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ENUMERATIONS OF BARGRAPHS WITH RESPECT TO CORNER
STATISTICS

TOUFIK MANSOUR AND GOKHAN YILDIRIM

ABSTRACT

We study the enumeration of bargraphs with respect to some corner statistics. We find
generating functions for the number of bargraphs that tracks the corner statistics of interest,
the number of cells, and the number of columns. The bargraph representation of set partitions
is also considered and some explicit formulas are obtained for the number of some specific
types of corners in such representations.

1. INTRODUCTION

Combinatorial analysis of certain geometric cluster models such as polygons, polycubes, poly-
ominos is an important research endeavor for understanding many statistical physics mod-
els [RIO,I5]. A finite connected union of unit squares on two dimensional integer lattice is
called a polyomino, and a bargraph is a column-convex polyomino in the first quadrant of
the lattice such that its lower boundary lies on the z-axis. A bargraph can also be con-
sidered as a self-avoiding path in the integer lattice L = Z>¢ X Z>¢ with steps v = (0, 1),
h = (1,0) and d = (0,—1) that starts at the origin, ends on the x-axis and never touches
the z-axis except at the endpoints. The steps u, h and d are called up, horizontal and down
steps respectively. Emumerations of bargraphs with respect to some statistics have been
an active area of research recently [8,10,[14]. Bosquet-Mel6u and Rechnitzer [6] obtained
the site-perimeter generating function for bargraphs, and also showed that the width and
site-perimeter generating function for bargraphs is not D-finite. Blecher et al. investigated
the generating functions for bargraphs with respect to some statistics such as the number of
levels [I], descents [2], peaks [3], and walls [5]. Deutsch and Elizalde [7] used a bijection be-
tween bargraphs and cornerless Motzkin paths, and determined more than twenty generating
functions for bargraphs according to the number of up steps, the number of horizontal steps,
and the statistics of interest such as the number of double rises and double falls, the length
of the first descent, the least column height. Bargraphs are also used in statistical physics to
model vesicles or polymers [12HI4].

We shall study the enumerations of bargraphs and set partitions with respect to some corner
statistics. Let’s first introduce some definitions. A unit square in the lattice IL is called a
cell. A bargraph is usually identified with a sequence of numbers © = w7y - - - 7,,, Where m is
the number of horizontal steps of the bargraph and 7; is the number of cells beneath the gth
horizontal step which is also called the height of the j** column. A vertex on a bargraph is
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FIGURE 1. The bargraph m = 244411322. Type A corners b and d are (3,2)
and (1,2)-corners respectively. Type B corners a and ¢ are (3,3) and (1,1)
corners respectively.

called a corner if it is at the intersection of two different types of steps. A corner is called an
(a,b)-corner if it is formed by maximum a number of one type of consecutive steps followed
by maximum b number of another type of consecutive steps. A corner is called of type A if it
is formed by down steps followed by horizontal steps (L). Similarly, a corner is of type B if it
is formed by horizontal steps followed by down steps (), see Figure Il We shall use B,, and
By, 1 to denote the set of all bargraphs with n cells, and the set of all bargraphs with n cells
and k columns respectively.

Bargraphs are also related to the set partitions. Recall that a partition of set [n] :=
{1,2,--- ,n} is any collection of nonempty, pairwise disjoint subsets whose union is [n].
Each subset in a partition is called a block of the partition. A partition p of [n] with
k blocks is said to be in the standard form if it is written as p = Ay/As/--- /A, where
min(A;) < min(Az) < --- < min(Ag). There is also a unique canonical sequential represen-
tation of a partition p as a word of length n over the alphabet [k] denoted by m = myme - - - 7,
where m; = j if i € Ar; which can be considered a bargraph representation. For instance,
the partition 7 = {1,3,6}/{2,5}/{4,7}/{8} has the canonical sequential representation
m = 12132134. Mansour [10] studied the generating functions for the number of set par-
titions of [n] represented as bargraphs according to the number of interior vertices. For some
other enumeration results, see also [4[IT]. Henceforth, we shall represent set partitions as
bargraphs corresponding to their canonical sequential representations.

The rest of the paper is organized as follows. In section 2l we find the generating function
for the number of bargraphs according to the number of cells, the number of columns, and
the number of (a, b)-corners of type A for any given positive integers a,b. As a corollary, we
determine the total number of (a, b)-corners of type A, and the total number of type A corners
over all bargraphs having n cells. In section 23] and section 2.4] we extend these results to
the restricted bargraphs in which the height of each column is restricted to be atmost IV for
any given positive integer IV, and to the set partitions respectively. We obtain similar results
for corners of type B in section Bl One of the main results of the paper, Theorem 2.6, shows
that the total number of corners of type A over the set partitions of [n + 1] with k& blocks is
given by

n 1 n

1
5Ntk ZSn+2’k - §Sn,k + ZSnH’k + Sn k-2,
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where S, is the Stirling number of second kind. Similarly, Theorem B.5, shows that the
total number of corners of type B over the set partitions of [n + 1] with &k blocks is given by
n 1 n

5
§Sn+l,k - an+2,k - §Sn,k + Zsm-l,k + Spk—2-

2. COUNTING CORNERS OF TYPE A

Let H := H(x,y,q) be the generating function for the number of bargraphs 7 according to
the number of cells in 7, the number of columns of 7, and the number of (a,b)-corners of
type A in 7 corresponding to the variables x,y and q = (¢qp)a,p>1 respectively. That is,

Aa,p) (7)
H = Z Z x"ywl(”) H qa% )
n>0mweb), a,b>1 7

where A, ) (7) is the number of (a, b)-corners of type A in 7, and col(7) denotes the number
of columns of .

From the definitions, we have
(2.1) H=1+) H,
a>1

where 1 counts the empty bargraph, and H, := H,(z,y,q) is the generating function for the
number of bargraphs m = an’ in which the hight of the first column is a. Since each bargraph
m = an’ can be decomposed as either a, ajn” with 7 > a or abr” with 1 < b < a — 1, we have

(2.2) H, =22+« yZH —I—ZHab
jza

Note that each bargraph m = abn”, 1 < b < a — 1, can be written as either ab™ (where we
define b™ to be the word bb- - - b), ab™jr’ with j > b+ 1, or ab™jn’ with j <b— 1. Thus, for
all 1 <b<a-—1, we have

Zxa-‘rbm m—l—lqa bm+ Z a+bm m—l—lqa b Z H

m>1 m>1 j>b+1
b—1
+ Z ( atb(m— ly qa— meHbc>7
m>1 c=1
which is equivalent to
(2.3) Hy, = Z :v‘”’bmgfm'lqa_b7m
m>1
b—1
o3 (e yng o [y S B3
m>1 J>b+1 c=1

Thus, by (2.2]), we have that H, — x%y — 2%yH, = = yZPaHH + > 3= Hap, which, by
23)), leads to

(2.4) Heyp = agp(1 — 2%y) Hy, with gy, = Z x“*’b(m_l)qua_bm.
m>1
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Therefore, by ([2.2]) we can write
a—1

(2.5) H, = 2%y H + Z BupHp
b=1

with Bgp = aab(l - :Eby) —z%y.
Lemma 2.1. For all a > 1,
a
Hy=H (zy+> | 27y> La(Gs) | |,
j=1 $>0
where Lo (j,8) = 22—, 1 <is<o<ir<io—a [1o=0 Bivigs: -

Proof. The proof is given by induction on a. For a = 1, this gives H; = xyH as expected
(by removing the leftmost column of the bargraph 17’). Assume that the claim holds for
1,2,--- ,a, and let us prove it for a + 1. By (2.35]), we have

Hopy =2t yH + Z Blat 1) Hp-
b=1

Thus, by induction assumption, we obtain

a b
Hopr = 2"TH + > BasipH | 2%y + > 2y [ Y Li(i,s)

b=1 j=1 $>0
a a b
1 b j .
= H {2+ Bty + D 2 yBasn | D Lo(d, )
b=1 b=1 j=1 s>0
a
b
=H <$a+1y + Y Blarip y)
b=1
a a s
FH( D Ty (X > 11 B
7j=1b=j5 520 j=ig41<is<---<i1<ip=b<i_i1=a+1l=—1
a
=H |aTy+> a2ty Y B
b=1  i1=b<io—a+1

+HZa:jy Z Z H ﬁimH
j=1

520 j=ig41<is<--<i1<ig<t_1=a+1/l=—1

a
=H 2"y +> a9y | Y Lata(is) | |,
7=1 s>0

which completes the proof. |

By (1) and Lemma 2] we can state our first main result.
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Theorem 2.2. The generating function H(x,y,q) is given by

H(z,y,q) !
€, Y, = - )
L= 2 = Yo (99 X n0 LG 9))

Where L(]’ S) = Ej:is+1<’is<"'<’i1<io HZZO 5i2il+1'

a+b(m—1)

For instance, if g, = 1 for all a,b > 1, then agp =3, 51 @

ﬁab = ag(1 — 2by) — 2% = 0. Thus, in this case, Theorem 22 shows that H( )=
as expected.

Y™ = 1 b , which ylelds

lmxy’

2.1. Counting all corners of type A. Let q,; = ¢ for all a,b > 1. By definitions, we have

Qab = q1 wb and Bg, = (¢ — 1)x%y. Therefore,

s

L(j,s) = > [1(a— 1)z

J=lep1<ts<--<11 <10 £=0

— § : (q . 1)s+1ys+1xm+11+~--+zs
T=ls1<ts<-<11<1g

. orl sii x(s—l—l)j.;,_(ng)
I s () e s
Thus the generating function F' = H(z,vy,q,q,---) is given by
1

F=

1)5+lys+l 2D+

Z"Ejyz yx2)...(1 g

7>1 s>0

sy s+2, (s+2)+ +(°1?)

1
z (-1
1_%_2(1_33)(1_952) A=)

1

T (q_l)s st ( 2)
1—%—2(1_:6)(1_962)...(1_:,38“)

s>1

Let cora(m) be the number of corners of type A in 7. We define g, ) = ZWGBM corp ()

and g, = Y p>q 9nk- Let G(z,y) = Zn,k>1 gmka:"yk be the generating function for the total
number of type A corners over all bargraphs according to the number of cells and columns.
Then, it follows that

oF y2a®
g lg=1 (1—:E—3:y)2(1+3:)'

G(z,y) =

Note that G(z,1) = % is the generating function for the total number of type A
corners over all bargraphs according to the number of cells. Hence,
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2.2. Counting (v,w)-corners of type A. Fix v,w > 1. Define ¢, ,, = ¢ and ¢, = 1 for
all (a,b) # (v,w). Then we have

Q= D aTTIYgq p = Y @t Ty g Ty (g, — 1)

m>1 m>1
%y _
- 1— ;pby + xa+b(w 1)yw(q - 1)5a—b=v

where 6, = 1 if x holds, and ,, = 0 otherwise. And hence
(2.7) Bap = aap(1 — aby) — 2y = 2Dy (g — 1)6, =y (1 — 2”y).
Recall that L(j,s) = >2;_; | <i <<y <io LL1=0 Bivie,- By using 7), we have

s

L(j,s) = Z H <$i5+ie+1(w—1)yw(q - 1)5iz—iz+1=v(1 - xie+1y))
=i <is<-<iy <io £=0

S

— Z (q _ 1)S+1yw(8+1)x22:0 ’i[+(w—1)i5+1 H (5’il—i5+1:v(]~ o x’i[+1y))
J=ls41<ts< <11 <tg /=0
S
_ (q o 1)s+1yw(s+1)$wj(8+1)+v(s;r2)+(w—1)U(SJ2rl) H(l _ xj+(s_l)”y)-
/=0
From Theorem 2.2 we obtain that the generating function F' = H(x,y,q) is given by
1
- )
LS ey Yl e PR ) T v
21 520 (=0

F=

Recall that A, (7) denotes the number of (v,w)-corners of type A in . We define ¢, =

ZWEBM Ay (m) and t,, = 37~ . Let T(z,y) = Zn7k21tn7k$"yk be the generating
function for the total number of (v, w)-corners of type A over all bargraphs according to the
number of cells and columns. Then, it follows that

T(w ) - 8_F - xv-i—w-i—lyw—i-l 1— Ty — xw+2(1 o y)
W ag = T T L) (1= aw ) (1 — 2ot

which leads to T'(z,1) = chvj;;); (1—xw(+11_)(xl)ixw+2)5 the generating function for the total num-

ber of (v, w)-corners of type A over all bargraphs according to the number of cells. As
consequence, we have the following result.

Corollary 2.3. The total number of (v,w)-corners of type A over all bargraphs having n

cells is given by
n

@ T -1 -1

t = 2w—v+n—1
n = .

2.3. Restricted bargraphs. Theorem can be refined as follows. Fix N > 1. Let
HWN) .= g\) (z,y,q) be the generating function for the number of bargraphs 7 such that
the height of each column is at most N according to the number of cells in 7, the number of
columns of 7, and the number of (a,b)-corners of type A in 7w corresponding to the variables
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x,y and q = (¢a,b)a,p>1 respectively. Then by using similar arguments as in the proof of (2.3]),
we obtain

a—1
(2.8) HM = a0y H™ £ 37 g1,

b=1
where H,SN) = H,SN) (z,y,q) is the generating function for the number of bargraphs = = an’
such that the height of each column is at most N. Clearly, HN) =1 + Zivzl Hth). By the
proof of Theorem 2.2, we can state its extension as follows.
Theorem 2.4. The generating function H™N) (z,y,q) is given by
1

1 - ijvzl al — Z;V=1 (xjy 2 s>0 LU, 3))

. S
where L(j,s) = >0, cii<cir<io<n Lo—o Biviey, - Moreover, for all a = 1,2,... N, we
have

HMN(z,y,q) =

HM = HM 2%y +> " [ 27y La(ys) | |,
7=1 s>0

. S
where Ly(j,s) = 2j=i3+1<i5<---<i1<io=a [17—0 Bivigsr-

For instance, Theorem 24 for N = 1,2 gives HY (z,y,q) = 1f§’cy and
1

T 11— (z+a?)y —22(1 — 1y) D oms1 EYq1m 4 23y

H®(2,y,q)

2.4. Counting corners of type A in set partitions. Recall that we represent any set par-
tition as a bargraph corresponding to its canonical sequential representation. Let Py(z,y,q)
be the generating function for the number of set partitions 7 of [n] with exactly k blocks
according to the number of cells in 7, the number of columns of = (which is n), and the
number of (a,b)-corners of type A in 7 corresponding to the variables z,y and q = (¢qp)ab>1
respectively.

Note that each set partition with exactly k blocks can be decomposed as 17 ... kx(®) such
that 70) is a word over alphabet [j]. Thus, by Theorem [Z4] we have the following result.

Theorem 2.5. The generating function Py(x,y,q) is given by

k EoaNy+ 2 (979 X0 LG )
Py(w,y,a) = [] HY (z.9,0) = [] — (N - )
N=1 N=11-— ?sz':1 Tl — Zj:l (xjy ZsZO L(j, 3))

where L(j, s) = 3 1 iy and LG, s) = > 11 Bivies-

Gty 1 <is<--<ig<N £=0 =g 1 <is<--<io=N £=0

Now, we consider counting all corners of type A in set partitions. Let ¢, = ¢ for all a,b > 1,
and Qk(x,y) = B%Pk(x,y,q)‘ K Note that for any s >0 and 1 < j < N —1,
q:

Ly(j,s) = (g — 1)*"y** > =0,

j:is+1<is<"'<i0:N
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We have similar expression for L(j,s). By Theorem [B.4] we have the generating function
Qk(z,y) given by

b 2Ny LN ieh <wjy(1—yZ?’:ﬁj)+:vjy2(wj“+~'+wN))

H1 yZH:ﬂZ

N .
—1 N=1 -y oo/

tk th—1 k 1

Let (b(t) = a—0(1—20)(1-K0)* Then we have (b/(t) = m Zj:l 1t
Note that

Let ¢y, 1 be the coefficient of t" in Q(1,t). Define Qk(t) = ank qu% to be the exponential
generating function for ¢, ;. Recall that the ordinary and exponential generating functions

for Stirling numbers of the second kind S, is given by ¢(t) and (et;!l)k, respectively.
Thus,
~ 1/k ter — 1)k ket —1)F  Kt(et — 1)Ftet Erk(er — 1)k 1ler
t) == dr — - dr.
Qult) =35 <2>/0 Ko o 2k! /0 2k! "

Hence, the exponential generating function Q(t,y) = > k>0 Qi (t)y"* for the total number of
corners over set partitions of [n] with k blocks is given by
2

t t
Qt,y) = y_/ (e" —1)2ev Var 4 y—tetﬂ/(et_l) — y(et — 1)eve' =l Q/ re Ve =D gy,
A 2 2 2 /s

In particular, we have

2
%Q(i,y) = yz(%e?“y(et—l) _ 2ty =) | gyl -D))
2 2
= Ea_ey(et—l) _ 2t — 1 gey(et—l) n y_ey(et_l)‘

4 Ot? 4 Ot 4

Hence, we can state the following result.
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Theorem 2.6. The total number of corners of type A over set partitions of [n + 1] with k
blocks is given by

n 1 n 1
§Sn+1,k — ZSn+2,k - §Sn,k + ZSn+1,k + Sp—2-
Moreover, the total number of corners of type A over set partitions of [n + 1] is given by
2n+1 1 n—2
1 B — ZBn+2 - TBna

where B, is the nth Bell number.

3. COUNTING CORNERS OF TYPE B

Let J := J(x,y,p) be the generating function for the number of bargraphs 7 according to
the number of cells in 7, the number of columns of 7, and the number of (a,b)-corners of
type B in 7 corresponding to the variables z,y and p = (pgp)ap>1 respectively, that is,

Aa,b)(m)
J = Z Z $nycol(7r) H pa(b»b) ,
n>0wEB, a,b>1 7

where A, ) () denotes the number of (a, b)-corners of type B in mr. From the definitions, we
have

(3.1) J=14+> Ja,

a>1

where J, is the generating function for the number of bargraphs @ = an’ in which the hight
of the first column is a. Since each bargraph m = an’ can be decomposed as either m = a™,
m=ambr” withb>a+1, or 7 = a™br” with 1 <b < a — 1, we have

a—1
(32) o= 2"y " pma+ D 2" Y oyt + Jasz + )+ DY 2y Dna -

m>1 m>1 m>1 b=1

Define 7, 1= =, 51 "y pp,q and since J —1 =370, Jp = > Jp (see [3.)), we obtain

a a a—1
Jo = Ya + 1 f ;lzjay <J —1- bzz:l Jb) + Z <$amym me,a—bjb)

m>1 b=1

a—1
(xamym Z(pm,a—b - 1)Jb) ;
b=1

iR D

x
m>1

which, by solving for J,, gives

a—1
Jo = 2% (J — 1)+ (1 — %)y + (1 — 2%) Z <x“mym Z(pm,a_b — 1)Jb> :
b=1

m>1

If we define

Oy == 2"y(J — 1) + (1 — %)y, and piqp == (1 — 2%y) Z (@Y (Pm,a—b — 1)),
m>1
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then we obtain

a—1

(3.3) Jo =00+ tass.
b=1

By similar techniques as in the proof of Lemma 2.1} we can state the following.
Lemma 3.1. For alla > 1,

a—1

Ja - ea + Zra,jejy

j=1
where Fa,j = 2520 ijis+1<is<“‘<i0:a HZ:O Figigyy -
Theorem 3.2. The generating function J(x,y,p) is given by

(LT — 2727y P s
J(z,y,p) = 1+ Zle Z]Zl( - ])( y) Y Pm,j
iz 2]21 Iyl

where I'y = Zszo Zj:i5+1<is<---<io [Ti=o Figigyy -

For instance, if p,, = 1 for all a,b > 1, then p,; = 0 which implies that I'; = 0. Thus
Theorem B2 shows that J(z,y,1,1,---) = =2

l—z—ay-’

3.1. Counting all corners of type B. Let p,; = p for all a,b > 1. By definitions, we have
Hap = (p — 1)z% which yields

Fj _ Z (p o 1)s+1 Z xio-i-"'-i-is

s>0 J=lsr1<ts<--<lg
)
(n— 1)s+1ys+1x(s-i—l)H—(52 )

(34) BD DR s s

s>0

From Theorem and ([B4), the generating function F' = J(z,y,p,p,- ) is given by
P +p 31 Lialy
1— 2 = > Tyady

s+3
(p—l)s“ys”:c( )
+ p% +p2320 (I—z)(1—22)--(1—x5T2)

F=1+

1_ 2y S (p—l)s“y”%(sgg)

-z >0 (1—a)(1—22)-(1—2°12)

Let corg(m) be the number of corners of type B in 7. We define hy, , = > 5  corp(m) and
hn =3 g1 hng. Let H(z,y) = Zm@l hn,kx"yk be the generating function for the total
number of type B corners over all bargraphs according to the number of cells and columns.
Then, it follows that

oF ry(l — x — zy + 2%y?)

35) )= 5| =

2

Note that H(z,1) = % is the generating function for the total number of type B corners

over all bargraphs according to the number of cells.
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3.2. Counting (v,w)-corners of type B. Fix v,w > 1. Define p, ., = p and p,p = 1 for
all (a,b) # (v, w). Then we have pqp, = (1 — 2%)x™y"(p — 1)dq—p=y Which yields

=S L =2 )y o - D, im)

§>0 =gy <is<-<ig =0

(36) _ Z s+1 v (s+1) vj(s+1)+vw(sgl) H(l - xj-i—(é-i—l)wy)'
s>0 /=0

From Theorem B.2] and (3.0]), the generating function F' = J(z,y,p) is given by
15+ (L T) (L= 2y (= 1) +y DT,

j>1
_ry JiT.
1 T yg ' T;
j=>1

F=1+

Recall that A, (m) denotes the number of (v, w)-corners of type B in w. We define ¢, =

ZweBn,k Agywy(m) and t, = ZkZI tnk. Let T(z,y) = Zn,k21tn,kxnyk be the generating
function for the total number of (v, w)-corners of type B over all bargraphs according to the
number of cells and columns. Then, it follows that

OF (1 o xwy) vaw yv+1x2v+3(1 _ xwy) 4 (yx)v+1(1 o xw+1y)
Iplp=1 ( _ﬂ)z (1 — zv+1)(1 — 2v+2) (1_ﬂ>2 7

T(z,y) =

11—z 1—x

. o (1_xw)wi x2v+3(1_xw)+xv+1(l_xw+1) . . .
which leads to T'(x,1) = =) + (e D) (e ) (1) the generating function for the

—x

total number of (v, w)-corners of type B over all bargraphs according to the number of cells.

3.3. Restricted bargraphs. Theorem can be refined as follows. Fix N > 1. Let
JN) .= gV) (z,y,p) be the generating function for the number of bargraphs 7 such that the
height of each column is at most N according to the number of cells in w, the number of
columns of 7, and the number of (a, b)-corners of type B in 7 corresponding to the variables
z,y and p = (Pab)ab>1 respectively Then by using similar arguments as in the proof of
@) and [@3), we obtain that JO) =14 SN ael ) and JN) =6, + > ,uabJ( ), for
all a = 1,2,..., N, where JC(L ). = Jg (N) (z,y,p) is the generating function for the number
of bargraphs m = an’ such that the height of each column is at most N. By the proof of
Theorem [32], we can state its extension as follows.

Theorem 3.3. The generating function J&) = JN) (z,y,p) is given by
N :
JN) — 14 Ej:l(l +T5)(1 — 27y)y;
1- ijvzl ) — Ejvzl Iyl

where I'j =3 < Ej:is+1<is<,,,<iO§N [1)—o tivip,, - Moreover, for alla =1,2,...,N, we have
a—1 _ a—1 _
TN = (2% +> alylay | (N = 1) + (1 = 2%)va + Y _Tay(1 - 27y)y;,
j=1 j=1

where I'y ; = Zszo Zj:is+1<is<...<iO:N szo Higigyq -
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For instance, Theorem B3] for N = 1 gives

A —zym _

(1) -1
JH (z,y,p) =1+ T

=1+ 2517 Yy pm,l-
m>1

3.4. Counting corners of type B in set partitions. Recall that we represent any set par-
tition as a bargraph corresponding to its canonical sequential representation. Let Py(z,y, p)
be the generating function for the number of set partitions 7 of [n] with exactly k blocks
according to the number of cells in 7, the number of columns of = (which is n), and the
number of (a, b)-corners of type B in 7 corresponding to the variables x,y and p = (pap)ap>1
respectively.

Note that each set partition with exactly k blocks can be decomposed as 17 - - k7(®) such
that 7() is a word over alphabet [j]. Thus, by Theorem B3] we have the followmg result.

Theorem 3.4. Let p,p, = p for all a,b > 1. Then the generating function Py(x,y,p) is given
by
k

Pk($7y7p) :pl_k H J](\[N)(:Evyvp)
N=1

where JJ(VN) 18 given in statement Theorem [3.3.

Now, we consider counting all corners of type B in set partitions. Let p,; = p for all a,b > 1,
and Qk(x,y) = apPk(x Y, P) v By Theorem B3] we have that J™)(z,y,1) =
p:

and

1
1—yZ;'V:1xj
2 .
N 1 N ; 2 N . G+l N+1
ijzl x! — (ijzl 33]) +ty Z_j:l o
5 .
N -
<1 - ijzl 517))

Moreover, Theorem [B.3] gives that J](VN) (x,y,1) = % and
iy

0
g7 @ 0:P) lp=1=

ap (517 Y, P ) |p:1—517 Y 8_pJ ($ayap) |p:1 +W .

Hence, by Theorem [3.4] we have

K(2,y) H AP R O
=1 ]1 N=1 1_yz;\7:1xj

In particular, the generating function for the total number of corners of type B over all set
partitions of [n] with k blocks is given by

tk aQJ](VN)(17t7 p) ‘PZl
Qk(l’t):(1—t)(1—2t)-~(1—k:t) y o ; —k+1],

N=1 1-Nt
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which, by 2 (1,4,p) 1= ¢ (1 N+ DO + 1{;@), is equivalent to

k

- ik t2N(N —1)
QLY = T A <1—1<:+Z <1+(N_1)t+72(1_m) >>

N=1

Hence,

¢k t(E = N—1
L e G T T By 7y <1+5<2>+521—N’5>'

N=1

Define Qk(t) to be the corresponding exponential generating function to Qg(1,t), that is
Qr(t) =50 qu%"! where gy, 1, is the coefficient of t" in Q(1,t). Similar to Section 2.4} we
have

~ B (et = 1) [k Eler — 1)k . kt(et — 1)k 1tet _k:(et — 1) B Erk(er — 1)k 1ler
On(t) = —+< )/0 dr+ /0 dt.

k! 2 2k! 2k! 2k! 2k!

Define Q(t,y) = Y k>0 Qi (t)y*, thus by multiplying by v* and summing over k > 1, we
obtain ;

- . 2 st )
Qt,y) = eV 1 4 yZ/ (e" — 1)269(5 Dar
0

t
+ t_yet-i-y(et_l) - g(et _ 1)ey(et_1) B g/ T€T+y(er_l)dr,
2 2 2 0

In particular,

%Q(t, y) = % (y(2t _ 1)e2t+y(et_1) + yey(et—l) + 4et+y(et_l)> ’

which is equivalent to

0 2t —1 0% 4 2t —50 ot y? o
Oy =L 2 Z pylet=1) 22 2T y(ef=1) 4 F pylef—1)
oY) = — ¢ FRT e

n, k

Since e¥(¢'—1) = > >0 2 k=0 Snk = Sn is the Stirling number of the second kind, we
obtain the following result.

Theorem 3.5. The total number of corners of type B over set partitions of [n + 1] with k
blocks is given by

n 1 n 5
5 ont Lk an+2,k - §Sn,k + Zsm-l,k + Spk—2-
Moreover, the total number of corners of type B over set partitions of [n + 1] is given by
2n+5 1 n—2
4 Bn—l—l - ZBn+2 - 2 Bn

where By, is the nth Bell number.
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