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ON A POSITIVITY CONJECTURE IN THE CHARACTER TABLE
OF S,

SHEILA SUNDARAM

ABSTRACT. In previous work of this author it was conjectured that the sum of power
sums py, for partitions A ranging over an interval [(1™), ] in reverse lexicographic
order, is Schur-positive. Here we investigate this conjecture and establish its truth
in the following special cases: for u € [(n —4,1%),(n)] or p € [(17),(3,1"73)], or
p=(3,2%,1") when k > 1 and 0 < » < 2. Many new Schur positivity questions are
presented.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we consider Schur positivity questions related to the reverse lexico-
graphic order on integer partitions. Recall that this total order is defined as follows
[2, p. 6]. For partitions A, pu of the same integer n, we say a partition A is preceded
by a partition p in reverse lexicographic order if \; > p; or there is an index 5 > 2
such that \; = p,; for i < j and A; > p;. Thus for n = 4 we have the total order
(1Y) < (2,1%) < (2%) < (3,1) < (4). In particular our convention is that the minimal
and maximal elements in this total order are (1) and (n) respectively. Our primary
goal is to address the following conjecture:

Conjecture 1. [6, Conjecture 1| Let L, denote the reverse lexicographic ordering on
the set of partitions of n. Then the sum of power sum symmetric functions >, py, taken
over any initial segment of the total order L, i.e. any interval of the form [(1™), u] for
fized p, (and thus necessarily including the partition (1")), is Schur-positive.

In general, for arbitrary subsets T" of partitions of n with (1) € T, the sums ) et Pu
define (possibly virtual) representations of the symmetric group S,, of dimension n!
There are many instances where Schur-positivity fails; see the remarks following Exam-
ple 1.4. Proposition 4.1 in Section 4 gives a lower bound for the number of failures.

Conjecture 1 has an equivalent formulation in terms of the character table of .S,.
If the columns of the table are indexed by the integer partitions of n corresponding
to the conjugacy classes, in reverse lexicographic order, left to right, and the rows by
the irreducible characters (hence also corresponding to partitions), then the conjecture
states that, for each row, indexed by some fixed partition A of n, the sum of the entries
in the first & consecutive columns, beginning with the column indexed by (17), is a
nonnegative integer. If the kth column corresponds to the conjugacy class indexed by
the partition pu, this row sum is the multiplicity of the Schur function s, in the sum
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Let 1,, denote the Frobenius characteristic of the conjugacy action on S,,. The orbits
of this action are the conjugacy classes. Let f, denote the Frobenius characteristic
of the conjugacy action of S,, on the class of n-cycles. Let h,,e, denote respectively
the homogeneous and elementary symmetric functions of degree n, and let [ | denote
plethysm. By a general observation of Solomon [4] for finite groups (see also [5, Exercise
7.71], [6, Corollary 4.3]), we have the following facts. In view of Part (2) of the theorem
below, Conjecture 1 may be seen as a generalisation of the Schur positivity of the sum
of all power sums ) .. pa.

Theorem 1.1. The Frobenius characteristic i, of the conjugacy action of S, admits
the following decompositions:

(1) ¥y = >\ L1 hmi[fi], where the partition X has m; parts equal to .
(2) ¥y =D\, Pr, and hence the latter sum is Schur-positive.

Definition 1.2. If 1 is a partition of n, we write ¢, for the sum of power sums

2oref(1m)gi P
More generally if 7" is any subset of partitions of n, define 1 to be the sum ) et Do

Thus ?,) = ¥, and the multiplicity of the Schur function sy in 1, is the sum of the
values of the irreducible character x* on the conjugacy classes in the interval [(1"), u].

Clearly 1(1ny is just the characteristic of the regular representation. Also since 1y =
25(9) is twice the trivial representation, (g n-2y = p’f’21/1(2) = 25(2)p?’2. The Schur
function expansion of v, for n < 10 appears in [0, Table 1]. We have verified Conjecture
1 in Maple up to n = 20.

The main result of this paper gives an affirmative answer to Conjecture 1 in the
following cases:

Theorem 1.3. The symmetric function 1, = Z(l")gx\gum is Schur-positive if p <
(3,1"73) or u > (n — 4,1%) in reverse lexicographic order.

Our approach to Conjecture 1 proceeds in two directions. One can start at the
bottom of the chain, with p} (which contains all irreducibles), and add successive p,’s
going up the chain. The arguments in this case are subtle, and give an interesting
decomposition of the corresponding representation. See Theorem 2.11. Alternatively,
one can start at the top of the chain, with the known Schur positive function ,,, which
is also known to contain all irreducibles (see Section 2), and examine what happens to
the irreducibles upon subtracting successive py’s going down the chain, from ),,. This
is done in Theorem 2.16, and requires a careful analysis (Lemmas 2.12 to 2.14) of the
Schur functions appearing in products of power sums. The technical difficulty here is
in ensuring that the resulting expressions (Proposition 2.15) are reduced, i.e. each term
corresponds to a unique Schur function. The argument now hinges on the following fact:
no irreducible in the partial sum of power sums appears with multiplicity exceeding the
lower bound, established in Lemma 2.6, for the multiplicity of each irreducible in .

The proof of Theorem 2.11 hints at interesting properties of the representations (o).
In Section 3 we present conjectures suggested by that proof, and establish more Schur
positivity results (the case u = (3,2%,17) for 0 < r < 2, Proposition 3.7), as well
as generalisations of Theorem 2.16 to the twisted conjugacy action as defined in [6].
Section 4 concludes the paper with an analysis of the number of subsets of partitions
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whose associated sum of power sums is not Schur-positive. Tables of the Schur expansion
of 1, appear in Section 5.

An interesting implication of Conjecture 1 is obtained by examining the occurrence
of the sign representation in 1,,. The multiplicity of s(;») in v, is clearly

(1.1) S (o,

(1")<A<p

where ¢(\) denotes the number of parts of A, because the value of the sign character
on the conjugacy class indexed by X is (—1)""“™. In our reverse lexicographic ordering,
these values are the partial sums (computed left to right, with the left-most column
indexing the class of the identity (1) ) in the first row of the character table. Hence
Conjecture 1 implies that the sum (1.1) is nonnegative for all x4 = n. When ¢, = 1,
is the characteristic of the full conjugacy action of S, the expression (1.1) can be
shown to equal the number of partitions of n all of whose parts are odd and distinct,
or equivalently, the number of self-conjugate partitions of n [0, Proposition 4.21]. In
general the character values form a sequence of 1’s and (—1)’s, with the partitions
written in reverse lexicographic order; it is not obvious why the resulting partial sums
should be nonnegative. The nonnegativity is easily checked for n < 7. The example
below contains data for 8 < n < 13. As observed above, the last partial sum in each
case is the number of partitions with all parts odd and distinct. Theorem 2.16 will imply
(see Corollary 2.17) that at least the last five partial sums are necessarily positive.

Example 1.4. (See the discussion following Corollary 2.17 for the meaning of the italics

and the underlined runs.) The 22 values of the sign character for Sg, on the conjugacy

classes taken in reverse lexicographic order, beginning with (1"), are
-11-111,-111-1-11,-1,-1,11,-1,1,-1,1,1,-1,

with partial sums: 1,0,1,0,1,2,1,2,3.2,1,2,1,0,1,2,1,2,1,2,3,2;

the 30 values for Sy are
1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,—1,1,

with partial sums: 1,0,1,0,1,2,1,2,1,2,1,2,1,2,1,0,1,2,3,2,3,4,3,2,3,2,3,2,1,2;
and the 42 values for Sy are

1771’177171771717717197]-’1»717171’717177171771’177171771717717E771 971 71771’1>717717E7717177171’17717

with sequence of partial sums:
1,0,1,0,1,0,1,0,1,0,1,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2, 3 2 1,2,1,2,1,0,1,2,1, 2, 1, 2, 3, 2.
The partial sums for Si; are:
1,0,1,0,1,0,1,0,1,0,1,2,1,2, 3 2 1,2,1,2, 1,2, 1,0,1,0,1,2,1, 2,1, 2, 1, 2, 1, 2, 3, 2, 3, 2,
1,2,3,2,3,2,3,/,5 23,2, 32 1,2
The partial sums for S, are:
1,0,1,0,1,0,1,2,1,2,1,2,3,2,3,2,3,2,3,2,3,2,3 21,21,01,2,1,2,3,2,3,2,3,2, 3, 2, 3, 4,
3,4,3, 4,3 23,2,3,2,8,2,3 2 1,2,3,2,3,4 % 23,232 1,2,3,2,3,2,3, 4, 3
The partial sums for Si3 are:
1,0,1,0,1,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,2,3,2,3 2 1,2,1,2,1,2,1,2,1,2, 3 2 1,2,1, 2,
1,2,3,2,8,4, %23 21,2,3,2,3,2,3,2,3,2,3 2 1,2,1,2,1,2,3,4,3,4,3,4,3,4, 3, 4, 5 4, 3 4,
3,2,3,4,3,4,8,4,5 4, 34,3, 4 3 23
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In addition to the sign, it is also interesting to examine the multiplicity of the repre-
sentation (2,1772).

Example 1.5. The values of the irreducible character indexed by (2,1"72) on the
conjugacy classes in reverse lexicographic order are as follows.
Forn="7:
6,-4,2,0,3,-1,-1,0,—-2,0,1,1,1,0, -1,

with partial sums: 6,2,4,4,7,6,5,5,3,3,4,5,6,6,5.
Forn=28:

7,-5,3,-1,-1,4,-2,0,1,1,-3,1,1,0,—-1,2,0,—1,-1,-1,0,1

with partial sums: 7,2,5,4,3,7,5,5,6,7,4,5,6,6,5,7,7,6,5,4,4,5.

These examples also highlight the fact that there are many ways of reordering the
conjugacy classes so that the resulting partial (row) sums in the character table may be
negative, and the corresponding sum of power sums will thus fail to be Schur-positive.
We will return to this observation in Section 4.

CONRUED)
E3,2,1/)
@) e
@217
)

(1%)
Figure 1: Dominance order for partitions of 6
We remark that Conjecture 1 is false if one considers dominance order instead of

reverse lexicographic order. It fails for the first case in which dominance departs from
reverse lexicographic order, n = 6, as the following example shows:

Example 1.6. The seven partitions (weakly) dominated by (4,12) are (see Figure 1
above)

{(4,1),(3,2,1),(2%),(3,1%), (2%, 1%), (2,19, (1)}

The sum of power sums is thus psp? + pspepr + ps + pspS + pap? + popt + pS; in
the corresponding S,-module, the sign appears with negative multiplicity (all other
irreducibles occur with positive coefficient):

78(6) + 118(571) + 158(472) + 88(4712) + 35(32) + 145(372,1)
+ 108(3713) + 78(23) + 58(22712) + 58(2714) — 5(16)-
This is the only instance that fails for n = 6. For u = (4,1"™*), (the hook with one part

equal to 4), similarly, up to n = 12, the only irreducible with negative coefficient is the
sign, appearing with coefficient (—1).
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2. INTERVALS IN REVERSE LEXICOGRAPHIC ORDER

The following fact about the representation 1, was first proved by Avital Frumkin.
See [, Solution to Exercise 7.71] for more references.

Theorem 2.1. [1] If n # 2, the representation 1, contains all irreducibles.

We will need the following stronger result of [7] characterising the conjugacy classes
containing all irreducibles. Recall (see [7] for references to the literature) that a con-
jugacy class in a finite group G is called global if the orbit of the conjugacy action
corresponding to that class contains all irreducibles of G.

Theorem 2.2. [7, Theorem 5.1] Let n # 4,8. Then the conjugacy class indexed by a
partition \ contains all irreducibles, i.e. it is a global class, if and only if X has at least
two parts, and all its parts are distinct and odd. If n = 8, the conjugacy class indexed

by (7,1) is global, while the class of the partiition (5,3) contains all irreducibles except
those indexed by (4%) and (2*).

We also require some information on the irreducibles appearing in f,, the S,-action
by conjugation on the class of n-cycles. Since this is a permutation representation with
one orbit, the trivial representation appears exactly once. It is also easy to see that the
sign representation appears only if n is odd. We will make use of the following definitive
result of Joshua Swanson:

Theorem 2.3. ([9], [6, Lemma 4.2]) Let n > 1. If n is odd, the representation f,
contains all irreducibles except those indexed by (n—1,1) and (2,1"72). If n is even, f,
contains all irreducibles except (n — 1,1) and (1™).

The result below was stated without proof in [6]; we sketch a proof here.

Proposition 2.4. [6, Proposition 4.21| The multiplicity in 1, of the irreducible indezed
by the partition

(1) (n) is p(n), the number of partitions of n.

(2) (1™) is the number of partitions of n into parts that are distinct and odd, which
15 also the number of self-conjugate partitions of n. This multiplicity is nonzero
for n # 2.

(3) (n—1,1) is >\, ({t : my(N) > 1} — 1), which in turn equals the number of
distinct parts in all the partitions of n, minus the number of partitions of n. In
particular this multiplicity is at least the number of non-rectangular partitions
of n, and hence at least (n — 1).

(1) (2,172) is 50 (600 — 1)+ (i s mi(y) = 1),

where the first sum runs over all partitions A\ with parts that are distinct and
odd and the second sum runs over the set of partitions \ such that m;(\) <
2,m;(X) =2 for exactly one part j.

Proof. Part (1) is clear since p(n) is the number of conjugacy classes of n. As alluded to
in the Introduction, Part (2) is a computation of the sum Mm(—l)”*g(“), and follows
from the standard generating function identity for integer partitions by number of parts.
Since the sign representation always occurs in f, if n is odd, it also occurs in f; f, ;1 if

n is even, i.e. in the conjugacy class (n — 1, 1) for n # 2. The second statement of Part
(2) follows.
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For Part (3), we use Frobenius reciprocity, and the fact that sg_11) = hp_1h1 —
h,,. Hence the required multiplicity is p(n) less than the multiplicity of s(,—1) in the
restriction of v, to S,_;, which can be computed using the partial derivative with
respect to p; (see e.g. [2]) and Theorem 1.1 (1).

The last statement follows because for n > 3 there is always a partition with two

unequal parts. O
Lemma 2.5. (1) Let n # 3. Then f,f1 contains all irreducibles except (1") if n
15 even.

(2) Let n > 5, and let n be odd. Then the product f,fo contains all irreducibles
except the sign.

(3) Let n > 5. If n is odd, every irreducible except the sign appears in each of the
conjugacy classes (n —2,2) and (n —2,1,1).

(4) Letn > 6. If n = 2k is even, every irreducible except the sign appears in f,_3fofi.

(5) Let n > 6 be even. Then every irreducible appears in f, fo except for the sign and
the one indezed by (2,1"), which does however appear in f,_sf3f1. In particular

all the irreducibles except for the sign appear among the two conjugacy classes
(n,2) and (n —2,3,1).

Proof. For Part (1): The result is clear for n = 1,2 so assume n > 4.

If n is odd this is immediate from Theorem 2.2. If n is even, then by Theorem
2.3, fn contains all irreducibles except (1) and (n — 1,1). Now Sp—11) - fi = Snt1) +
S(n,1) T S(n—1,2)- But each of these summands appears in the product g, - fi for g, =
S5(n)» S(n)> S(n—2,2) Tespectively, and each g, appears in f,. The only irreducible that does
not appear is (1*1).

For Part (2): It is easy to compute, since fo = hy and f3 = hs + e3, f3fa =
5(5) + S@,1) + S3,2) T 8(3,1,1) + S(2,1,1,1), 50 the product does not contain s(21).

So let n > 5 be odd. By Theorem 2.3, f, contains all irreducibles except those
indexed by (n —1,1) and (2,1"2). We have

Stm-1,1) " f2 = Sm=1,1) - h2 = Si1,1) + 5(n2) T S(n,1,1) T S(m-1,3) + S(n-1,2.1)- (A)

The first two summands appear in g, - fo for g, = s, - fo. The last two summands

appear in g, - fo for g, = S(u—1,2). Finally s,_11,1) appears in the product g, - f; for

Gn = S(n—2,1,1), and this appears in f,, for n > 5. Thus in all cases g, appears in f,.
Next consider the other missing irreducible, (2,1"72). We have

8(2’1n72) . f2 = 8(271n—2) . hQ = 8(4’1n72) + 8(3?271n—3) + 8(37171—1) + 8(22’1n72). (B)

The first three appear in the product g, - f, for gj, = s(31n-3), which is a constituent of
Jn,n > 5. The last one appears in the product g, - fa for g, = s(2.1n-4), which again is
a constituent of f,,,n > 5. This completes the argument.

For Part (3), observe that the conjugacy classes indexed by (n,2) and (n, 1, 1) both
afford the same representation, namely f, - ho = f, - fo. The result now follows from
Part (2).

Part (4) follows by applying Part (2) to f,_3f2, since n — 3 is odd.

For Part (5): Since n is even, again Theorem 2.3 tells us that f,, contains all irre-
ducibles except those indexed by (n — 1,1) and (1"). From (A) above we see that the
product f, fo may miss the irreducibles indexed by

(n+1,1),(n,2),(n,1?),(n — 1,3) and (n — 1,2, 1),
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but all these appear in the set of products {s(,)f2, S(n—2,12)f2}, and s(n), S(—2,12) appear
in f,. The only other irreducibles possibly missed by the product f, fo are those in the
product s(i») f2, namely

(2,17°2),(3,17°%) and (1"*2).
Clearly s(31n-3) occurs in sy 1n-4y - fo, and f,, contains s »-4) since n is even.

To establish the claim, we now need only show that the irreducible (2,1"72) appears
in f,_ofsfi. But f3 = hs + e3, so f,_of3 contains all the irreducibles in the product
Jn—2€3. Since n — 2 is even, it contains s ;n-4) and this finishes the argument.

O

Lemma 2.6. Let n > 5. Let do,, denote the number of partitions of n with at least
two parts and with all parts odd and distinct. In the conjugacy representation 1, every
4 4 do,, n odd,

+ do,, n even.
This number is at least 5 for odd n > 7, and at least 4 for even n > 6.

wrreducible except possibly the sign occurs with multiplicity at least

Proof. First let n be odd. By Lemma 2.5, the following conjugacy classes contain all
irreducibles except the sign: (n —1,1), (n — 2,2), (n — 2, 12). Also by Theorem 2.3, the
conjugacy class (n) (or equivalently the symmetric function f,,) contains all irreducibles
except for the one indexed by (n —1,1) and (1™). But the irreducible (n — 1, 1) appears
at least n — 1 times in 1, by Proposition 2.4. Thus we have multiplicity at least 4
for each irreducible. Since none of the four conjugacy classes listed above is global by
Theorem 2.1, we have a multiplicity of at least 4 plus the number of global classes.

Now let n be even, n > 8. (The case n = 6 can be checked by direct computation.
See, e.g. [0l Table 1]. Then by Theorem 2.3, the conjugacy class (n) has all irreducibles
except for (n—1,1) and (1™). Also by Lemma 2.5, f,,_3f2 has all irreducibles except for
(1™). Hence so does the conjugacy class (n — 3,2, 1). Finally this is also true by Lemma
2.5 again, for the sum (f,_ofe + fu_af3f1). We have accounted for a multiplicity of at
least 3 for every irreducible except the sign, in addition to the global classes.

We now show that the number of global classes is at least | %] if n = 2k, 2k + 1.

First let n = 2k > 6 be even. In this case, applying Theorem 2.2, we have at least
|£] > 1 global conjugacy classes: {(2k—r,7) :r=1,3,...,2[5]-1}.Ifn =2k+1 > 9,
then again there at least [£] —1 > 1 global conjugacy classes in the set {(2k —r,7, 1) :
r=3,5,...,2|%] — 1} and one more: (2k —7,5,3). O

Remark 2.7. Tables of the decomposition into irreducibles for v,,, n < 10, are given in
[6]. We point out a misprint in Table 1 of [6] for n = 7 : the fifth entry from the bottom,
for the multiplicity of (3, 1%) in 97, should be 13, not 7. From this data, the truth of the
lemma follows for n < 10. It is worth noting that the tables indicate far greater lower
bounds than we have just established, for the multiplicity of the irreducible indexed by

pwhen g # (17),(2,1772).

We begin our analysis by directing our attention to the bottom of the chain, to
examine the representations 1, for p > (1"). Our argument in this case is somewhat
mysterious. One interesting aspect is the role played by the following calculation.
Lemma 2.8. The symmetric function p3 + hoey = h3 — exhy + €3 is Schur-positive.

Proof. Note that py = hy — eq. It is straightforward to compute, using Pieri rules (see
e.g. [2]), that h3 — eshs + €3 = sy + S(14) + 2502,9). O
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Definition 2.9. Let T" be any subset of integer partitions. Denote by p,, 7 the sum of

power suins ZAI—n:AieT for all i PX-

Theorem 2.10. [0, Theorem 4.23] If T' = {A F n : \; = 1,2 for all i} then p,r is
Schur-positive. We have pami1. 1 = D1Pam,r and

m+1
m+1\ ,,
pana =3 (" e

j=1
j odd

Theorem 2.11. Let pu be a partition in the interval [(1"), (3,1"73)]. Then v, is Schur-
positive. Equivalently, the following are Schur-positive:

(1) Yok 1n-2ry = ZZ o P5p1T % for k < n/2; one has the recurrence
¢(2k+1’1n—2(k+1)) = ¢(2k 1n—2k) +pk+1 n=2(k+1) ,0<k<mn/2

(2) (gn-3) = pspi~ 34 Yok yn-2ry, where k = [7].
Proof. For Part (1):

k
Yk an-2v) = Zpép’f =ty et = parr,

where T' = {A F 2k : \; = 1,2 for all i}. But by Theorem 2.10 we know that pogr is
Schur-positive as a representation of Soy.

For Part (2): Writing m = |%], since in reverse lexicographic order, (3,1"7?) covers
the partition with at most one part equal to 1 and all other parts equal to 2, we have,

Y(3,1n-3) = Ygm 1n-2m) + pspy
Note that ps = hg + e3 — (hohy — hs) = 253y + 513y — hapy. Hence
’1/1(37171—3) = @Z)(Qm,ln—Qm) — hgp?_ + (25(3) + 8(13))])1_
We will establish the stronger claim that
(2.1) P(gm 1n-2my — h2p7f_2

is Schur-positive. From Theorem 2.10, it suffices to assume that n = 2m. In this case,
with 7" being the set of partitions of 2m with parts 1,2, we have

m+1
m+1\, ,,
(2.2) Yamy = Damr = Z ( i )h +l=g ] L T VAN +e5t Odd(m + 1),
j=1
7 odd

where the notation Odd(n) is used to signify 1 if n is odd, and 0 otherwise, and we have
set

(2.3) Vi — Em: <mj+ 1) B e

j=1
7 odd

From (2.2) and (2.3), we need to establish the Schur positivity of
(2.4) ho(Vam—o — 2™ %) + €5 Odd(m + 1).
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In fact when m is odd, we will show that Va,, o — pi™ 2 itself is Schur-positive, whereas

when m is even, we will need to multiply this by hy and examine the entire expression
(2.4) in order to obtain Schur positivity.
Since p? = hy + ey, we can write

m—1
-1

(25 =3 (M e

t=0 ¢
Also

m m—
V2m2— <])+(]—1>)h2 Tyt
J odd

- 1) ( ))hg“—t el (setting t = j — 1)

- ) ( ))hm =leb 4+ (m 4+ 1)ey =t Odd(m).

t even

Combining this with (2.5), we obtain

m—2
m—1 m— 1 m—1
Vst = 3 e (1)) + (") + (1))
— t+1 t t—1

t EVEN
m—1
(2.6) +on+1ﬁylo¢ﬂmy—}:eﬁglt(m;1>
¢ ODD

™) is zero if t < 1. We will split the first sum in (2.6) (over even

t) into three sums as follows:

where by convention (

m—2 m—2 m—2
Z Py + Z Qu + Z Ry,
¢ BVEN ¢ BVEN ¢ BVEN

o m—=1
QwZ%?1( t>,

—1
R — hm 1-t m )
(t-) = (t—l)

Next consider the negated terms in (2.6). For these we write, for odd k, 1 < k <m —1,

m—1
M_@mﬂk(k )

and for 2 <t <m — 2,
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Our goal is to absorb every negated term N into a Schur positive term. We now
describe a judicious grouping which will allow us to accomplish this.

Collect the terms in Va,,_9 — p%m_z as follows:

(Po+) — N1+ Rioy + (Pogy — N3+ Rumy) + ... 4 (Pug) — Nepr + Rigay=) + .- -,

where ¢ is even.
For each odd £ =25 — 1,1 < k <m — 3, we have

Paj—2)+) = Noj—1 + B2j)-) = Pe—1)+) — Nk + Rpt1)-

(2.7) = (mk 1)65_1h£n_k_2(h% —eshy+e3), 1<k<m-3.
But this is Schur-positive by Lemma 2.8. This absorbs the negative terms Ny for k£ odd,
k < m — 3, into Schur-positive expressions. Looking at (2.6), there is only one more
negated term to investigate.

Suppose m is odd, so that £k = m — 2 is odd, and thus N,, 5 is the last negated
summand in (2.6), the only one not taken care of in (2.7). Group the terms as before,
and noting that F(,—-3)+) was NOT used in the groupings of (2.7), we have

P((m,g)Jr)) — Npy—o+ 6;71_1(771 + 1) = P((m,g)Jr — Np—o + 67271_1<m + 1)
m—1 m—1

= (m B 2> en 3h3 — (m B 2> ey ?hy + (m + 1)ey ™!

= (m —1)el > (h3 — eshy + €3) + 2y

and this is again Schur-positive by Lemma 2.8. (Admittedly this is something of a
miracle.)

Next suppose m is even, so that kK = m — 1 is odd; then N,,_; is the last negated
summand in (2.6), and the only one not absorbed in (2.7). Now we have (since P(;,—2)1)
was not used in any of the groupings in (2.8)):

m—1 _ m—1\ ,._ m—
Plm-2)4) = Nim-1 = (m _ 1) e %hy — (m _ 1) eyt = €5 (hy — ea).
While this is not itself Schur-positive, from (2.4) we can multiply by hy, and then we
have (again somewhat fortuitously), since m + 1 is odd,

hg(P((m,Q)Jr — Nm—l) + 67271 Odd(m + 1) = 6;71_2(h§ — hgeg + 6%),

and this is Schur-positive as before.
By (2.4), this completes the argument, in which Lemma 2.8 clearly played a crucial
role. U

Next we examine the chain from the top down. Here the arguments are more direct,
but also computationally technical. Our strategy for establishing Schur positivity will
be to show that in the Schur expansion of the sum ) , j<v<(n) Pvs 1.€. starting from the
partition (n) and moving down the chain, the positive multiplicities of the irreducibles
never exceed those in ,. For the cases we consider, we are able to show that, with
the exception of the trivial representation, which clearly occurs as many times as the
number of partitions in the interval [u, (n)], this sum has multiplicities at most 4. This

allows us to apply the lower bounds for the multiplicities in v, developed earlier in
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Lemma 2.6. The Schur function expansion of the product p,p,, figures prominently in
this analysis.

In the proofs that follow, for simplicity and clarity we write A for the Schur function
sy indexed by A. The context should make clear when (n — 2,2) indicates the Schur
function s(,_29) rather than the partition itself. Also for any statement S, dg denotes
the value 1 if and only if S is true, and is zero otherwise.

Lemma 2.12. Letn > m and 4 > m > 1; if n = m assume m # 2. Then the Schur
function expansion of the product p,p,, has only the coefficients 0, +1. More precisely,
one has the following expansion into distinct irreducibles:

Dn,m
+ [a(n,m) + dp>20(n, m) + 0m=sy(n,3) + Omeay(n,4)]
+ (=)™ w ([a(n, m) + dm>28(n, m) + dpm=zy(n, 3) + dm=sv(n,4)]);

where
m—1n—m-—2
Dpm=>_ > (=)' (n—t—s—1,m—s+1,2°1",
s=0 t=0
m—1 m—2
an,m)=>» (=1)'"(n—r+m,1"), pB(n,m)= Z(—l)s(n,m —s5,1%),
r=0 s=0

v(n,3) = (n—1,2?), and y(n,4) = (n —1,3,2) — (n — 1,2,2,1) + (n — 2,2%).
The number of irreducibles appearing in the expansion is
m(n —m+1) +2(6m>2(m — 1) + dpez + 30m=4).
Proof. Note that these definitions imply that

(=1)""™w(a(n,m)) = 2 (=D n—t+m,19
and »
(~ 1) B, m) = 3 (~1) (= s + 1,25, 17771),

We begin with the well-known expansion of p, into Schur functions of hook shape (a
special case of the Murnaghan-Nakayama rule):

n—1
Pn = Z(—l)r(n —r,1"),n > 2.

r=0
The Murnaghan-Nakayama rule says the Schur functions in the product p,p,, are
indexed by partitions obtained by attaching border strips (or rim hooks) of size m to
each of the above hooks, with sign (—1)° where s is one less than the number of rows
occupied by the border strip. (See [2] or [5].) We enumerate the disjoint possibilities
in the figures below. Note that we have excluded the partition (1™) (respectively, (m))
from Figure 1a because it is counted in Figure 2b (respectively, Figure 2a). In particular
Figures la-1b need to be considered separately only if m > 2. (When m = 1, Figure
la is included as the special case of Figure 2b for r = 0, and similarly Figure 1b is the
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r =mn — 1 case of Figure 2a.) Figures 2-3 are possible configurations for all m > 1, and
Figures 4a-4b, 5a-5d can occur only if m = 3,4 respectively.

[

X
x| Figure la: p = (n), with hook (m —s,1%),0 < s <m — 2, in row 2.

ES
~ The contribution to p,p,, here is (—1)*(n,m — s, 1), if m > 2.

X[ [x]

Figure 1b: p = (1"), with hook (m — s,1%),1 < s <m — 1, in column 2.

The contribution to p,pm, is (—D)n s (m — s+ 1,25 177571 if m > 2.

NN

Figure 2a: p=(n—r,1"),0 < r < n — 1, with horizontal strip of size m.

The contribution to pppm, here is (—=1)"(n —r+m,17),0 <r <n— 1.

[ L1 []

X | Figure 2b: = (n—7r,1"),0 < r < n — 1, with vertical strip of size m.

X

x|

The contribution to p,p., here is (—=1)" ™™ 1(n —r, 177™) 0 <r <n — 1.
X|X|...|X
X
Figure 3: y=(n—r,1"),r > 1,n—r —1 > 1 with hook (m —s,1%),0 < s < m — 1, attached.
X

The contribution to p,p, is
(- Sm—rm—s+1,251""1"50<s<m—-1,1<r<n-2.

If m = 3 we have a conjugate pair of additional configurations:

[ L[]

X Figure 4a: p = (n —1,1), with rim hook of size m = 3.

The contribution to p,ps is (=1)%(n — 1,2,2).
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— Figure 4b: p = (2,1"~2), with rim hook of size m = 3.

The contribution to p,ps is (=1)"2 - (=1)(3,3,1773).

13

If m = 4 we have six additional configurations, which we list in successive conjugate

pairs:

Figure 5a: pu = (3,1773), with rim hook of size m = 4.

‘The contribution to p,pyg is (=1)"73 - (=1)(4,4,174).

Figure 5b: u = (n — 2,12), with rim hook of size m = 4.

X
X
XX

The contribution to p,ps is (=1)2 - (=1)%(n — 2,2,2,2).

L[]

XX Figure 5c: p = (n —1,1), with rim hook of size m = 4.

The contribution to p,p4 is (=1)%(n — 1,3, 2).

Figure 5d: pu = (2,1"~2), with rim hook of size m = 4.

The contribution to p,ps is (=1)""2- (=1)2(3,3,2,1").

[ L[]

X
XX

Figure 5e: = (n —1,1), with rim hook of size m = 4.

The contribution to p,ps is (—1) - (—=1)%(n — 1,2,2,1).

XX‘

e Figure 5f: = (2,1"2), with rim hook of size m = 4.

‘The contribution to p,ps is (—1)"72 - (=1)(4,3,1"%).
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The sum of hooks in Figures 2a-2b collapses as follows:
n—1
}:(1)m—r+n11-+§: 1) (=, 17,
r=0
and since n — 1 > m, we can Spht the first sum:

3

n—1 n+m—1
(=)"(n—r+m,1") +Z "n—r+m,1") + Z (=D (n+m—t,19

r=m t=0

1
Il
- o

()" (n—7r+m,1") +”Z ) (n—r+m,1")
()" (n+m—1t,1" —|—an: (=) (n+m —t,1"
n+m—1

= (-D)'(n—r+m 1)+ Y (=) n+m-—t1")

r=

3

Il
- o

3 =

+
if

3

3

t=m

The first two lines in the statement clearly come from Figures 4 and 5 respectively.
The first two summations come from Figures la-1b, and the third and fourth summa-
tions are the result of the collapse in between Figures 2a and 2b.

Note that in the double hook of Figure 3, we must have n —r >m — s+ 1> 1 and
similarly » > s > 0. This gives 0 < s <m — 1 and s <r <n —m+ s. Hence Figure 3
contributes the sum of double hooks

Z Z (=) (n—r,m—s+1,2°,17717%)

- s<r<n m+s

m—1n—m-—2

=Y > (D) m—t-s—1m-s+1,2°1"),

s=0 t=0
where we have put t =r —1 — s.

Figures 1la-1b contribute the sum

3

m—2
(5m22 (Z(_1)5<n,m — S, 15) + (_1)”*3*1(m — s+ 1’ 25’ 1n51)> :

s=0 s=1

putting S(n, m) for the first sum above, we see that this can by rewritten as
5m22 (5(”7 m) + (_1)nfmw(5(n7 m)) :

(Check that w(n,m — s,1%) = (s + 2,2m7571 1"7™%9) and make the substitution ¢ =
m — s — 1 to get the second sum multiplied by (—1)""™.)
Figures 2a-2b contribute

n+m—1

+§: Y(n—r+m 1)+ Y (=1 (n—t+m,1);

t=n
putting a(n,m) for the first sum of m hooks above, we that this can be rewritten as

a(n,m) + (=1)""w(a(n,m)).



ON A POSITIVITY CONJECTURE IN THE CHARACTER TABLE OF S, 15

Putting v(n, 3) = (n — 1, 2?), the contribution of Figures 4a-4b is seen to be
Om=s (7(n,3) + (=1)"*"w(v(n,3))), since, when m =3, (=1)""" = (=1)"*"
and similarly setting y(n,4) = (n—1,3,2) — (n—2,3,2,1) + (n—2,23), the contribution
of Figures 5a-5f is
s (v(n,4) + (=1)"""w(v(n,4))) again since, when m = 4, (—=1)" = (—1)"™"
O

We now specialise this lemma to the values m < 4. In what follows it will be convenient
to write partitions of n as (x, ), where x will indicate a single part equal to n — |u/,
and p is a partition whose largest part does not exceed the part indicated by *. For
example, (*,2,2,1") means the partition (n —4 —¢,2,2,1%).

Lemma 2.13. One has the following Schur function expansions:
(1) pp = (n)+(=1)""1(1") —1—2::12(—1)’”(*, 1) for n > 2 (the summation is nonzero
if and only if n > 3);
(2) pipn—1 = (M) +(=1)" (1) + 3220 (1) (,2,17) forn > 3 ( note the summation
s monzero if and only if n > 4)

(3) pn-2p2 (forn >5)
= ()= (=L + (= 2.2+ (00 - 217+ (22177)

+Z 1) 1(%,3,1%) +Z 1)1 (%,2,2,1%).

(Note that the summations are nonzero if and only if n > 6).

(4) pn—2hy (forn >35)
= (0) + (~1)" (23, 17 4 (—1)"1(2,1772) 4 (1) (x,3,17),

(5) pn_ap? (forn >5)

=)+ n—11) = (n—-2,2) = (=1)"(1") + (-1)"% 1" + (-1)"(2,1"7%)
+n (— 1)T+1*31T+Z )(%,2,2,1)
(6) ;n—3p3 (forn >6)
=[n)—(n—-1,1)+(n—-2,1°)+(n—-3,3) — (n—3,2,1)] + (n — 4,2%)
+(=D)"A") = (2,177 + (3,177 + (25,177°) - (37 2,1"7°)] + (=1)" (3%, 1"7°)

Y (DT A ) (1) (%,3,2,10) + (%, 2,2,2,19)
t=0 t :o

<

co

Il
[e=)
~+

(7) pn—3papr
=(n)—(n—2,1) +(n—3,2,1) — (n —4,2%)
+< D) = (3,177%) +(3,2,1"7°) — (3%,1"7%)]

+) (1) (%, 4,18 +Z ) (%,2,2,2,17)
=0

~+
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( 8) Dn—3hap1

=)+ (n—1,1)—(n—3,3)+ (=1)"2(2,1"%) + (=1)""1(2*,1"79)
+ (=" (3,217 5>+<—1>"<3 1)+ (=1)"0(3%,1")

OO

+ (1)7‘+1*41T+Z ) (x,3,2,1%)

=0

<

( 9) Pn—4P4

=n)—(n-1,1)+(n-2,1%) — (n—3,1%
+ (%, 4) — (%,3,1) + (%,2,1%) + (%,3,2) — (%,2%, 1) + (%,2%)
+ (=117 = (2,1"7%) + (3,177%) — (4,177 + (24,177%)
—(3,2%,1™7) + (4,2,1"7%) + (32,2, 1"7%) — (4,3,1"77) + (4%, 1" ®)]

) (=D (65,17 4 (%,4,2,17) + (+,3,2%,1%) + (%,2,2°,17)]

t=0
(1 0) Pn—aP3P1

=(n)—n—=2,2)+n—-3,3)+(n—3,1% - (n—4,2,1%) + (n — 5,2* 1)
+ (=1)"HA™) = (22,1 + (28, 1770) + (4,3,1777) — (4,2,1"7%) + (4, 1"7Y)]
+ (=1)"(4*,1"7®%) — (n — 6,2%)

> (1)1 51 £ (=1 (5,810 4 30 (1) e, 20,10

t=0 t=0 t=1

_|_
~+
—
o

( 11 ) Pnf4]92p%

=) +m—-1,1)—(n—2,1*) — (n —3,1%) — (n — 4,4) 0,59 + (n — 4,3, 1)
+(n—4,2,1%) - (n—-5,3,2) — (n—5,2%,1) + (n — 6,2°)
+(=DMA™) 4 (2,1777) = (25,1777 = (3,177%) + (3,27, 1"77) — (3%,2,1"7%)]
A+ (=)= (4,177 + (4,2,177%) — (4,3, 1"77) + (42, 1"79)]

n—10 n—10

+ 610 Z Y (%, 5,1%) — (x,3,22, 1! }+5n>102 {(%4,2,17) — (%,2%,1")}

Proof. Parts (2)-(3) and Part (6), Part (9) follow by putting m = 1,2, 3,4 in Lemma
2.7, and replacing n with n—1, n—2, n—3, n—4 respectively. In Part (6), note that v(n—
3,3) = (n—4,2,2) and hence the corresponding term is (n—4,2,2)+(—1)""%(3,3,1"79).

The expansion of p,_»p? in Part (5) follows by subtracting twice the equation in
Part (3) from Part (4), by virtue of the identity p? = 2hy — po.

For Part (4):

Write po s = (11— 2) + 53 (1) (n — 2= 1, 17) & (— 1742, 174) 4 (—1)-3(17-2),
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Using the Pieri rule, we have

Pnoho =(n)+(n—1,1)+ (n —2,2)
+ (D)™ (4,1 4+ (3,2,1"7°) + (3 1"7%) + (2%, 1"7)

+ (_1)n—3 ((3, 1n—3) 2 1" 2 —{— Z n -2, 37 17“—1)
S 2 4 S w221 ()
—I—i(—l)r(n—r, 1) + - (—1)"(n—1—r1"". (G)

Line (F') is a telescoping sum which collapses into

(=2

(-1 (n—2-1t,2, 1t)+n2(—1)7”(n—2—r,2, 1") = —(n—2,2)+(=1)""(3,2,1"7°).

r=1

n—

t

Il
=)

Similarly line (G) collapses into

i(—w(n —r1") + ; (=D n—t, 1 = —(n —1,1) + (=1)"°(4,1"4).

Hence p,,_oho reduces to
n—>s
)+ D (1) (n—2—7,3, 177 4+ (=1)"(2%, 1774 + (1) (2,1"72).
r=1
For Part (7): We start with the expression for p,_3ps and multiply by p;. One checks
that this gives

(n) —(n—2,1*)+(n—3,3)+ (n—3,2,1)

(D) (G )+ ()0 ()2 )

3

D (4,3,1°) 4 (%,4,17) + (%,3,2,171) 4 (%, 3,11 (A1)

3H~
\]O

Z D, 2%, 17) 4 (%,3,2,17) + (,2°,1771) + (%, 2%, 1771)] - (A2)
=0

Note that the sums in (A1) and (A2) vanish identically unless n > 7. The first and last
summands in (A1) collapse to (—(n — 3,3) + (—1)"7%(32,1"7%), and similarly the first
and last summands in (A2) collapse to —(n — 4,22) + (—1)"7%(23,1"7°). Also note that
where we have written 1°~! for part 1 with multiplicity ¢ — 1, there is no contribution
unless ¢ > 1. So the third sum in (A1) and the second sum in (A2) cancel each other.
Likewise, Parts (8) and (10) follow respectively from Parts (4) and (6). Finally
Part (11) follows from Part (7). O

Lemma 2.14. The expansion of pip,_4 is as follows:
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(1) The irreducibles appearing with multiplicity +2 are indexed by the following par-
titions X\ :
(a) (n —2,2) with coefficient 2 and (n — 3,3) with coefficient —2;
(b) (22,1"=%) with coefficient 2(—1)""1;
(c) (23,1"75) with coefficient 2(—1)";
(d) (x,3% 1Y) with coefficient 2(—1)%;
The remaining irreducibles (with multiplicity) are:
(2) (n), (=1)"(4%,177%), (=1)"71(4,3,1"77), (=1)"(4,2,1"7°), (=1)"71(4,1"7),
(=1)"7(x,5,1%);
(3) (1" 1(17), (n—3,1%), (—1)(n—6
(4) (~1)(3,17°9), (~1)(n—1,1), (-1
4.4).
(5) (_1)(n -2, 12)a (_1)77,(27 1n_2)7 (_1>n_1(24’ 1n_8)’ (n — 4,3, 1)7 (_1>(n = 9,3, 2)?
(_1>t(*7 3? 227 1t>
Proof. Using the Murnaghan-Nakayama rule, we list the different configurations for

the irreducibles appearing in the expansion of pap, 4. The list below is organised by
considering border strips of size (n — 4) attached to the shapes appearing in p3 :

,23),(=1)(n—4,2,12), (n—5,22,1), (—1)%(%, 2%, 1%);
)t(3>22>1t) (_1) (32727 1t)7(_1)t71(*7 )

11 XX [X] 12 [X]X]...[X]
212X 112X
X|X|X X|X|X

(1) [ or
] ]

Each of these contributes exactly the same set of shapes A containing the shape

(2,2). We therefore obtain the following possibilities with (signed) multiplicity
2:
Ao =2and \ =2: (- 1)t 1(2,2,1%) or (—1)(2,2,2,1
Ay =2and \ > 3: (n—2,2)
A =3 and \3 =3: (— )”2(* 3,3,1%)
)\2:3and>\3:0( )( )
12 2[XX].]X]
X[X[X[X|X
(2) X
]
A 2 (2,2): Then X is a hook, so (n) or (—1)"71(4,1774).
A D (2,2): If Ay = 4 we obtain (—1)'(4,4,1%), (—1)(4,3,1"), (—1)"(4,2,1"); fi-

nally if Ay = 5 we obtain (—1)"1(x, 5, 1%).

XXX
1[X
R X
3[X
(3) .
A 2 (2,2): Then X is a hook, so (n — 3,13) or (—1)"72(1").
A D (2,2): The possibilities are: (—1)(x,2,1%), (=1)%(x,22,1), (—1)3(%,2%) and
(—1)"(x,2%,1°).

27 t)v( -



ON A POSITIVITY CONJECTURE IN THE CHARACTER TABLE OF S, 19

22[X[-]X]
XXX
(4) 5
A 2 (2,2): Then Ay = 1,80 Ais a hook, (—1)-(—=1)"73(3,1"3) or (—1)-(n—1,1).
A D (2,2): Then 2 < Ay < 4. If Ay = 2 then (—1) - (—=1)"1(3,2% 11); if Ay = 3

then (—1) - (—=1)1(3,3,2,1%); if Ay = 4 then (—1) - (—=1)"?(%,4,2,1%) or
(=1) - (=1)(n = 4,4).

X[IX]

PE

=

: Thus Ay = 1, yielding (—1)-(n—2,12) or (=1)-(=1)"75(2,1,1,1"%).

(2,2) 2

(2,2): If Ay = 2 we have (—1) - (—=1)"75(2,2,2,2,1"78).
If Ao

(=

> > [ [ o] =

(=1)"

= 3 we have (—1) - (=1)(%,3,1),(—1) - (—=1)2(x,3,2), and (—1) -
1)63(x, 3,22, 11).

O

Using Lemmas 2.13-2.14, we can compute partial sums in the reverse lexicographic
order, starting from the top element (n).

Proposition 2.15. The partial sums beginning with the top element (n) are:

(1) pn =2(n) +(=D)"HAM) = (0 = 11) 4 (<122, 1072) + 05 (- 1) (+,17) for
n >
(2) Zn (n— )pu PrADaaP1 = 286+ 200 (= 1) (6, 1) 43025 (= 1) (%, 2, 17).

(3) D y>p>(n-2.2) Pu = Pn + Pn-1P1 + Pn—2p2
( ) 2(n—1 1)+ (=1)"(1") + 205 (=17 (4, 17) + 207 (= 1) (4,2, 1)
+ 30y (1) (%,3,10) + 3000 (1) (%, 2,2, 1)
(4) 2 tmysy>(n—2.2) Pu = P+ Pn1P1 + PnoPa + ppop? (n > 6)
= 4(n) + (=1 H2,1m72) + (D)2 + (1) (5, 17)
+ 3 ()T (6, 2,17) + 2 I (1) (,3,17)
(5) 3 (ny>p>(n—33) Pu = Pn + Pno1P1 + Pp—2D2 + Pu—2Pi + Pn—3Ps
5(n) —2m—1,1) — (n —2,2) +2(n — 2,1*) — (n — 3,3) + (n — 4, 2?)
+( 1"(A") +2(=1)"H2, 1) + (= 1)" (2% 1”_4)+(—1)”(23,1"_6)+(—1)"_1(3271"_6)

4>
(=]

(=1)"(%,17) + ; (—1)1(x,2,1) +2Z 1) (%,3,17) + 26p-6(*, 3)

_l_

\3
Il
o W
<
N

[ee]
[ed]

n—

3

+ (_1)t+1(*?47 1t> + (_1>t+1(*73727 1t) + <_1)t+1<*72371t)
=0 t

~+
Il
o
~+
Il
=)
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(6) 3 (ny>p>(n—3.2.1) Pu

=6(n)—2(n—1,1)—(n—2,2)+(n—2,1*) = (n—3,3) + (n — 3,2,1)
+2(=1)" (2,177 + (=1)"(2%, 1Y) + (=1)™(2%,1"7F)

+ (=1)"(3,1"7%) + (=1)""1(3,2,1"77)

- i(—l)?‘(*, 1) + i(—l)“l(*, 2,1") +2 i(—l)”l(*, 3,17) 4 20n—¢(*, 3)
+2 5 (1) (%, 4,10 + Y (1)1 (%,3,2,19

3
IS
—_
3
~—
+
- /\
>_n
\/

(8) Z )>u>(n—4,4) Pu

=8(n)—(n—1,1)—(n—2,2) +3(n—2,1*) —3(n — 3,3) — 2(n — 3,1%)
—2(n—4,4)+ (n—4,3,1)+ (n —4,2*) +2(n — 5,3,2) — (n — 5,22, 1)

+(=1)"2(1") + ()" ) + (<)% 1)+ ()TN 1) + (D)2 1)
+2(=1)"71(3,2,1"7°) + 3(=1)"(3,1"73) + (=1)"(3%,1"7%) + (—1)"(3%,2,1"7®)

+ (= 1)” N3, 2217+ (1) (4, 3,1 + (1) (42, 177)

n—7

+Z Y1)+ (1) (5, 2,1)

r=3

[e]
oo

n— n—

n—_8
+22 T+1 * 3, ]' +3Z(_1)t+1(*747 ]-t) + (_1)t(*737271t> + (_1>t+1(*72371t)
t=1

~+
Il
=
~+
Il
[

n—10
+Z D [(4,5,1°) + (6,4, 2,17 + (%,3,2%,17) + (,2',19)]
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(9) 2 (my=pz(n-43.1) P
(n)—(n—-1,1)=2(n—-2,2)+3(n—2,1>) —2(n — 3,3) — (n — 3,1%)
(n—4,4) +(n—4,3,1) +(n—4,2%) — (n —4,2,1*) + 2(n — 5,3,2) — (n — 6,2%)
D™ + (=1)"H(2,177%) + 2(=1)"(2%, 177 + 2(=1)" (2%, 1"7°)
r (21
(=1)"71(3,2,1"7°) +

nH"1(3,2%,1"77)
(=)™ 14,3, 1"7) + 2(=1)"(4%,1"7%) + (=1)"(4,2, 1" %) + (=1)* 1 (4,1 %)

9
2
+ (=
+ (=
2 3(=1)"(3,1"73) + (=1)"(3%, 1" 5) + (—=1)"(32,2,1"°8)
(—

2

+
_|_
+

n—5 n—7
+ (D) + Y (1) (%,2,17)
r=4 r=3
=7 n—=8 n—=8
Z D)™ (,3,17) + 33 (=1 (5,4, 1) + ) (=1)"(%,3,2,1")
r=2 t=1 t=1
n—=_8
+ ) (=), 23,1
1

t=

©

n—10 n—
+ ) (DT 20x,5, 1) + (%,4,2,1) + (x,3,2,19] + ) (1) (3%, 1)
t=0

(10) 32 (n)> > (n-1,22) Pu
=10(n) —2(n — 1,1) +2(n — 2,1?) — 4(n — 3,3)
—(n—4,4)+2(n—4,3,1) + (n —4,2*) — 2(n — 4,2,1°)
+(n—5,3,2)+ (n— 5,22 1) — 2(n — 6,2%) + (—1)"4(3,1"?)
+2(=1)"71(3,2,1"7%) + (=1)"(3%,1"7%) + 3(—1)"(3%,2,1"%) + 2(—1)""1(3,2%, 1)
+ (=)™ 14,3, 1"77) + 0(=1)"(4%,1"7%) + (=1)"2(4,2, 1"7%) + 2(=1)" ' (4,1"")

if
o

+Z *17"+Z 1)1 (%,2,17) +2Z 1) (x,3,1)

9 n—_8 n—10

+ ) (=DM %,3,2,1) + > (1) (%, 2810 + Y (<) (%, 2%, 17)



22 SHEILA SUNDARAM

(11) D)2 (n-a,2.12) Pu
=11(n) —(n—1,1)+ (n —2,1*) —4(n — 3,3) — (n — 3,1%)
— (14 6p>0)(n —4,4) +3(n —4,3,1) + (n — 4,2%) — (n — 4,2,1?)
— (n—6,2%) + (=1)"(1") + (—1)"(2,1"72) + 2(=1)" (2%, 1"7F)

+ (=1)"3(3,1"7%) + 2(=1)"71(3,2,1"7%) + (=1)"(3*,1"%) + 2(=1)"(3%,2,1"®)
+(=1)"1(3,2%,177)
+2(-1)""1(4,3, 1"—7)+( D42, 178 4+ (=1)"3(4,2,1"%) 4 (=1)"'3(4, 1"
n-5 n—=8 n—9
5 (=) (5, 17 +Z )Tk, 2,17) 2 (=) (%, 3,17) + 3 (—1) T (x,4,1%)
r=4 r=2 t=1
n—9 n—9
+ Z(_l)t(*a 37 2? 1t> + Z(_1>t+1(*7 237 1t>
t=1 t=1
n—10 n—9
+ ) (=D 406, 5,17 4+ 1(,4,2,1%) — (%,3,2%,1)] + (+,3%,19)
t=0 t:0

Proof. We sketch the proof, since the details are routine and tedious. In general, each
partial sum is obtained from the preceding one by adding the expansion of the power
sum indexed by the appropriate partition. More precisely, if ™ covers p in reverse
lexicographic order, then ¢+ = 1, + p,+.

Thus the first two partial sums follow by adding the first two sums in Lemma 2.13.
A similar procedure is applied for the remaining sums, with the following exceptions.

For (3), we compute the partial sum by using ps + p? = 2h, and thus it suffices to
add the expansion of 2hsp, o from Lemma 2.13 to the preceding partial sum.

Similarly for (7), we compute the sum Z(n)zuz(nfiﬂ,lg) p, by adding p,—3(pep1 +p}) =
2pn_3hap1 (using the expansion (8) of Lemma 2.13), to Z(n)ZMZ(n—&?’) Py, which is given
in (5) above.

In general, in all cases we use the relevant computations of Lemma 2.13, the chief
exception being the expression in (10), which requires the expansion of p,,_4p3 computed
in Lemma 2.14. The expression (11) of this proposition then follows cumulatively using
Part (11) of Lemma 2.13.

It is important to note that the sums have been carefully rewritten so that there is
no “collapsing”: as an example, we give here an analysis of what happens in computing
the partial sum (10). This sum is obtained by adding to the sum in (9) the expansion
for p,_4p3, which from Lemma 2.14 is

(n)—(n—1,1)+2(n—2,2)—(n—2,12)—2(n—3,3)+(n—3,13)
+(n—4,4)+(n—4,3,1)—(n—4,2,12)—(n—5,3,2)+(n—5,22,1)— (n—6,23)
H(=)nH(A") = (2,177 2)42(22,17 %) —2(23,1m76) (24,177 8)]
(DB (=) (3,221 )+ (1) (3%,2,179)

(=)™ (42,17 8)+ (1)1 (4,3,17 7T+ (1) (4,2,1" 7 O)+(—1)" L (4,177 9)
2050 (D (6,24 1)+ (4,322, 1) 0755 O (1) (+,5,10)+(+,4,2,11)]

+2 3050 (1) (+,3%,11)
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Adding this to (9) of Proposition 2.15 produces
2 (m)>u>(n—1,22) Pi
=10(n)—2(n—1,1)+2(n—2,12)—4(n—3,3)
—(n—4,4)4+2(n—4,3,1)+(n—4,22)—2(n—4,2,12)
+(n—>5,3,2)+(n—>5,22,1)—2(n—6,23)+(—1)"4(3,1"~3)
+2(=1)"71(3,2,1775)+(—1)"(32,1m6) 4 (A1) 2(—1)"(32,2,1"8)+2(—-1)"~1(3,22,1777)
+(A2) 3(=1)"1(4,3,1"7T)+(A3) 3(—1)™ (42,177 8)4+(=1)"2(4,2,1"6)+2(—1)" 1 (4,17 %)
+ RIS (D IS (1) (62,17 +(A2) 23005 (< 1) (6,3,17)+(43) 3300IF (- 1) (k,4,10)
HAL) PP (D) (3.2, 1)+ 0PI (- 1) (5,238,104 07550 (- 1) (,24,1)
+ 0 (=D [B(%,5, 1) +2(%,4,2,18) |+ 755 (—1)! (+,32,1%)

The items of matching colour (or matching labels, in the absence of colour) can be
combined as follows:
(A2) B(=1)" (43,142 30T (1) (,3,17) =(—1)" T (4,317 )42 SR (- 1) T (x,3,17);
(A3) 3(—1)"(42,1™ 8) 43 3P B(—1)t+1(x,4,14)=3 1272 (—1)b 1 (x,4,1%);
(A1) 2(—1)"(32,2,17 8) 431 (1) (%,3,2,19)=3(—1)"(32,2,1" )+ 377 (—1)*(%,3,2,1%)
Making these replacements finally yields the completely reduced expression (10).
Likewise, the reduced expression (11) is obtained by adding to (10) the expansion of
Pn_apop?. There is only one pair that recombines into one term here, namely
(DA PP (- D) (23, 1) =2(- ) (241 ) PP (- 1) (523,11,

O
We can now deduce the positivity of the functions ¢, for u > (n — 4,1%).

Theorem 2.16. Let n > 6. Let p be a partition in the interval [(n — 4,1"%), (n)] in
the reverse lezicographic order on partitions of n. Then 1, is Schur-positive.

Proof. 1t is clear from the definition that
(2.8) Yu=tn— Y. D

vhn:p<v<(n)

We use the partial sum computations in Proposition 2.15. Observe that, in each of
those expansions, no Schur function appears with multiplicity greater than +4, except
for the trivial representation, which appears with multiplicity equal to the number of
partitions in the interval (u, (n)].

For example, for ,_431) we see from (8) that we need to subtract from v, a vir-
tual representation in which no multiplicity in the sum exceeds +3, other than the
multiplicity of the trivial representation which is now 8.

Similarly to obtain t,_4 22y, from (9) it follows that we subtract from /,, a represen-
tation in which no multiplicity in the sum exceeds +3, other than the multiplicity of
the trivial representation which is now 9.

In fact the largest multiplicity (in absolute value) of +4 is obtained for the first time in
the penultimate sum (10) of Proposition 2.15, 3 7 ,\5 5 (,_4.92) P (for the two irreducibles
(n—3,3),(3,1"7?)). In the last sum of Proposition 2.15, Viz. 315, (n_4.2.12) Pu» 383N
the largest multiplicity in absolute value is 4, and this multiplicity occurs several times.

But Lemma 2.6 guarantees that v, has multiplicity at least 4 for each irreducible
except the trivial module, and hence, examining the partial sums in Proposition 2.15, it
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is clear that the right-hand side is Schur-positive in all the cases enumerated. The fact
that all the expressions are reduced (no further simplification occurs) is important in this
argument. The multiplicity of the trivial representation is the partition number p(n),
which is certainly at least the length of the interval (u, (n)]. The theorem is proved. O

Together Theorems 2.11 and 2.16 complete the proof of Theorem 1.3.

It is difficult to see how to generalise this argument. Already for n = 8,9, 10, compu-
tation with Maple shows that in the Schur function expansion of the sum » > (n—4,14) PAs
S(n—3,3) occurs with multiplicity —6; s(,—4,4) occurs with multiplicity —5 when n = 9,10,
and 5(,,—4,3,1) occurs with multiplicity —5 for n = 8. The lower bound that we were able
to establish in Lemma 2.6 is therefore insufficient to guarantee Schur positivity of v, by
these arguments, in the case when p is strictly below (n —4,1%) in reverse lexicographic
order.

From Theorem 2.11 and Proposition 2.4 it is also easy to derive the following informa-
tion about the multiplicity of the sign representation. Clearly if i and v are consecutive
partitions in reverse lexicographic order, this multiplicity differs by 1 in absolute value,
since ¢, — 1, = £p,. It is also clear that the multiplicity of the trivial representation
decreases by one as we descend the chain from (n) to (1").

Corollary 2.17. We have

(1) (Un,50m)) = (Vm-2,2),51n)) = the number of partitions of self-conjugate parti-
tions ofn

(2) (Yn-1,1), sam)) = (Y, sam) + (1)
3) (Wn—2.2), 1n>> {¥n, samy) = (1)

(4) W(n 3,3)s > <1/1n78(1n>

(5) <¢(2k 1n— Qk),S(ln)> ( 1)k + <¢(2k7171n72k+2), 8(1n)>, 1<k< ng

(6) <@/J(3 1n-3), S 1n)> =1+ <¢(2k71n—2k),3(17t)>, where k = L%J

In Example 1.4, we have underlined the increasing runs, and italicised the decreasing
runs, of length 3 or more, in the multiplicity (1, sany). It is unclear how to predict the
runs of 1’s and (—1)’s, i.e. the increasing and decreasing sequences in the partial sums.
The longest such run in the examples occurs in Si3, namely 1,2, 3, 4. The corresponding
partitions are

6,5,2] < [6,6,1] < 7,1,
all with sign +1.

Schur positivity also holds for the following (unsaturated) chain of partitions in reverse
lexicographic order.

Proposition 2.18. Let T, ={A\Fn: A= (n—-r1),0<r <n-—1}. Then Hk, =
> ety Pu 18 Schur-positive. In fact Hk, contains all irreducibles unless n is even, in
which case only the irreducible indexed by (1) does not appear.

Proof. Clearly Hk, = p, + p1Hk,—1. Since p, = > " (—1)"Spm-r1r), by Frobenius
reciprocity, denoting by (,) the inner product on the ring of symmetric functions for
which the Schur functions form an orthonormal basis, we have
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((Hkpn—1,55/(1))5 if A is not a hook; (A)
(ko 1, san) + (<17 A= (") (B)
(Hkn, sx) = § (Hkn-1, S(n-1)) + 1, A=(n); (C)
(Hkp-1, 8(n-r-1,1m))
H(Hkp—1,S(—pir-1y) +(=1)", A=(n—-71),1<r<n-2. (D)

We verify that Hk, = 51 Hkrg = P9 +p1 = 25(2), Hks = 7,0:? = 38(3) + S(2,1) + S1%),
HEy = 45y + 353,1) + 38(2 12) + S(2,2), Hks = 555y + 65(4,1) + 75(3,12) + 28(2,13) + S@15) +
48(3’2) =+ 48(2271)

First we claim that

1, n odd;
(1) (HEn, san)) =

0, otherwise.

(2) (Hkn, 5(m)) = n for all n.
(3) (Hkp—1,S(mn—rar)) > 1 for all r.

Claims (1) and (2) are immediate by an easy induction from (A) and (B) above.
We will show that claim (3) also follows by induction. It is clearly true for » = 0. For
r = 1, we have, using (2), the recurrence

( (n-1,1), Hk n) — ( (n—2,1), Hkpn_ 1) =(n—2),
and hence, since (s(21y, Hk3) = 1,
(Stn-1,1)s Hkn) =30 a(n—7) = (") > 3if n > 4.
Similarly we have, for r = 2,
<S(n—2,12)a Hkn) - <$(n—3,12)7 Hkn—1> = (_1)2 + <s(n72,1)7 Hkn—l) =1+ (n;2) it n > 4.
Taking this recurrence down to the last line, namely
< 2 12 Hk’4> <S(1’12), H]{Z3> == (—1)2 + <S(271), H]{Z3>,
we have,
(S(n-2,12), Hkn) = (s112), Hhg) + (n = 3) + 07 () =n =24 (";") 23, if n > 4.

Our induction hypothesis will be that (s¢,—y1r), Hk,) > 3 for some 7 such that r <
n — 2. This has now been verified for » = 0, 1,2. Then it follows from (D) above, using
the same telescoping sum, that

<S(” r17) Hk > < S(n—(r—2),17—(r=2) Hkn r+2> >
(S(nr—1y 1m0y, HEppy1) + 2005 (=1)" >Osmcen>r+2

and hence
<S(n—r,1’“)7 Hkn> > <S(n—(r—2),12)a Hkn—r+2> >3

by induction hypothesis.

This establishes the induction step and hence claim (3). In view of (A) above, the
positivity of the multiplicities of hooks in Hk, implies that Hk, is Schur-positive for
all n. The last statement is clear. O
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The representations Hk, give rise to an interesting family of nonnegative integers.
Let an, = (S(n—rary, Hkp),0 <0 <n — 1.
Using Hk, = p, + p1Hk,_1, from (D) in Proposition 2.18 we have the recurrence

@n,r = (_1>T + anfl,r + anfl,rfla 1 S r S n— 27 n 2 2

and ano = N, 0npn—1 = Oy oaa for all n. Thus a, 1 — ap—11 = n — 2, giving a,1 = (";1)
for n > 2.
Table 1: ap,, row n > 1, column r > 0

21 41 | 45 | 35 | 15 | 5 0
28163 | 8 | 81 |49 | 21 | 4 1
10136 92 | 147167129 | 71 | 24 | 6 | O
11145]129 {238 |315(295|201| 94 | 31 | 5
12155 | 175 | 366 | 554 | 609 | 497 | 294 | 126 | 35| 7|0

1

210

3111

4131 3 0

516 | 7 2 1

6 |10| 14 | 8 4 0
7115125121 13| 3 1
8

9

—_

Define by, = (Sp—ry, Hkyp),0 <7 < Z. Then (A) gives

—1
bn,r = bn—l,r + bn—l,?“—lylr > 27 bn,l =dap1 = (n 9 )

Let Lie, denote the S,-module obtained by inducing a primitive nth root of unity
from the cyclic subgroup generated by an n-cycle up to S,. It is a well-known fact
that Lie, is also the representation of the symmetric group acting on the multilinear
component of the free Lie algebra ([5, Ex. 7.88-89]). Write Lie for ) ., ch Lie,.
Recall from the Introduction that we denote by f,, the conjugacy action on the n-cycles,
and that f[g] denotes plethysm. The functions Hk, satisfy an interesting plethystic
identity. In order to establish this, we need the following connection between Lie and
the conjugacy action. In keeping with the notation of [§], we will write Conj, for f, in

the remainder of this section.

Proposition 2.19. [§, Proposition 6.6]

Z pm|Lie] = Z Conjy,.

m>1 n>1

Proposition 2.20. Let W, be the representation with characteristic Hk,. Then W,
satisfies the following properties:
(1) The restriction Wy41 ls, from S,i1 to S, is isomorphic to the direct sum of W,
and the induced module (W, |s, ) 15" .
(2) Cony, is the degree n term in

(1— Lie)- Y Hky[Lie).

n>1
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Proof. The following symmetric function identity is immediate from the definition of
HEk, :
(2.9) Y on=0=p)> Hk,.
n>1 n>1
Taking partial derivatives with respect to p; gives

innJrl = Hk, + plinna
o op
which is (1).
Taking the plethysm of both sides of equation (2.9) with Lie, and invoking Proposition
2.19, now gives (2). 0

3. THE REPRESENTATIONS @/JQk AND THE TWISTED CONJUGACY ACTION

The functions ¥y, of Theorem 2.11 appear to have interesting properties. We state
separately the following consequence of the proof of Theorem 2.11:

Corollary 3.1. 9y, — hop™ 2 is Schur-positive, and hence 50 is oy, — hip?™ 2" 1 <
r<m.

Proof. The second statement follows by induction from the Schur positivity of expression
(2.1), upon writing
WYom = WP} = Yo — By (= €2)pi™ " = (am — B3P ) +eapim . O
In fact the following stronger statement appears to be true.

Conjecture 2. For k > 2, o — 2h3p°*™ is Schur-positive. This has been verified for
k < 16.

Remark 3.2. Note however that ¢ox — 2hop>*~2 is NOT Schur-positive. This can be
easily verified by computation, using Theorem 2.11, for k = 2, 3, 4.

However, we do have the following:

Lemma 3.3. The symmetric function om — hothom—1 1s Schur-positive. More generally,
for k < m, the function om — h§tom—« is Schur-positive.

Proof. Equation (2.2) of Theorem 2.11 gives

m+1 m
m4+ 1\ i i M\ ok b
hom — hathym-t = » ( ; )h2“ et —hy Y (k)hz Feh !

Jj=1 k=1
j odd k odd
s, m+1 C " /m
— Z < ‘ )h;n-'_l_je“;_l . Z (k>h72nk+1€§1
Jj=1 J k=1
j odd k odd
m 1 o
= Kmf ) - (mﬂ Wil 4 em Odd(m + 1)
P J J
7 odd
=> ( o 1> hrHI el 4 em Odd(m + 1),
j JE—
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and this is clearly Schur-positive. (As in the proof of Theorem 2.11, Odd(m + 1) is 1
if m + 1 is odd and zero otherwise.)
The more general statement follows from the telescoping sum

k
2/}2771 — h§¢2mfk — Z hé_1<1/}2m+17i - h’2 . 1/}217171)
i=1
]
Proposition 3.4. Let k,r > 1, and let m = [§]. (Som = % if v is odd, and m = 3

if v is even.) We have

¥ [omrer — hopi T hor] + P (2hs + e3)bore, 1 odd;
k1ry —
(3251 N [¢(2m+k+1) — hopiar] + pi(2hs + e3)or, 1 even.

Proof. We have the recurrence

¢(372k,1r) - ¢(372k—1,1r+3) = pgp’{pg.
[terating this, the last two lines of this recurrence are

7»0(3,2,1”%*2) - ¢(3,1T+2k) Pps p§+2k 2192,

and
w 3,17+2k) w(w 12) p3p§+2k>
where in the last line a = 0 if r + 2k + 3 = 2m is even, i.e. if r is odd, and a = 1 if
r+2k+3=2m+11is odd, i.e. if r is even.
This telescoping sum collapses to give
k—1, 2

P 2kary — Vamaey = pap - (05 + 02" 07 + .+ pTF) = papl - Yo
But psp1 = hs — 5(2,1) + €3 = 2hs + e3 — hohy. Hence we have
Vs,ok1m) — Yam 10y = (2h3 + e3)piior — hop abg.
The proposition follows. O

This leads us to make the following conjecture, which has been shown to be true in
Lemma 3.3 for m =1

Conjecture 3. Let k,m > 1. Then tosm — hop?™ 2thor is Schur-positive, and hence so
i8 Pohtm — hHp3™™ 2T¢2k 1 <r < m. We have verified this for 1 < k,m <5.

In view of Proposition 3.4, the truth of this conjecture would immediately imply
Schur positivity of ¥(g o ry for all v,k > 1.

Remark 3.5. In contrast to Conjecture 2, computations show that grsm —2hap?™ *hor
is NOT Schur-positive.

Lemma 3.6. The function gy = pspy + h3 is Schur-positive.

Proof. 1t is easily verified, using the expansion ps = hs—5(,1)+e€3, = hs+e3—(hah1—hs),
that

psp1 + hs = p1(2hs + e3) — hapi + hs = p1(2hs + €3) — haea = 25y + S@a1) + 5(14)-
U

We are able to settle the following special cases:
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Proposition 3.7. Let r = 0,1,2. Then (3o 1y 15 Schur-positive.
Proof. We use Proposition 3.4. First let » = 1. Then we have

@/)(3,216,1) = [¢2k+2 - th%%k] +p1(2h3 + 63)¢2k = [¢2k+2 - hg%k] + gahor,

where g4 = p1(2hs + e3) — hoes. and is thus Schur-positive by Lemma 3.6. But the last
expression in brackets is also Schur-positive by Lemma 3.3.
If r = 0, Propostion 3.4 reduces to

Vs,98) = P1[or+r — Rotor] + ok (203 + €3),
and again this is Schur-positive by Lemma 3.3.
Finally if » = 2, Proposition 3.4 gives

¢(3,2k,12) =D [¢2k+2 - th%%k] "‘pf(zhzz + 63)¢2k =D [%kﬂ - hngk] + P19gatPor;

invoking Lemmas 3.3 and 3.6, this is Schur-positive as before. U

This argument fails for r = 3. Proposition 3.4 then gives

Yg.or13) = [orts — thil?/hk] + P (2hs + €3)thor = [thorts — h3thor] + gehar,

but the function gs = p3(2hs + e3) — haea(hy + p?) is no longer Schur-positive.

In previous work of this author, a sign-twisted conjugacy action of S, was defined
in terms of the exterior powers of the conjugacy action, and the following analogue of
Theorem 1.1 was established (recall that f, is the characteristic of the conjugacy action
on the class of n-cycles):

Theorem 3.8. [6, Theorem 4.2] The twisted conjugacy action has Frobenius character-
istic €, satisfying
(1) en =Y\, L L €m;[fi], where X has m; parts equal to i;

(2) e, =) N DA hence the latter sum is Schur-positive.
all parts o

Note that ¢, is self-conjugate, so in particular the multiplicities of the trivial and sign
representations coincide (and are equal to the number of partitions of n with all parts
odd). Based on character tables up to n = 10, we were led to make a conjecture in the
spirit of Conjecture 1, which we have subsequently verified for n < 28.

Let p = n be a partition with all parts odd. Define

Eu = Z DPx-

(A™)<X<p
all parts odd

Conjecture 4. Let pt=n be a partition with all parts odd. The symmetric function €,
s Schur-positive.

Note that ¢, is necessarily self-conjugate.
Theorem 3.8 says that () for n odd and £(,_;,) for n even are Schur-positive, since

we now have
. {E(n), n odd,

E(n—1,1), N even.
The chains in reverse lexicographic order are now as follows:
(1) If n is odd:

(n) > (n—2,1*) > (n—4,3,1) > (n—4,1*) > (n—6,3%) > (n—6,3,1%) > (n—6,1%) > ...
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(2) If n is even:
(n—1,1)>m-3,3)>Mn-31%>n-531%)>(n->51°) > ...
(3) At the bottom of the chain we always have
(1M < (3,1 < (B, 1" <... < 35,1 < (5,1" %) < ...
where r =n mod 3, 0 < r < 2.
Some cases of Conjecture 4 are easy to establish, e.g. for pu = (3,1"73), p? 4 pspt
is clearly Schur-positive. More generally we have
Proposition 3.9. If u = (3",1"7%) thene, = > amzaze DA is Schur-positive.
all parts o

Proof. Note that e(3r jn-sr) = pi "¢, where v = (37). But ¢, is the sum of power sums

for A in the set T3, consisting of all partitions with parts equal to 1 or 3. By [0, Theorem
4.23], this is Schur-positive. O

An analogue of Theorem 2.1 holds here as well. It is also a consequence of Theorem
2.2, since the global classes defined there are also conjugacy classes appearing in &,,.

Theorem 3.10. [0, Theorem 4.9, Proposition 4.22] The representation €, contains all
irreducibles. The multiplicity of the trivial representation (and hence also the sign) is
the number of partitions of n into odd parts. In particular this multiplicity is at least
[5] >3 forn >5.

The last statement in theorem is simply a consequence of the observation that if n is
odd, the partitions (n — 2r,1?7),0 < r < "T_l all have odd parts, while if n is even, the
partitions (n — 1 —27,1%7),0 < r < ”T’Q all have odd parts.

Proposition 3.11. Let n be odd. Then €,—212y, E(n-431) and €m_413y are all Schur-
positive. If n is even, then €p,_33) and €313y are Schur-positive.

Proof. We use Theorem 3.10. Since &,, contains all irreducibles, from Lemma 2.13 (1),
E(m—2,12) = En — Pp Mmust be Schur-positive. Similarly, €p,—431) = €0 — Pn — Do’
From Lemma 2.13 (1) and (9), p, + pn_2p? is multiplicity-free except for the occurrence
of 2(n) + 2(=1)"(1") = 2(n) — 2(1™). But the trivial representation occurs in &, with
multiplicity equal to the number of partitions of n with all parts odd, and this is at least
2 for any odd n. Since these representations are all self-conjugate, the proof is complete.

Finally observe that from (1), (9) and (10) of Lemma 2.13, p, + pn_oP? + Pn_4ap3p1
is multiplicity-free except for the occurrence of 3(n) + 3(—1)"(1") = 3(n) — 3(1™). The
result follows as before from Theorem 3.10. O

Proposition 3.12. Let n be even. Then €,-33) and £¢,_3,13y are Schur-positive.

Proof. We have €(,—33) = €, — p1Pn—1, so the result follows again from Theorem 3.10
and Lemma 2.13 (2).

Next we have €(;,_313) = €, — P1Pn—1 — P3Pn—3, Which from Lemma 2.13 is multiplicity-
free except for the term 2((n) + (1")). But for n even, n > 6, there are at least three
partitions with odd parts, namely (n — 1,1), (3,1"73) and (n — 3, 3). This ensures the
trivial representation (and hence the sign, since the representations are self-conjugate)
occurs with positive multiplicity, completing the argument. O
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Let w denote the involution on the ring of symmetric functions which sends h,, to e,.
Another result of [6] states that
Theorem 3.13. [6, Theorem 4.11] The sum Y,  sn  pa equals (¢, + w(ty,)) and

n—~£(X\) even
is Schur positive.

Similarly we have, for any partition g of n, $(¢, + w(1,)) = > @m<az, pa. This
n—~£(\) even
leads us to make the following conjecture, which has been verified for n < 20 :

Conjecture 5. Let ptn. The sum Y anycr<, P 1S Schur-positive.
n—~L(N\) even

Clearly Conjecture 1 implies Conjecture 5. Maple computations with the character
table of S, show that the sum ), . px is NOT Schur-positive for arbitrary subsets
T containing (1) and consisting of all partitions A with n — ¢(\) even. The first
counterexample occurs only for n = 14, and there are then at least 2!! such subsets for
which Schur positivity fails.

Note that if we require that n—¢(\) be odd, but also include the regular representation
in the sum, the preceding conjecture is false:

the sum pf + > (nj<a<, Pa 1S n0t Schur-positive.
n—~£(X) odd

Question 3.14. In [6] and [§], S,-modules are constructed whose characteristics are
multiplicity-free sums of power sums, thereby settling the Schur positivity question in
these cases. Is there a representation-theoretic context for the sums 1,7

4. ARBITRARY SUBSETS OF CONJUGACY CLASSES

In this section we examine the following more general question: Let f(n) be the
number of subsets of {py : A F n} containing p}, and having the property that the
sum of their elements is NOT Schur-positive. What can be said about f(n)? Richard
Stanley computed the values of f(n) for n < 7 after seeing a preprint of [6]. Table 1
extends these values up to n = 10.

Recall from Section 1 that ¢ denotes the Schur function ) et Du- The analysis of
the multiplicity of the sign representation in Example 1.4 suggests a way to obtain a
lower bound for the numbers f(n). Indeed, let A(n) = {uF n:n — ¢(u) is even}, and
let B(n) ={utn:n—~(u)isodd}. Let a(n), 5(n) respectively be the cardinalities of
A(n), B(n). Clearly a(n) + 5(n) = p(n). As in [6, Proposition 4.21] (see also equation

(1.1)),
(4.1) a(n) - B(n) = 3 (~1)"1W

ukEn
is the number of self-conjugate partitions of n, and hence a(n) > 5(n).
By manipulating generating functions it can be seen that a(n) is also the number
of partitions of n with an even number of even parts, and an arbitrary number of odd
parts. The sequence appears in [3, A046682].

Proposition 4.1. Let T be a subset of the set of partitions of n not containing the
partition (1™). The Schur function indezed by (1) appears with negative multiplicity in
the Schur expansion of Yrugany if and only if [T N B(n)| > 2+ |T'N A(n)|. Hence the
number of such subsets gives the following lower bound for f(n):
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{b(n) = p(n)_za(:n)_Q <p(n>l. - 1) .

i=0
In particular f(n) is positive for all n > 4.
Proof. Immediate from the fact that each p, contributes (—1)"“* to the multiplicity

of (1) in ¥7. A simple count then tells us that this multiplicity is negative for exactly
as many subsets T as given by the following sum:

a(n)—1 n
S (a(n) - 1> S (ﬁ(n))'
a=0 a b=a+2 b
This is precisely the sum of the coefficients of the powers of 7, > 2, in the Laurent
series expansion of

(1+ x—l)a(n)—l(l + x)ﬂ(n) - x—(a(n)—l)(l + x)a(n)ﬂ?(n)—l.

Since a(n) + B(n) = p(n), this in turn is the sum of the coefficients of the terms 27 in

(14 2)P™=1 for j > a(n) + 1, i.e:
(n)—1
pz (p(n) - 1)
J

j=a(n)+1

Now replace j with p(n) — 1 — 4. The last claim follows because a(n) is the number
of partitions with an even number of even parts and thus a(n) < p(n) — 2. (If n > 4,
exclude the partitions (2,1"72?) and (n) if n is even, (n — 1,1) if n is odd.) 0

Table 1 includes data up to n = 10, and the resulting lower bound ¢b(n) on the
number f(n) of non-Schur-positive functions 7, omitting the trivial values f(n) = 0
for n < 3.

Table 2
n 4 5) 6 7 8 9 10
pm) | 5 | 7 | 11 | 15 22 30 12
f(n) 1 7 | 184 | 3674 | 488,259 | 145,796,658 | 670,141,990,673

h(n) | 1 7 | 176 | 3473 | 401,930 | 123,012,781 | 585,720,020,356

20 10.06]0.11] 018 [ 0.22 [ 0.23 0.272 0.305
) 1006 0.11 0172 0212 0.192 0.229 0.266

Proposition 4.2. There exists a subset T of the set of partitions of n, with (1") € T,
such that
e the irreducible (n — 1,1) appears with negative multiplicity in ¥, if and only if
n > 10.
e the irreducible (2,1"72) appears with negative multiplicity in v, if and only if
n > 6.

Proof. Write x* for the irreducible character indexed by the partition u. Recall that the
value of "~ ()\) is one less than the number m;(\) of parts of A which are equal to
1, and is therefore never less than —1. Hence we have
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—1  for the (p(n) — p(n — 1)) partitions A with m;(X) =0,
YDA =40 for the(p(n — 1) — p(n — 2)) partitions A with my(\) = 1,
> 1 for the p(n — 2) partitions A with mq(\) > 2.

Consider the conjugacy classes indexed by the p(n) —p(n — 1) partitions with no part
equal to 1, and the partition (1™). The row sum indexed by (n — 1,1) in the character
table of S,, will then be n — 1 — (p(n) — p(n — 1)). The first claim follows by observing
that p(n) — p(n — 1) first exceeds Y™ 1Y(1") = n — 1 when n = 10, and the fact that
the values p(n) — p(n — 1) increase.

Of course we could also append to the set T" above any of the 2°(*~1D=P(=2) guhgets
of conjugacy classes with exactly one fixed point (since these do not contribute to the
multiplicity of (n — 1,1)), to obtain even more non-Schur-positive instances of ¥; for
the number of subsets with negative multiplicity for (n — 1, 1) this gives a lower bound

of
p(n)—p(n—1)—n
(4.2) pr=Dp=2) §7 (p(n) —p(n — 1))'

= n+y
Next we note that y1" ) (\) = (=1)**My (=1L ()\) since the two irreducibles are
conjugate. Thus the number of times that y®!" ") (1) equals (—1) is

{pFn:n—£(n)is even and p has no singleton parts}|
+ [{ptn:n—~(u) is odd and p has exactly two singleton parts}|.

(2717172

Similarly the number of times that x ) (1) equals (—r),r > 2, is

{p b mn:n—~£(u)is odd and p has at least three singleton parts}|.

Combining these two quantities, we have that the number of conjugacy classes for
which the value of x*") is negative is |C| + |C|, where

Cy={putFn:n—~(u)is even and p has no singleton parts}

and
Cy={pkFn:n—~(u)is odd, u has at least two singleton parts}.

The set (5 is in bijection with the set of all odd-signature partitions of n — 2, so
has cardinality p(n — 2) — a(n — 2). Also, the character values on the classes (1) and
(2,1"72) together add up to (n — 1) — (n — 3) = 2. Hence, by choosing at least 3
additional conjugacy classes in Cy, excluding the partition (2, 1"72), we obtain that the
multiplicity of x®!" ) is negative for at least

D) p(ne p(n—2)—an—2)—1
(4.3) gp(n—1)—p(n 2)2( .
j=3 J
subsets, and this is positive as soon as n > 6, since then p(n —2) — a(n — 2) >
p(n —2) —p(n — 1) > 2. Likewise the cardinality of C} is p(n —2) — a(n — 2). O

Note that the lower bound of Proposition 4.1 surpasses the two lower bounds obtained
above. In order to test Schur positivity of 11, we need to examine the multiplicity of the
irreducible indexed by each A - n in ¢7. This is given by ar(\) = f’\—l—zuemﬁé(ln) M),
where fA = x*((1")) is the number of standard Young tableaux of shape A. Now x*((1"))
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is larger than any other value of the character y*. Hence one way in which we can see
how to make these values negative is to find u such that f* + y*(u) is small relative to
the number p(n) of conjugacy classes. For instance:

Proposition 4.3. Let A+ n, and let 7 = (2,1"72) be the (conjugacy class of) a single
transposition. Then (1)) + x(7) equals

(1) 2if A= (2,172),

(2) 2(n —3) if A = (22, 1"7%),

(3) (n—2)(n—5) if A = (2%,179),
(1) 2(n —2) if A = (3,1773).

Proof. The first part has already been observed in the proof of Proposition 4.2. For the

rest, we use the formula x*(7) = (%(b()\’) — b(\)), where b(A) = > .(i — 1)\, as well
2
as the hook length formula for f*. (See [5, Ex. 7.51]). When )\ dominates A\ we must
have b(X') < b()\) and thus x*(7) is negative.
O

An examination of the character tables of S, leads to the following observations. The
use of character tables eliminates the need for Stembridge’s SF package for Maple, by
means of which the values f(n) were originally calculated, up to n = 8.

e For n = 6, of the 184 subsets that fail to be Schur positive, exactly 176 fail
to be Schur-positive because of the irreducible (1°), another 4 fail because the
irreducible (2,1%) appears with negative coefficient, and the remaining 4 fail
because of the irreducible (3%). From the character table of Sg, it is easy to
identify these 8 subsets. (In each of these cases no other irreducibles occur with
negative coefficient.)

e For n = 7, the number of subsets failing Schur-positivity because of (a negative
coefficient for) (17) is 3473, and 384 were identified as failing (in part) because
of the irreducible (2,1%). The count for subsets in which both irreducibles ap-
pear with negative coefficient is 183, and this confirms f(7) = 3674. From the
character table of S7, it is easy to verify that the number of subsets T resulting
in a negative coefficient for (2,1%) in 1 is exactly 384, and also that no other
irreducibles occur with negative coefficient in any subset.

e For n = 8, by examining the negative entries in the character table, we see
that for any subset T' containing (1"), the only two possibilities for negative
coefficients in the Schur expansion of ¥r are (1%) and (2, 1%). There are £b(8) =
401,930 subsets with negative multiplicity for (1%), 153,008 subsets with nega-
tive multiplicity for (2,1%), and 76,679 subsets in which both irreducibles occur
with negative multiplicity. The reader can check that this agrees with the figure
for f(8) in the table. This computation took 70 seconds in Maple.

e For n = 9, since our lower bound is ¢b(9) = 123,012,781, we know that

zpf(g?)—l > 123’2%3’781 = 0.22913. The character table shows that in addition to
(19) and (2,17), only the irreducibles (22,1%) and (3,1°) will appear with nega-
tive coefficient in some subsets. The value of f(9) was calculated by exploiting
this fact, and took 6.8 hours in Maple. However, the C code ran in only 36

seconds.
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e For n = 10 similarly, we have 25((1%)?21 > 585’7234920’356 = 0.266. The character

tables now show that one or more of only the following five irreducibles will
appear with negative coefficient in ¢ : (1'9),(2,1%),(22,19),(3,17),(9, 1), for
some subset T’ containing (1'%). Again, the computation of f(10) exploited this
fact. It was coded in C, and took 83 hours to produce the result.

e For n = 11 the six irreducibles contributing to negativity in ¥ are
(11),(2,1%),(2%,17),(2°,1°), (3,1%), (10, 1).

Of course this number of irreducibles increases rapidly with n; e.g. for n = 28, out of
p(28) = 3, 718 partitions, 89 can occur with negative multiplicity. A far more accurate
lower bound than ¢b(n) is obtained by taking the number of subsets T" in which either
of the representations (1") or (2,1"2?) appear with negative multiplicity in 7, but a
formula for this in the spirit of Proposition 4.1 seems difficult to obtain.

Tables 3a and 3b below contain, for each n, the values of the function g(n), defined
to be the number of partitions p of n such that, for some subset 7' containing (1™), the
irreducible indexed by p appears with negative multiplicity in ¢p.

Table 3a
n 41516 7|89 10|11 |12
p(n) 517 111115122130 1(42|56|77
g(n) 11132245 |68

Table 3b

n 13 114 15|16 | 17 | 18 | 19 | 20 | 21 | 22 23 24 25
p(n) | 101 | 135 | 176 | 231 | 297 | 385 | 490 | 627 | 792 | 1002 | 1255 | 1575 | 1958
gn)| 9 {1010 |15 |16 |22 |23 27|33 | 36 | 43 | 51 | 56

Based on our computations, we make the following conjecture:

f(n)
op(n)—1

are bounded below by above by %, and

Conjecture 6. Forn > 6, the numbers %,

are strictly increasing.
This would imply an affirmative answer to a question raised by Richard Stanley:

Conjecture 7. The numbers QPJZEL—?)_l approach a limit strictly between 0 and 1.

5. ADDITIONAL TABLES

In the tables below we follow our usual convention of writing simply u to signify the
Schur function s,.

Table 4: Schur function expansion of ¢,, n <5

P = (1)7 Py = 2<2)7 ¢(12) = (2> + (12)
¢3 - 3(3) + (27 1) + (13)v ¢(2,1) = 2(3) + 2(27 1)7 ¢(13) = (3) + 2(27 1) + (13)
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Yy = 5(4) +2(3,1) +3(22) +2(2,1%) + (1*)
V) = 4(4) +3(3,1) + 3(2%) + (2,1%) + 2(1%)
b2y = 3(4) +3(3,1) +4(2%) + (2,1%) + (1%)

Y2y = 2(4) +4(3,1) + 2(2°) + 2(2, 1)

Yasy = (4) +3(3,1) +2(2%) + 3(2,1%) + (1)

s = T(5) +5(4,1) +6(3,2) + 5(3, 1) +4(22,1) + 3(2, 1%) + (1°)

Yy =6(5) +6(4,1) +6(3,2) +4(3,1%) + 4(2%,1) + 4(2, 1%)

Va2 =5(5) +6(4,1) +7(3,2) +4(3,1%) + 3(2%,1) + 4(2,1%) + (1°)
Y2y = 4(5) + 7(4,1) + 6(3,2) +4(3,1%) +4(2%,1) + 3(2,1°) + 2(1°)
Y2y = 3(5) +6(4,1) + 7(3,2) +4(3,1%) +5(2%,1) +2(2,1°) + (1°)
P = 2(5) +6(4,1) +6(3,2) +6(3,1%) + 4(2%,1) +2(2,1°)

Yasy = (5) +4(4,1) +5(3,2) + 6(3,1%) + 5(2%, 1) + 4(2,1°) + (1°)

Table 5: Schur function expansion of ¥, n = 6

zp(ﬁ) = 11(6)+8(5,1)+15(4,2)+10(4,12)+4(32)+13(3,2,1)+10(3,13)+8(23)+5(22,12) +4(2,14)+(1%)

w(&l) = 10(6)+9(5,1)+15(4,2)+9(4,12)+4(3%)+13(3,2,1)+11(3,13)+8(2%)+5(22,12)+3(2,14)+2(1%)

’1/1(16) = (6)+5(5,1)+9(4,2)+10(4,12)+5(32)+16(3,2,1)+10(3,13)+5(23)+9(22,12) +5(2,1%)+(1%)

Acknowledgment: The author is grateful to Erik Altman for invaluable help in com-
puting the values of f(n) in Table 1, particularly for the calculation of the entry for
n = 10.
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