchmark instances. For each
problem, we show the number of solved runs, the average time (in seconds) and the average
number of iterations. We also include the number of nodes and edges, and the chromatic
number of each graph. Runs were considered as unsolved after 3600 seconds
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formulations. This is strictly an empirical observation, and we have no proposal on how solu-
tion multiplicity might be linked to limit cycle behavior. Our results are offered as motivation
for pursuing this direction in future research on projection based algorithms.
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