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Abstract

Say that a permutation of 1, 2, . . . , n is k-bounded if every pair of consecutive entries
in the permutation differs by no more than k. Such a permutation is anchored if the
first entry is 1 and the last entry is n. We give a explicit recursive formulas for the
number of anchored k-bounded permutations of n for k = 2 and k = 3, resolving a
conjecture listed on the Online Encyclopedia of Integer Sequences (entry A249665).
We also pose the conjecture that the generating function for the enumeration of k-
bounded anchored permutations is always rational, mirroring the known result on
(non-anchored) k-bounded permutations due to Avgustinovich and Kitaev.

1 Introduction

Suppose one starts on the first stair of a staircase with n steps labeled 1, . . . , n in order, and
at each step one either steps forwards or backwards by at most k steps, such that every stair
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is used exactly once and the climb ends on the nth stair. How many distinct such ways are
there to climb the stairs?

This question can be stated more precisely as follows. For a positive integer k, define a
k-bounded permutation of [n] = {1, 2, . . . , n} to be a bijection π : [n] → [n] such that for
all i ∈ {1, 2, . . . , n− 1} we have

|π(i)− π(i+ 1)| ≤ k.

We say that such a permutation is anchored if π(1) = 1 and π(n) = n. We are interested
in enumerating the k-bounded anchored permutations in terms of k and n.

Example 1. The permutation 1, 4, 2, 3, 6, 5, 7, 8, 9 is a 3-bounded anchored permutation of
{1, 2, . . . , 9}, since the first entry is 1, the last entry is 9, and no pair of consecutive entries
differs by more than 3.

The question of explicitly enumerating 3-bounded anchored permutations was first posed
on the Online Encyclopedia of Integer Sequences, entry A249665 [5]. Our results resolve the
stated conjectures in this entry.

Several related questions have been studied previously. Positive stair climbing problems
were studied by Goins and Washington [3], extending the well-known fact that the number
of ways to climb a staircase of length n using positive steps of +1 or +2 each time is the nth
Fibonacci number.

Avgustinovich and Kitaev [1] studied “k-determined permutations”, which they show are
equivalent to (k − 1)-bounded, non-anchored permutations, as well as certain Hamiltonian
paths in graphs. They resolve a conjecture of Plouffe [7] by providing the generating function
for 2-bounded non-anchored permutations, which were originally defined as key permutations
[6]. Avgustinovich and Kitaev further show that the generating function for any k is always
rational using the transfer-matrix method described by Stanley [8, ch. 4].

1.1 Main results

For k = 1, there is clearly only one 1-bounded anchored permutation for each n, namely the
identity permutation. In this paper, we resolve the cases k = 2 and k = 3 completely, as
well as the k = 2 non-anchored setting.

Our main results can be summarized in the following two theorems.

Theorem 2. Let Rn be the number of 2-bounded anchored permutations of [n]. Then the
sequence (Rn)n≥1 is given by the recurrence R1 = 1, R2 = 1, R3 = 1, and

Rn = Rn−1 +Rn−3 (1)

for all n ≥ 4. The generating function of the sequence is

R(x) =
∞∑
n=1

Rnx
n =

x

1− x− x3
.
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This sequence Rn is also known as Narayana’s cows sequence [4], and the particular
interpretation as 2-bounded anchored permutation is stated without proof (in a slightly
different but equivalent form) in Flajolet and Sedgewick [2, p. 373]. We include a proof in
this paper for completeness. Note the similarity to the Fibonacci recurrence. It is interesting
that for steps of +1 and +2 only, the recurrence is precisely the Fibonacci sequence, and
here, with the added steps of −1 and −2 where every step is reached, it is one index off of
the Fibonacci recurrence.

Theorem 3. Let Fn be the number of 3-bounded anchored permutations of [n]. Then the
sequence (Fn)n≥1 is given by the recurrence F1 = 1, F2 = 1, F3 = 1, F4 = 2, F5 = 6, F6 = 14,
F7 = 28, F8 = 56, and

Fn = 2Fn−1 − Fn−2 + 2Fn−3 + Fn−4 + Fn−5 − Fn−7 − Fn−8 (2)

for all n ≥ 9. The generating function of the sequence is

F (x) =
x− x2 − x4

1− 2x+ x2 − 2x3 − x4 − x5 + x7 + x8
.

In Section 2, we prove Theorem 2, and in Section 3 we prove Theorem 3. Interestingly,
we do not know a direct combinatorial proof of the recursion (2), and some open problems
in this and other directions are posed in Section 4.

1.2 Notation

We write our permutations π : [n] → [n] in list notation, where the ith entry of the list is
π(i).

A gap of a permutation π is a difference π(i+ 1)− π(i) between two consecutive entries.
We will always write our gaps with a + or − sign in front to indicate the sign, even if the
sign is clear, to distinguish gaps from entries. For instance, we would say that the first gap
of the permutation 1, 3, 2, 4 is +2, and the second gap is −1. We sometimes refer to the
gaps of a sequence that is not a permutation as well, defined in the same way as consecutive
differences between entries.

A sequence whose gaps are all between −k and +k is said to be blocked or stuck at the
end if the last entry a has the property that a± 1, . . . , a± k all either occur in the sequence
or are less than or equal to 0. For instance, if k = 3, the sequence 1, 3, 4, 6, 5, 2 is blocked at
2; the next possible positive integer that has not been used is 7, which is more than a gap
of k away.

The graph of a permutation of {1, . . . , n} is the plot of all points (i, π(i)) in the plane.
The main diagonal is the line with equation y = x. Note that a point in the graph of a
permutation is on the main diagonal if and only if it is a fixed point of the permutation.
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1 2 3 4

1
2
3
4

Figure 1: The graph of the 2-bounded permutation 1, 3, 2, 4.

2 Structure and enumeration for k = 2

As in Theorem 2, we define Rn to be the number of 2-bounded anchored permutations of
[n]. To get a handle on these permutations, we first prove the following lemma. It is worth
noting that a weaker version of the lemma suffices to prove recursion (1), but the stronger
statement explicitly describes the structure of a 2-bounded permutation.

Lemma 4. Let π be an anchored 2-bounded permutation of [n]. Then there exists a subset
I ⊆ {2, . . . , n− 2} such that

1. Any pair of numbers in I differ by at least three, and

2. For all i ∈ [n],

π(i) =


i+ 1, if i ∈ I;

i− 1, if i− 1 ∈ I;

i, otherwise.

In other words, the graph of the permutation can only deviate from the diagonal x = y in
consecutive pairs, with an up-step of 2 and a down-step of 1, before returning to the diagonal
with an up-step of 2. (See Figure 2.)

Proof. The lemma is clearly true when n = 1. We proceed by strong induction on n. Assume
that the lemma holds for all positive integers n′ < n, and let π be a permutation of [n].

If π is the identity permutation then I = ∅ and we are done, so we may assume that π is
not the identity. Let i be the smallest index for which π(i) 6= i. Note that i ∈ {2, . . . , n− 2}.
Then since π(j) = j for all j < i, the gap from π(i− 1) to π(i) cannot be −1, −2, or +1. It
therefore must be +2, and we have

π(i) = π(i− 1) + 2 = i− 1 + 2 = i+ 1.

Now, the next gap, from π(i) to π(i + 1), can either be −1, +1, or +2. We claim that
it is not +1 or +2. If the gap were +1, then i + 1 and i + 2 both occur, before the value i
appears in the permutation. So for some j > i+ 1, π(j) = i. But then the value of π(j + 1)
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Figure 2: The 2-bounded permutation graphed above, 1, 2, 4, 3, 5, 7, 6, 8, has subset I =
{3, 6} as the set of indices i for which π(i) = i+ 1.

must be at least i+ 3 (since all other possible values are already used), and this contradicts
2-boundedness. Otherwise, if the gap between π(i) and π(i+1) is +2, so that π(i+1) = i+3,
then the only way to reach i in the permutation is via a −2 step from i + 2, and the same
argument shows a contradiction.

It follows that the gap at i is −1, so π(i + 1) = i. The only possible value for π(i + 2)
is then i + 2 (with a +2 step from the previous), which is on the diagonal again with
all smaller numbers having occurred to the left of it. The remaining entries form a 2-
bounded, anchored permutation of {i + 2, i + 3, . . . , n}, which has a corresponding subset
I ′ ⊆ {i+ 3, i+ 4, . . . , n− 2} that satisfies the conditions above by the inductive hypothesis.
Since i is at least 3 less than any element of I ′, we see that setting I = {i} ∪ I ′ gives a valid
subset that corresponds to π.

We now can prove Theorem 2.

Proof. It is easily checked that R1 = R2 = R3 = 1. Let n ≥ 4. Then any anchored 2-
bounded permutation π of [n] either starts with 1, 2 or 1, 3. In the former case, there are
Rn−1 ways of completing the permutation, since any 2-bounded way of completing it that
ends at n is an anchored permutation of {2, . . . , n}.

In the latter case, by Lemma 4, the first four entries of the permutation must be 1, 3, 2, 4,
and then the remaining entries starting from 4 form 2-bounded anchored permutation of
{4, 5, . . . , n}. It follows that there are Rn−3 possibilities if the permutation starts with 1, 3.

It follows that Rn = Rn−1 +Rn−3.
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Figure 3: The Joker appears in the above permutation, in its second through sixth entries.

The generating function now follows from a straightforward calculation. We have

R(x)− xR(x)− x3R(x) =
∞∑
n=1

Rnx
n −

∞∑
n=2

Rn−1x
n −

∞∑
n=4

Rn−3x
n

= x+ x2 + x3 − (x2 + x3) +
∞∑
n=4

(Rn −Rn−1 −Rn−3)x
n

= x+
∞∑
n=4

0 · xn

= x,

and it follows that R(x) = x/(1− x− x3).

3 Structure and enumeration for k = 3

As in Theorem 3, we define Fn to be the number of 3-bounded anchored permutations of [n].
In the 2-bounded case, we saw that there is one possible pattern in which the permutations
can veer from the identity, and used that to generate the recursion. Similarly, in the 3-
bounded case, we will need to single out a certain special sequence that interferes with an
otherwise regular pattern that the permutations must follow.

Definition 5. The Joker is the sequence 3, 1, 4, 2, 5. We say the Joker appears in a 3-
bounded permutation if for some i, the ith through (i+ 4)th entries of the permutation are
i+ 2, i, i+ 3, i+ 1, i+ 4.

Aside from the Joker, the 3-bounded permutations turn out to follow a predictable pattern
in terms of runs of +3 and −3 steps. We will use this structure to devise a three-term
recurrence for Fn.

Definition 6. Define Gn to be the number of 3-bounded permutations π of {1, 2, . . . , n}
that start with either π(1) = 1 or π(1) = 2 (so they are not necessarily anchored) and end
at π(n) = n.
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Definition 7. Define Hn to be the number of 3-bounded permutations π of {1, 2, . . . , n}
that start with π(1) = 3, end with π(n) = n, and do not start with the Joker as the first five
terms.

We claim that for all n ≥ 6, the sequences Fn, Gn, Hn satisfy the following recurrence
relations:

Fn = Gn−1 +Hn−1 + Fn−5,

Gn = Fn +Gn−2 + Fn−3 +Gn−4 +Hn−2,

Hn = Fn−3 +Gn−3 + Fn−4 +Gn−5 +Hn−3.

To prove these relations, we first prove the following structure lemma.

Lemma 8. Suppose π is a 3-bounded anchored permutation of [n], and that the first i entries
form a 3-bounded anchored permutation of [i], so that π(1) = 1, π(i) = i, and the numbers
1, . . . , i comprise the first i entries of the permutation in some order. If the next step is a
+3, then one of the following two patterns occurs starting at entry i:

1. The Joker appears as entries i through i+ 4.

2. There is a positive integer m and a gap d ∈ {±1,±2} such that the sequence of gaps
after i is

+3,+3, . . . ,+3, d,−3,−3, . . . ,−3, d,+3,+3, . . . ,+3

where the first run of +3’s has length m, the run of −3’s has length m′ where m′ = m−1
if d < 0 and m′ = m if d > 0, the last run of +3’s has length m′ as well, and

d =

{
+1, if d = 1 or d = −2;

−1, if d = 2 or d = −1.

We call such a pattern a cascading 3-pattern.

Proof. First, note that since π restricts to a permutation on {1, . . . , i}, we can assume for
simplicity that i = 1. Now, suppose the next gap is +3, so π(2) = 4.

Let m be the length of the run of consecutive gaps of +3 starting from 1 before a gap d
not equal to +3 occurs. Notice that d cannot be −3 or else the same entry would occur twice
in the permutation, and so d ∈ {±1,±2}. We will prove that one of the two possibilities
above hold by induction on m.

Base Case. Suppose m = 1. We consider several subcases based on the value of d.
If d = −2, then the first three entries of the sequence are 1, 4, 2, and the next entry may

be 5 or 3. If the next entry is 5 and the fifth entry is larger than 5, then the only way to
reach 3 later in the permutation is by a gap of −3 from 6, in which case we would be stuck at
3, having used 1, 2, 4, 5, and 6 already. Thus, if π starts with 1, 4, 2, 5 then it must continue
1, 4, 2, 5, 3, 6, which is the Joker. Otherwise, it starts 1, 4, 2, 3, which is a cascading 3-pattern
for m = 1 and d = −2.
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1
2
3
4
5
6
7
8
9
10

Figure 4: An example of a cascading 3-pattern, with m = 3 and d = −1.

If d = −1, suppose for contradiction that the next gap is positive, so that the first four
entries are either 1, 4, 3, 5 or 1, 4, 3, 6. Then 2 must be reached from a gap of −3 from 5,
at which point the permutation is stuck. Thus the next gap must be −1 as well, and the
permutation must start 1, 4, 3, 2, 5, which is a cascading 3-pattern for m = 1 and d = −1.

If d = +1, suppose for contradiction that the next gap is positive, so that the first four
entries are either 1, 4, 5, 6 or 1, 4, 5, 7 or 1, 4, 5, 8. Then to reach 2 or 3, there must be a gap
of −3 from 6, at which point the permutation is blocked by 4, 5, and 6 and ends at 2 or 3,
a contradiction. It follows that the next gap is −2 or −3, and in fact it must be −3 so as to
reach the entry 2 without being blocked. Thus, the first five entries are 1, 4, 5, 2, 3, 6, which
is a cascading 3-pattern with m = 1 and d = +1.

Finally, if d = +2, suppose for contradiction that the next gap is positive or −1. Then
as in the case above, the permutation becomes blocked once it reaches 2 or 3. So the next
gap must be −3 and we have 1, 4, 6, 3 as the first four entries. We must then have 2 as
the fifth entry, or else the sequence would get blocked at 2 later, so the first six entries are
1, 4, 6, 3, 2, 5, which is a cascading 3-pattern with m = 1 and d = +2.

Induction step. Suppose m > 1 and assume the lemma holds for m′ = m − 1. Then
π starts with 1, 4, 7. We claim that the entries 2 and 3 must be adjacent in π. Suppose
they are not adjacent. If 3 comes first, then the only way to reach 2 is by a −3 gap from
5 (since 1 and 4 are already used) at which point the permutation would be stuck at 2, a
contradiction. If 2 comes first, then since 7 comes after 4 we must have reached the 2 using
a −3 gap from 5. But then the only possible entry that can follow the 2 is 3, and they are
in fact adjacent.

Now, consider the adjacent positions of the 2 and 3. Then the other entry adjacent to
2 must be 5, and 6 must be adjacent to 3 as well, so the 5 and 6 surround the 2 and 3. It
follows that if we remove 2, 3, and 4 from the permutation and shift all entries larger than
4 down by 3, we obtain a permutation π′ that starts at 1 with a +3 gap to 4 (which was
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the 7 in π). Since the 5 and 6 surrounded the 2 and 3 in π, they become 2 and 3 and are
adjacent in π′. All other pairs of adjacent entries in π′ still have a difference of at most 3,
because they did in π and were both translated down by 3. Thus, π′ is a 3-bounded anchored
permutation starting with m− 1 gaps of +3, and by the induction hypothesis it must either
start with the Joker or a cascading 3-pattern.

Since the 2 and 3 are adjacent in π′ it cannot start with the Joker and so it must be of
the second form. It follows that π also starts with a cascading 3-pattern, formed by inserting
one more +3 and −3 and +3 into each of the runs of 3’s that comprise the gaps of π′.

We now prove each of the recurrence relations as their own lemma.

Lemma 9. We have Fn = Gn−1 +Hn−1 + Fn−5.

Proof. Any 3-bounded anchored permutation either starts with a gap of +1, +2, or +3. If
it starts with +1 or +2, together the number of possibilities are equal to the number of
3-bounded permutations of {2, . . . , n} that start with either 2 or 3, which is exactly Gn−1.

If it starts with +3, then by Lemma 8 it either starts with the Joker sequence or is a
cascading 3-pattern. If it starts with the Joker, then π(6) = 6 and the first six entries are
a permutation of [6], so the entries after the fifth form a 3-bounded anchored permutation
of {6, 7, . . . , n}. There are therefore Fn−5 possibilities in this case. Otherwise, the number
of possibilities is equal to the number of 3-bounded permutations of {2, . . . , n} that start
with 4 and end at n but do not start with the Joker, which is exactly Hn−1. The recursion
follows.

Lemma 10. We have Gn = Fn +Gn−2 + Fn−3 +Gn−4 +Hn−2.

Proof. We now wish to enumerate the 3-bounded permutations that start at either 1 or 2
and end at n. The number starting at 1 is Fn, which is the first term in the recurrence.

For those starting at 2, if the next entry is 1 then the third entry can either be 3 or 4.
We now wish to count 3-bounded permutations of {3, . . . , n} that start at either 3 or 4 and
end at n, which is exactly Gn−2.

If the first two entries are 2, 3, then if the next gap is positive it follows that the 1 can
only be reached by a gap of −3 from 4, at which point the permutation is stuck. It follows
that the next gap is negative, and it must be a gap of −2. So the first four entries are
2, 3, 1, 4, and the remaining entries starting from 4 form a 3-bounded anchored permutation
of {4, . . . , n}. Thus, there are Fn−3 possibilities in this case.

If the first two entries are 2, 4, then 1 can either be reached from a gap of −3 from 4,
or later from a gap of −2 from 3. But the latter option becomes stuck at 1, and so there
must be a gap of −3 from 4 to 1. It follows that the permutation starts 2, 4, 1, 3 and then
continues with a 3-bounded permutation of {5, . . . , n} that starts at either 5 or 6. There are
therefore Gn−4 such possibilities.

Finally, if the first two entries are 2, 5, then the 1 must occur at some point in π and must
be surrounded by 3 and 4. If we remove the 1, then, we obtain a 3-bounded permutation
of {2, . . . , n} starting at 2 and with a starting gap of +3, with the 3 and 4 adjacent. By
Lemma 8, the 3 and 4 will always be adjacent in such a permutation with a starting gap of
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+3 unless it starts with the Joker pattern, and so, removing the 1 and the 2, we see that
there are exactly Hn−2 possibilities in this case.

Notice that the final step in the above proof was analogous to the final step of the proof
of Lemma 9. Deleting the 1 from the permutation resulted in the Hn−1 term in the Fn

recurrence, just as deleting the 1 and the 2 from the permutation resulted in the Hn−2 term
in the Gn recurrence. We will use this trick once more below, deleting the 1, 2, and 3,
resulting in a Hn−3 term in the Hn recurrence.

Lemma 11. We have Hn = Fn−3 +Gn−3 + Fn−4 +Gn−5 +Hn−3.

Proof. We wish to enumerate the 3-bounded permutations that start at 3 and end at n but
do not start with the Joker sequence 3, 1, 4, 2, 5. The second entry can either be 1, 2, 4, 5,
or 6.

Notice that if we add a 0 to the front of the permutation, we will get a 3-bounded
anchored permutation of {0, . . . , n} that starts with a gap of +3. By Lemma 8, since the
permutation does not start with the Joker, it must start with a cascading 3-pattern.

Thus, if the first gap after the 3 is not +3, then d is determined and the 3-pattern
is determined as well. In particular, if the first two entries are 3, 1 then the permutation
must start with 3, 1, 2, and so the entries after the third form a 3-bounded permutation of
{4, . . . , n} that starts at either 4 or 5 and ends at n. There are exactly Gn−3 such entries in
this case.

If the first two entries are 3, 2 then since the start is a cascading 3-pattern, the first four
entries are 3, 2, 1, 4. The entries starting at 4 form a 3-bounded permutation of {4, . . . , n}
starting at 4 and ending at n, giving us Fn−3 more possibilities.

If the first two entries are 3, 4, then by the cascading 3-pattern the first five entries are
3, 4, 1, 2, 5. The entries starting at 5 form a 3-bounded permutation of {5, . . . , n} starting at
5 and ending at n, giving us Fn−4 more possibilities.

If the first two entries are 3, 5, the cascading 3-pattern tells us that the first five entries
are 3, 5, 2, 1, 4, with the next entry either 6 or 7. The entries starting after the fifth form
a 3-bounded permutation of {6, . . . , n} starting at either 6 or 7 and ending at n, giving us
Gn−5 more possibilities.

Finally, if the first two entries are 3, 6, then since it is a cascading 3-pattern the 1 and
2 must be adjacent in π. Removing the 1, 2, and 3 then gives a 3-bounded permutation
of {4, . . . , n} that starts at 6 and ends at n but avoids the Joker. There are Hn−3 such
possibilities, and the proof is complete.

We can now eliminate Hn from these recurrences to form a two-term recurrence. Putting
n− 1 in the recurrence for Gn, we have Gn−1 = Fn−1 +Gn−3 + Fn−4 +Gn−5 +Hn−3, which
nearly matches the recurrence for Hn. From this we conclude Hn = Fn−3 + Gn−1 − Fn−1.
We can now substitute for the H terms in the F and G recurrences to obtain the following
relationships:

Fn = Gn−1 + Fn−4 +Gn−2 − Fn−2 + Fn−5, (3)

Gn = Fn +Gn−2 +Gn−3 +Gn−4 + Fn−5. (4)

10



Notice that our proofs above actually show that these recursions hold for all n, even n ≤ 5,
where we set Fj = Gj = 0 for any j ≤ 0. Thus, we can unwind the recursions to find the
first few values of Fn and Gn, as follows.

n 1 2 3 4 5 6 7 8
Fn 1 1 1 2 6 14 28 56
Gn 1 1 2 4 10 22 45 93

We now have the tools to prove Theorem 3.

Proof. We first find the generating function for {Fn}, and use this to find the single-term
recurrence for the sequence.

Let F (x) =
∑∞

n=1 Fnx
n and G(x) =

∑∞
n=1Gnx

n. Then we have

F (x) = x+ x2 + x3 + 2x4 + 6x5 +
∞∑
n=6

Fnx
n

x2F (x) = x3 + x4 + x5 +
∞∑
n=6

Fn−2x
n

x4F (x) = x5 +
∞∑
n=6

Fn−4x
n

x5F (x) =
∞∑
n=6

Fn−5x
n,

and

G(x) = x+ x2 + 2x3 + 4x4 + 10x5 +
∞∑
n=6

Gnx
n

xG(x) = x2 + x3 + 2x4 + 4x5 +
∞∑
n=6

Gn−1x
n

x2G(x) = x3 + x4 + 2x5 +
∞∑
n=6

Gn−2x
n

x3G(x) = x4 + x5 +
∞∑
n=6

Gn−3x
n

x4G(x) = x5 +
∞∑
n=6

Gn−4x
n.
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We can now utilize the recursions (3) and (4) to make the infinite summations cancel
and keep track of the smaller terms, obtaining the following two equations:

F (x)− xG(x)− x2G(x) + x2F (x)− x4F (x)− x5F (x) = x,

G(x)− F (x)− x2G(x)− x3G(x)− x4G(x)− x5F (x) = 0.

Solving these two equations for F (x) and G(x) gives us that

F (x) =
x− x2 − x4

1− 2x+ x2 − 2x3 − x4 − x5 + x7 + x8
.

Finally, we can multiply both sides of the above relation by the denominator of the fraction,
and we find that for n ≥ 8, Fn satisfies the recursion

Fn = 2Fn−1 − Fn−2 + 2Fn−3 + Fn−4 + Fn−5 − Fn−7 − Fn−8,

as desired.

4 Conjectures and open problems

As future work, a direct combinatorial proof of the eight-term recurrence for Fn, without
relying on algebraic methods for simplification, may lend new insights into the structure of
these permutations. In particular, it would be interesting if there was an intrinsic reason for
why the recursion has depth 8.

Along similar lines, for k ≥ 4, one can ask whether there is always a linear recurrence
relation of some depth for the number of k-bounded anchored permutations. Given Av-
gustinovich and Kitaev’s work [1] on non-anchored k-bounded permutations, and given the
complicated recurrence that exists for k = 3, it seems plausible that there would always exist
such a recurrence. This conjecture can be stated in terms of generating functions as follows.

Conjecture 12. Let Fk,n be the number of k-bounded anchored permutations of length n.
Then the generating function

∞∑
n=1

Fk,nx
n

is a rational function of x for any k ≥ 1.
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