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PC-polynomial of graph
Vsevolod Gubarev

Abstract

We define PC-polynomial of graph which is related to clique, (in)dependence
and matching polynomials. The growth rate of partially commutative monoid is
equal to the largest root β(G) of PC-polynomial of the corresponding graph.

The random algebra is defined in such way that its growth rate equals the largest
root of PC-polynomial of random graph. We prove that for almost all graphs all
sufficiently large real roots of PC-polynomial lie in neighbourhoods of roots of PC-
polynomial of random graph. We show how to calculate the series expansions of
the latter roots. The average value of β(G) over all graphs with the same number
of vertices is computed.

We found the graphs on which the maximal value of β(G) with fixed numbers
of vertices and edges is reached. From this, we derive the upper bound of β(G).
Modulo one assumption, we do the same for minimal value of β(G).

We study the Nordhaus—Gaddum bounds of β(G) + β(Ḡ) and β(G)β(Ḡ).

Keywords: clique polynomial, dependence polynomial, independence polyno-
mial, matching polynomial, random graph, planar graph, partially commutative
monoid, partially commutative Lie algebra, Lovász local lemma.

1

http://arxiv.org/abs/1808.03932v1


Contents

Introduction 3

0 Preliminaries on polynomials and sequences 19

1 PC-polynomial of graph 21

2 Largest root of PC-polynomial 25

3 Applications in graph theory 30

4 Partially commutative Lie algebras 36

5 Random graphs 40
5.1 PC-polynomial of random graph . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Random algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Planar graphs 51

7 Lower bounds on β(G) 58

8 Upper bound on β(G) 63
8.1 Maximum value β+(n, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Upper bound on β(G) and Nordhaus—Gadddum inequalities . . . . . . . 66

9 Minimum value β−(n, k) 73

10 Average value of β(G) 79
10.1 Average value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2 Roots of PC-polynomial of random graph . . . . . . . . . . . . . . . . . 83

11 Weighted case. Lovász local lemma 88

12 Claw-free graphs. Matching polynomial 94
12.1 Chudnovsky—Seymour theorem . . . . . . . . . . . . . . . . . . . . . . . 94
12.2 Matching polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

13 Survey. Open problems 99
13.1 Real-rootedness of PC-polynomial . . . . . . . . . . . . . . . . . . . . . . 99
13.2 Unimodality and log-concavity of clique polynomial . . . . . . . . . . . . 100
13.3 Recognizability by PC-polynomial . . . . . . . . . . . . . . . . . . . . . 101
13.4 Bounds on roots of PC-polynomial . . . . . . . . . . . . . . . . . . . . . 101
13.5 Adjoint polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
13.6 The value of independence polynomial in x = −1 . . . . . . . . . . . . . 103
13.7 Extremal values of β±(n, k) . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 106

2



Introduction

In 1969 [46], P. Cartier and D. Foata defined a partially commutative monoid by
some combinatorial reasons (reproving MacMahon Master theorem). Given a simple
finite graph G(V,E), a partially commutative monoid M(G) is in algebraic language
M〈V | v1v2 = v2v1, (v1, v2) ∈ E〉, i.e., a quotient of the free monoid M〈V 〉 by the
congruence relation generated by {v1v2 = v2v1, (v1, v2) ∈ E}. Informally, M(G) is a set
of words in alphabet V with the operation of concatenation. Moreover, given a word, we
can interchange neighbor letters if they are connected in G. Two words u, v are equal if u
could be obtained from v by a finite number of such interchanges of neighbor connected
letters.

Further, partially commutative groups, algebras and Lie algebras appeared. Partially
commutative structures are very natural object for study. On the one hand, they are
defined very simply, their properties are close to the properties of free ones. On the other
hand, p.c. structures are enough reach to formulate a lot of problems with nontrivial
solutions. Such objects have been investigated in combinatorics, formal languages, auto-
mata, computer science [46, 69, 70, 71, 152, 155]; in algebra [15, 73, 74, 76, 103, 122, 167];
in topology [1, 48, 124, 151]; in logics [47, 105, 168]; in robotics [48].

We should clarify that elements of partially commutative monoids sometimes are
called traces, a partially commutative group is called right-angled Artin group (RAAG).
There is a big area of mathematics devoted to more general groups: Artin and Coxeter
groups. In the first ones, we have the relations [xi, xj ]

mij = 1 for all pairs of connected
generators xi, xj and some mij ≥ 2. A Coxeter group is an Artin group with additional
relations x2

i = 1, so, it is a generalization of Weil groups which play the significant role
in study of simple Lie groups and simple Lie algebras.

The natural question about the numbers of different words of given length and, more
specifically, about the growth rate of partially commutative monoid M(G) leads to graph
polynomials1. For associative/Lie algebras we should ask about the dimensions respec-
tively.

Dependence polynomial actually appeared in the work of P. Cartier and D. Foata [46].
This polynomial was wrtitten down by D.C. Fisher and A.E. Solow in 1990 [86]. Depen-

dence polynomial is defined as D(G, x) = 1 +
ω(G)∑
k=1

(−1)kck(G)xk, where ci(G) denotes a

number of distinct cliques in G of the size i and ω(G) is the clique number of graph, the
size of a maximal clique in G. The reciprocal of dependence polynomial is the generating
function of partially commutative monoid M(G).

By analogy, in 1994 C. Hoede and X. Li defined [116] the clique polynomial as

C(G, x) = 1 +
ω(G)∑
k=1

ck(G)xk.

Let si(G) denote the number of anticliques of size i in a graph G, i.e., si(G) = ci(Ḡ),

where Ḡ is a complement graph. The polynomial I(G, x) = 1 +
α(G)∑
k=1

sk(G)xk is called the

independence polynomial of a graph G. Here α(G) is the size of the maximal indepen-

1About growth rates of partially commutative groups see [6, 8, 12].
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dent set in G. Independence polynomial firstly appeared in the work of A. Motoyama
and H. Hosoya [157] in 1977 for lattice graphs. A systematic study of the subject be-
gan in 1983, with the work of I. Gutman and F. Harary [109]. In 2005, V. Levit and
E. Mandrescu wrote the interesting survey about independence polynomial [134].

In 1971, H. Hosoya defined [117] matching polynomial, actually it is independence
polynomial of the line graph L(G) of G (see also the work of H. Kunz [126]). Let us refer
to the important works [82, 101, 114] and also monographs [100, 144] devoted to matching
polynomial. Note that independence and matching polynomials have connections with
chemistry and physics [13, 114, 157, 177].

In the work, we define PC-polynomial (short for partially commutative polynomial)

of a graph G as PC(G, x) =
ω(G)∑
k=0

(−1)kck(G)xω(G)−k, where c0(G) := 1. Actually PC-

polynomial have already appeared in the works [20, 39, 86] without any special name.
The growth rate of partially commutative monoid/associative algebra/Lie algebra equals
the largest real root β(G) of PC(G, x) [59, 73, 86, 102]. That is why β(G) in [86] was
called as the growth factor.

Let us call (in)dependence polynomials, clique polynomial and PC-polynomial as
clique-type polynomials. They are connected in the following way:

I(Ḡ, x) = C(G, x),

C(G,−x) = D(G, x) = xt0PC(G, 1/x).

Clique-type polynomials have different applications in counting of (anti)cliques, mat-
chings, perfect matchings, homomorphisms and colorings in graphs with different constra-
ints [85, 93, 96, 174, 198, 199], in the Ramsey theory and sphere packings [67, 68, 164].
See also [14, 24, 52, 60].

In 2005, A. Scott and A. Sokal showed [177] the deep connection between β(G) and
Lovász local lemma.

The main goals of the current paper are the following:
0) give a survey on clique-type polynomials,
1) present new results about PC-polynomials of random and planar graphs,
2) state asymptotically tight lower and upper bounds on β(G) in terms of n = |V (G)|

and k = |E(G)|,
3) find graphs on which β(G) reaches the minimum or maximum among all graphs

with fixed values of n and k,
4) study Nordhaus—Gadddum [7, 160] inequalities for the expressions β(G) + β(Ḡ)

and β(G)β(Ḡ),
5) find the average value of β(G) among graphs of the same size.
Let us give an exposition of the work.
In §0, required preliminaries on polynomials and sequences are written down.
The main goal of §1 is to prove
Theorem 1.1 [46, 84]. The numbers mn, n ≥ 1, satisfy the reccurence relation

mn = c1(G)mn−1 − c2(G)mn−2 + . . . + (−1)t0+1ct0(G)mn−t0

with initial data m0 = 1, m−1 = . . . = m−t0+1 = 0.
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We state this result in different from the proofs of P. Cartier with D. Foata and
D.C. Fisher way. As a corollary, we get

Lemma 1.4 [46, 86]. The function 1/D(G, x) is a generating function for the sequence
{mn}, i.e.,

1

D(G, x)
=
∑

n≥0

mnx
n.

At the end of the section, we state the very useful equalities of clique-type polynomials
related to deletion of a vertex or an edge, to graphs join and union and to derivative.

Lemma 1.5 [108, 116]. Given a graph G, we have
a) D(G, x) = D(G \ v, x) − xD(G[N(v)], x), v ∈ V (G);
b) D(G, x) = D(G \ uv, x) + x2D(G[N(u) ∩N(v)], x), (u, v) ∈ E(G);
c) D′(G, x) = − ∑

v∈V (G)

D(G[N(v)], x);

d) D(G1 ∪G2) = D(G1) + D(G2) − 1;
e) D(G1 + G2) = D(G1)D(G2).
Here by G[A] for A ⊂ V (G) we denote the subgraph of G induced by the set of

vertices A. By N(v) we mean an open neighbourhood of v ∈ V (G).
Exposition of §2 in general follows the work of P. Csikvári of 2013 [59]. Let z0 denote

a root of PC(G, x) with the largest modulus and β(G) = |z0|. D.C. Fisher and A.E.
Solow in 1990 stated

Lemma 2.1 [86]. The number β(G) is a root of PC(G, x).
D.C. Fisher and A.E. Solow also pretended that they had proved the following theorem
Theorem 2.1 [59, 102]. The number β(G) is the only complex root of PC(G, x) with

modulus greater or equal to β(G).
In 2000, M. Goldwurm and M. Santini finally proved Theorem 2.1 [102] via the

Perron—Frobenius theory. In §2, we consider the excellent proof of P. Csikvári [59].
Now we are ready to connect the growth rate of p.c. structures with PC-polynomial:
Corollary 2.1 [102]. a) The growth rate of partially commutative monoid M(X,G)

equals β(G).
b) The growth rate of partially commutative associative algebra As(X,G) equals β(G).
In Lemmas 2.3 and 2.4 we prove the inequalities β(H) ≤ β(G) ≤ β(F ) [59, 110] for

any induced subgraph H of G and any spanning subgraph F of G.
In §3, some applications of clique-type polynomials in graph theory are considered.
In 2009, D. Galvin [93] proved the result based on the work of V. Alekseev [3].
Theorem 3.1 [3, 68, 93]. Given a graph G with w = ω(G), n = |V (G)|, we have

C(G, x) ≤
(
1+ nx

w

)w
for all x > 0 with equality if and only if G is a complete multipartite

graph with equal parts.
Theorem 3.1 allows to prove the following corollaries:
Corollary 3.1 [3, 80]. Let G be a graph with w = ω(G), |V (G)| = n and c(G)

denotes the number of all cliques in G. Then c(G) ≤
(
1 + n

w

)w
. We have equality if and

only if G is a complete multipartite graph with equal parts.
Corollary 3.3 (Turán’s Theorem). Given a graph G with w = ω(G), |V (G)| = n,

we have k = |E(G)| ≤ n2

2

(
1 − 1

w

)
.
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We write down the proof of Y. Zhao of the next result (modulo the case of bipartite
graphs stated by J. Kahn in 2001 [119]).

Theorem 3.2 [198]. Given a d-regular graph G with n = |V (G)|, for all x ≥ 0 we
have I(G, x) ≤ (2(1 + x)d − 1)n/(2d).

It implies the solution of the conjecture of N. Alon [4]:
Corollary 3.4 [198]. For any n-vertex d-regular graph G, i(G) ≤ (2d+1 − 1)

n
2d .

Let us introduce clique-type polynomials from the point of view of statistical physics,
see, e.g., [164]. By the occupancy fraction we mean the expected fraction of vertices that
appear in the random independent set

α(G, x) =
E(|I|)
|V (G)| =

1

|V (G)|
∑

I∈I(G)

|I| · Pr[I] =
xI ′(G, x)

|V (G)|I(G, x)
.

Here Pr[I] =
x|I|
∑

J∈I(G)

x|J | is so called hard-core distribution which is simply the uniform

distribution over all independent sets of G at fugacity x. The independence polynomial
is interpreted as the partition function of the hard-core model on G at fugacity x.

Statement 3.7 [68]. a) For any graph G, α(G, x) is monotone increasing in x.
b) Let G be a triangle-free graph on n vertices with maximum degree d, we have

α(G, x) ≥ (1 + o(1)) lnd
d

for any x ≥ 1/ ln d.
E. Davies et al [68] applied Statement 3.7 to reprove the best known upper bound on

the Ramsey numbers R(3, k).
Corollary 3.8 [68, 180]. For the Ramsey numbers R(3, k), we have the upper bound

R(3, k) ≤ (1 + o(1)) k2

ln k
.

In 2002, V. Nikiforov proved [158] for the spectral radius ρ = ρ(G) the inequality

ρw ≤ c2(G)ρw−2 + 2c3(G)ρw−2 + . . . + (i− 1)ci(G)ρw−i + . . . + (w − 1)cw(G),

where w = ω(G). We show that this inequality is equivalent to
Statement 3.8. Let G be not empty graph with n vertices and the spectral radius ρ.

Then α(Ḡ, x) ≥ 1
n

for any x ≥ 1/ρ.
The section §4 is devoted to partially commutative Lie algebras. By the definition, a

partially commutative Lie algebra L(X,G) equals Lie 〈X|[a, b] = 0, (a, b) ∈ E(G)〉. De-
note the dimension of the homogeneous space of all products of length n in the alphabet X
in L(X,G) as ln.

Given roots x1, . . . , xω(G) of PC(G, x), define the numbers pn = xn
1 + xn

2 + . . .+xn
ω(G).

In 1992, G. Duchamp and D. Krob actually proved [73] the following result (but not
in the most comfortable form).

Theorem 4.1 [73]. We have

ln =
1

n

∑

d|n
µ(d)pn/d,

where µ is the Möbius function.
Corollary 4.1. If G = Kn, then the growth rate of partially commutative Lie algebra

L(X,G) equals 0. Otherwise, it equals β(G).
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Also, we show that partially commutative Lie algebras are connected with Yang—
Mills algebras [115] (Corollary 4.3) and the Lie algebras L(l) of primitive elements in the
connected cocommutative Hopf algebra Sym(l) [162] (Remark 4.4).

In §5, we study clique and PC-polynomial of the random graph Gn,p with n vertices
and edge probability p,

PC(Gn,p, x) = xn−
(
n

1

)
xn−1+

(
n

2

)
pxn−2− . . .+(−1)k

(
n

k

)
p

k(k−1)
2 xk+ . . .+(−1)np

n(n−1)
2 ,

and C(Gn,p, x) = (−x)nPC(G,−1/x). The main result of §5.1 is
Theorem 5.1 [42]. Let p ∈ (0, 1).
a) All roots of C(Gn,p, x) are real and simple.
b) Write roots of C(Gn,p, x) in ascending order rn < . . . < r1 < 0. Then pri+1 < ri

for all i = 1, . . . , n− 1.
Theorem 5.1 was stated by J. Brown and R. Nowakowski in 2005 [39] for p = 1/2

and by J. Brown et al in 2012 [42] for any p. We show that Theorem 5.1a immediately
follows from the result of E. Laguerre [127] (Remark 5.1).

Let q =
√
p, y = qn−1x. Define the polynomial

C̃(Gn,q, y) = C(Gn,p, x) =
n∑

k=0

(
n

k

)
yk

qk(n−k)
.

A polynomial F (x) =
n∑

i=0

aix
i of degree n is called symmetric if ai = an−i for all i.

Statement 5.1. a) The polynomial C̃(Gn,q, y) is symmetric.

b) For odd n, p
n−1
2 is a middle root of PC(Gn,p, x). All other roots of PC(Gn,p, x)

for odd n and all roots for even n could be gathered in pairs with the roots product
equal pn−1.

Denote by β(Gn,p) the largest root of PC(Gn,p, x). Statement 5.1 allows us to find
β(Gn,p) for all n ≤ 5 (Corollary 5.1).

In §5.2, we define the random algebra. Let X = {x1, . . . , xn} be a finite set. Fix an
order on X such that xi > xj if i < j. Consider a word w = w1 . . . wm ∈ X∗ of length
m = |w|. Let a letter xij occurs in w exactly mi ≥ 1 times, i = 1, . . . , k. We suppose
that xi1 > . . . > xik . Consider a new alphabet

X ′ = X ′(w) = {x1
i1
, . . . , xm1

i1
, x1

i2
, . . . , xm2

i2
, . . . , x1

ik
, . . . , xmk

ik
}.

Define an order on the set X ′: xs
ia > xt

ib
if a < b or a = b and s < t.

Given a word w ∈ X∗, let us construct a word w′ ∈ (X ′)∗ of the same length as follows.
If wj is the t-th occurrence (counting from the left) of a letter xs in w, then the j-th
letter of w′ equals xt

s. Denote the set of all multipartite graphs with parts {x1
i1 , . . . , x

m1
i1

},
. . . , {x1

ik
, . . . , xmk

ik
} as MP (w). Define M = M(w) be equal to the product m1m2 . . .mk.

Let p ∈ [0; 1]. Define a weight sp(w) of a word w as

sp(w) =
∑

G∈MP (w)

p|E(G)|(1 − p)M−|E(G)|I(w′ is in n.f. in M(X ′, G)),

7



where n.f. means “normal form” (the maximal word among all words in a partially

commutative monoid equal to it), M =
k∏

i=1

mi, I(A) =

{
1, A is true,

0, otherwise.

Actually sp(w) equals a probability of the event that w′ is in the normal form in hy-
pothetical partially commutative monoid with commutativity graph Gp(w), the random
multipartite graph with fixed parts with m1, . . . , mk vertices and edge probability p.

Define on the free associative algebra As〈X〉 as on the vector space a new product ·.
Let Xn denote the set of all words of length n in the alphabet X. For wi ∈ Xni

, i = 1, 2,

w1 · w2 =
1

sp(w1)sp(w2)

∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|I(w′
1, w

′
2 in n.f.)[(w1w2)

′]

=
∑

u∈Xn1+n2

P (u = [(w1w2)
′] | w′

1, w
′
2 in n.f.)u,

where [w] denotes the normal form of w, P (A) denotes the probability of an event A in
the probability theory model constructed by the random multipartite graph Gp(w1w2)
and P (A | B) denotes the conditional probability of A given B.

Let us call the space As〈X〉 under the product · as random algebra, notation: As(X, p).
Lemma 5.3. a) For 0 ≤ p < 1, the algebra As(X, p) is isomorphic to the free

associative algebra As〈X〉. For p = 1, As(X, p) is isomorphic to the polynomial algebra
R[X ].

b) The map sp : As(X, p) → 〈R, ·〉 is a semigroup homomorphism.
Extend a weight sp on As(X, p) by linearity and put mt(p) = sp(Xt).
Theorem 5.2. The numbers mt(p), t ≥ 1, satisfy the reccurence relation

mt(p) =

(
n

1

)
mt−1(p)−

(
n

2

)
pmt−2(p)+ . . .+(−1)k+1

(
n

k

)
p(k

2) + . . .+(−1)n+1p(n

2)mt−n(p)

with initial data m0(p) = 1, m−1(p) = . . . = m−n+1(p) = 0.
Corollary 5.3. The polynomial PC(Gn,p, x) is a characteristic polynomial for the

sequence {mt(p)} and β(Gn,p) equals its growth rate.
Lemma 5.4. a) The following inequalities hold

1 + (n− 1)(1 − p) ≤ β(Gn,p) ≤ 1 + (n− 1)
√

1 − p.

b) The number β(Gn,p) for fixed n is strictly monotonic function on p ∈ [0; 1] decreas-
ing from n to 1.

In §6, we solve the following problem. Denote the set of all planar graphs with
n vertices and k edges as P l(n, k). We find minimal and maximal values of β(G) for
G ∈ P l(n, k) and the graphs for these extremal values (Theorem 6.1). Let n ≥ 6, then
the graph G− ∈ P l(n, k) with the minimal β is a triangle-free graph for k ≤ 2n− 4. For
2n − 4 < k < 3n − 6, we construct G− as a supergraph of K2,n−2 in which k − 2n + 4
edges in the big part form a tree (see Picture 1). For k = 3n− 6, put G− = K̄2 ∪ Cn−2.

Let n ≥ 4, k ≥ 3, then the graph G+ ∈ P l(n, k) with the maximal β is constructed as
follows. We start with K3. On each step, we add one new vertex inside of some (triangle)

8



face of the graph and connect it with each vertex of the face. We proceed on while we
have edges (see Picture 3). Sometimes, such graphs are called Apollonian networks.

Let P l(n) denote the set of all planar graphs with n vertices. In 2007, O. Giménez
and M. Noy stated [99] that |P l(n)| ∼ C0n

−7/2γnn! for γ ≈ 27.227 and a planar graph in
average contains κ ≈ 2.213n edges.

Theorem 6.2. a) PC(G, x) of almost all planar graphs is a polynomial of 4-th degree,
has two complex and real roots. Complex roots lie in the right half-plane, real roots are
simple.

b) Let ε > 0, then for almost all planar graphs we have |ρ| > 1−ε
6γ3κ

for any root ρ of
PC-polynomial.

Statement 6.1. The average value of the growth rate of partially commutative
monoid with planar commutativity graph equals

βev,P l(n) =
1

|P l(n)|
∑

G∈P l(n)

β(G) = n− κ + O(1/n).

In §7, we formulate the main problems of the paper. By analogy with the Nordhaus—
Gadddum inequalities for chromatic number of a graph G and its complement, we post

Problem 1. To find the tight bounds for the expressions β(G)+β(Ḡ) and β(G)β(Ḡ).
Denote by G(n, k) the set of all graphs with n vertices and k edges. Introduce

β−(n, k) = min
G∈G(n,k)

β(G), β+(n, k) = max
G∈G(n,k)

β(G).

Problem 2. To find the values β±(n, k) and the graphs on which they are reached.
The following lower bound for β(G) (part a)) was proved by D.C. Fisher in 1989.
Theorem 7.1. a) [85] Given a graph G with n vertices and k edges, β(G) ≥ n− 2k

n
.

b) The bound from a) is reached if and only if G is an empty graph or G is a complete
multipartite graph with equal parts.

For a graph G ∈ G(n, k), define the edge PC-density e(G) = n−β(G)
k

, e(K̄n) := 1
n
.

Corollary 7.1. For any graph G with n vertices, e(G) ≤ 2
n
.

Corollary 7.3. For any graph G with n vertices,
a) n + 1 ≤ β(G) + β(Ḡ),
b) n ≤ β(G)β(Ḡ).

Moreover, the bounds are reached only if and only if {G, Ḡ} = {Kn, K̄n}.
Corollary 7.5 [85]. For any graph G, we have β(G) ≥ 1 + ρ(Ḡ).

Statement 7.1. Let k ≤ n2

4
, then β−(n, k) = n+

√
n2−4k
2

. This value is reached for
a graph G ∈ G(n, k) if and only if G is a triangle-free graph.

In 1990, D.C. Fisher and J.M. Nonis proved the strong lower bound.
Theorem 7.2 [87]. Given a graph G with n vertices and k edges, let w be such

a natural number that
(
1 − 1

w−1

)
n2

2
< k ≤

(
1 − 1

w

)
n2

2
. Then

β(G) ≥ n

w

(
1 +

√
1 − 2kw

n2(w − 1)

)
.

The section §8 could be considered as the central section of the work. In §8.1, we find
the graph G ∈ G(n, k) with β(G) = β+(n, k).

9



Let us define a relation ≥ on simple graphs as follows. We write that G ≥ H if
D(G, x) ≤ D(H, x) on the line segment [0; 1/β(G)]. From G ≥ H , we have β(G) ≥ β(H).

Lemma 8.1 [56]. a) Given an induced subgraph H of G, we have G ≥ H ;
b) Given a spanning subgraph H of G, we have H ≥ G.

Let G be a graph, u, v ∈ V (G), u 6= v. In 1981, A. Kelmans defined [120] so called
Kelmans transformation which transfers a graph G into a graph G′ = KT (G, u, v). To
get G′, we erase all edges between v and N(v) \ (N(u) ∪ {u}) and add all edges between
u and N(v) \ (N(u) ∪ {u}) (see Picture 4). Note that |E(G′)| = |E(G)|.

In 2011, P. Csikvári stated [56] some important properties of Kelmans transforma-
tions.

Lemma 8.2 [56, 57]. Let G be a graph and G′ be a graph obtained from G by a
Kelmans transformation. Then

a) G′ ≥ G and so, β(G′) ≥ β(G),
b) ck(G′) ≥ ck(G) for all k.
It is easy to show that (see [55]) any graph by a series of Kelmans transformations

can be transformed to a threshold graph.
Let G be a graph such that V (G) = V (G1) ·∪V (G2). Moreover, let any vertex of

G2 be either connected or disconnected with all vertices of G1 and u ∈ V (G1) be such
hanging vertex in G1 that G1 \ u is not complete. Define the isolating transformation

which transforms G to a graph G′ = I(G, u) as follows. We obtain a G′ by arising the
only edge in G1 incident to u and adding an edge in G1 \ u.

Lemma 8.3. Let G be a graph such that V (G) = V (G1) ·∪V (G2). Moreover, let any
vertex of G2 be either connected or disconnected with all vertices of G1 and u ∈ V (G1)
be such hanging vertex in G1 that G1 \ u is not complete. There exists an isolating
transformation G′ = I(G, u) such that β(G′) ≥ β(G).

In the next statement, we prove Conjecture 1 from [87].
Theorem 8.1. Let n, k be natural numbers, k =

(
d
2

)
+ e ≤

(
n
2

)
for 0 ≤ e < d.

Construct a graph G with n vertices and k edges as follows. We add a vertex of degree e to
the complete graph Kd and leave all other vertices to be isolated. Then β+(n, k) = β(G).

Corollary 8.1 [66, 196]. The constructed graph G from Theorem 8.1 maximizes all
numbers ck among graphs from G(n, k). In particular, C(H, x) ≤ C(G, x) for any graph
H ∈ G(n, k) and for all x ≥ 0.

In Remark 8.1, we discuss how the strategy of the proof of Theorem 8.1 could be
applied to reprove the analogous result for the spectral radius. This problem was initially
posed by Brualdi and Hoffman in 1976 [44] and solved by P. Rowlinson in 1988 [173].

In §8.2, we want to derive the upper bound on β(G) applying Theorem 8.1. Before
this, we easily prove the necessary condition for real-rootedness of PC(G, x).

Statement 8.1. Let G be a graph with n vertices such that all roots of PC(G, x)
are real. Then β ≤ n− k

n
and e(G) ≥ 1

n
.

Lemma 8.4. Let G be a graph with n ≫ 1 vertices and k ≥ n2

2

(
1 − 1

pep+2

)2
edges,

then β(G) < n
p

and e(G) > 2
n

(
1 − 1

p

)
.

Theorem 8.2. Let n ≫ 1. For any graph G with n vertices and k edges, we have
a) β(G) ≤ n− αk

n
,

10



b) e(G) ≥ α
n
,

where α ≈ 0.9408008.
Another important fact which follows from the proof of Theorem 8.2 is the following:

we have the asymptotically tight upper bound provided k − n2/2 = O(n2)

β(G) . n ·
√
x

W (
√
x

1−√
x
)
, x =

2k

n2
,

where W (x) is the Lambert W -function, the inverse function to f(y) = yey.
Corollary 8.3. Let G be a graph with n ≫ 1 vertices and k = O(n2θ), θ < 1, edges.

Then β(G) ∼ n− k
n
.

Corollary 8.4. Let G be a graph with n ≫ 1 vertices and k edges.
a) For k ≥ 0.256736n2, we have e(G) ≥ 1

n
and β(G) ≤ n− k

n
< 3n

4
.

b) For k ≥ n2/4, we have e(G) ≥ 0.996
n

and β(G) ≤ n− 0.996k
n

< 0.751n.
Corollary 8.5. For any graph G with n ≫ 1 vertices the following inequalities hold
a) β(G) + β(Ḡ) < 1.50197n,
b) β(G)β(Ḡ) < 0.56398n2.
We conjecture that the maximal values of the expressions β(G)+β(Ḡ) and β(G)β(Ḡ)

are reached on graphs from the class A(n) = {Ks ∪ K̄n−s, K̄s + Kn−s}. By Example 8.2,
the following values are maximal among graphs from A(n)

β(G) + β(Ḡ) ≈ 1.46594n,

β(G)β(Ḡ) ≈ 0.535919n2.

In §9, we study the minimum value β−(n, k). At first, we state some results devoted
to transformations of graphs. Given a graph G and two distinct vertices u, v ∈ V (G), let
us call a Kelmans transformation KT (G, u, v) as a nontrivial one, if c(G′) − c(G) > 0,
where c(H) denotes the number of all cliques in a graph H .

Lemma 9.1. Let G be a graph with connected complement. If a graph G′ is a result
of a nontrivial Kelmans transformation of G, then β(G′) > β(G).

Lemma 9.2. Let G be a graph with connected complement. Let e ∈ E(G) be an
edge lying in a clique of size t ≥ 3 and a, b ∈ V (G) such vertices that (a, b) 6∈ E(G) and
NG(a) ∩NG(b) = ∅. Consider the graph G′ obtained by removing an edge e and adding
an edge (a, b). Then G′ ≤ G and β(G′) < β(G).

Corollary 9.1. The graph G constructed in Theorem 8.1 is a unique graph with the
maximal β(G) among all graphs with n vertices and k edges with one exception: when
k =

(
d
2

)
+ 1 for some d. In this case, the set {H ∈ G(n, k) | β(H) = β+(n, k)} consists of

all graphs obtained from Kd ∪ K̄n−d by adding one edge.
Corollary 9.2. Let k > [n2/4] and G be a graph such that β(G) = β−(n, k). Then

G is connected graph having diameter 2.
We will find the exact value of β−(n, k) modulo the following conjecture.
Conjecture 9.1. Let k > [n2/4] and G be a graph such that β(G) = β−(n, k). Then

Ḡ is disconnected.
Let n2/4 < k and

(
1 − 1

w−1

)
n2

2
< k <

(
1 − 1

w

)
n2

2
for a natural number w. If k is

not enough large to construct Ka,a,...,a,b (with w − 1 parts of a and a ≥ b ≥ 0), then we

11



construct the graph G− ∈ G(n, k) as a supergraph of Kl+1,l+1,...,l+1,l,...,l with p parts with
l+ 1 edges and q parts with l edges, where l =

[
n

w−1

]
, p = n− l(w−1) and q = w−1−p.

Introduce

k′ = k −
((

p

2

)
(l + 1)2 +

(
q

2

)
l2 + pql(l + 1)

)
.

Further, we draw a triangle-free graphs with [k′/p] vertices inside all p parts with l + 1
vertices and draw remaining edges anywhere. So,

β(G−) =
l + 1

2

(
1 +

√
1 − 4[k′/p]

(l + 1)2

)
.

Let k be enough large to construct a supergraph of Ka,a,...,a,b with prescribed conditions
on parts. Find a natural number n1 such that

(w − 1)n1

(
n− wn1

2

)
≤ k < (w − 1)(n1 − 1)

(
n− w(n1 − 1)

2

)
.

Denote k′ = k −
(
(w − 1)n1n −

(
w
2

)
n2
1

)
and 0 ≤ k′ < (w − 1)(wn1 − n − w/2). We

construct the graph G− as a supergraph of Kn1,...,n1,n−(w−1)n1
in which the [k′/(w − 1)]

edges form a triangle-free graph in each part with n1 vertices and we put remaining
k′ − (w − 1)[k′/(w − 1)] edges anywhere. Hence,

β(G−) =
n1

2

(
1 +

√
1 − 4k′

(w − 1)n2
1

+
4ε

(w − 1)n2
1

)
,

where ε = k′/(w − 1) − [k′/(w − 1)] ∈ {0, 1}.
Theorem 9.2. Let

(
1 − 1

w−1

)
n2

2
< k <

(
1 − 1

w

)
n2

2
. If Conjecture 9.1 holds, then

β−(n, k) = β(G−) for the constructed graph G−.
Corollary 9.4. Let

(
1 − 1

w−1

)
n2

2
< k ≤

(
1 − 1

w

)
n2

2
, w ≥ 2, then

n

w
+

1

w

√
n2 − 2kw

w − 1
≤ β−(n, k) <

n

w
+

1

w

√
n2 − 2kw

w − 1
+ 1.

In §10.1, we are interested on the asymptotics of the average growth rate of partially
commutative monoid with n-vertex commutativity graph:

βev (n) =
1

2(n2)

∑

G : |V (G)|=n

β(G).

Lemma 10.1. For all p ∈ [0; 1], there exists the limit lim
n→∞

β(Gn,p)
n

.

Theorem 10.1. The average value of β(G) on graphs with n ≫ 1 vertices asymptoti-
cally equals

βev(n) ∼ n lim
n→∞

β(Gn,1/2)

n
= β0n ≈ 0.672008n.

The constant β0 firstly appeared in the article of R. Stanley [183] in 1973: the number
of all acyclic orientations of a digraph was counted as A · n!2n(n−1)/2βn

0 for A ≈ 1.741.
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Statement 10.1. For almost all graphs with n vertices, β(G) lies in a neighbourhood
of β0n and is the unique root PC(G, x) which modulus is greater than n/2.

Define the number βev (n, k) as the average value of β(G) for the set G(n, k) of all
graphs with n vertices and k edges:

βev (n, k) =
1
((n

2)
k

)
∑

G∈G(n,k)

β(G).

Statement 10.2. Let k(n) be such integer-valued function that 0 ≤ k(n) ≤ n(n−1)
2

and there exists lim
n→∞

2k(n)
n2 = k0 < 1. Then βev (n, k) ∼ n lim

n→∞
β(Gn,k0

)

n
.

In §10.2, we are interested on all roots of PC(Gn,p, x). Let p > 0 and βr = βr(Gn,p)
denote the r-th largest root of PC(Gn,p, x).

Theorem 10.2. For all p ∈ (0; 1] and r ≥ 1, there exists the limit lim
n→∞

βr(Gn,p)

n
.

Corollary 10.2. Let r > 0. For almost all graphs with n ≫ 1 vertices, the real roots
of PC-polynomial which moduli is not less than n/r lie in neighbourhoods of the roots
of PC(Gn,1/2, x).

One can approximately compute six largest roots of PC(Gn,1/2, x):

0.672008n, 0.204871n, 0.073744n, 0.028756n, 0.011768n, 0.004975n.

Further, we show how all coefficients of the series expansion of lim
n→∞

βr(Gn,p)
n

on p could

be calculated. In particular, we find

β1(Gn,p)

n
∼ 1 − p

2
− p2

4
− p3

12
− p4

16
− p5

48
− 7p6

288
− p7

96
− 7p8

768

− 49p9

6912
− 113p10

23040
− 17p11

4608
− 293p12

92160
− 737p13

276480
− 3107p14

1658880
+ O(p15),

β2(Gn,p)

n
∼ p

2

(
1 − p

6
− 5p2

18
− 29p3

216
− 85p4

648
− 163p5

3888
− 1387p6

19440

)
+ O(p8).

Conjecture 10.1. For any r ≥ 1, we have

lim
n→∞

βr(Gn,p)

n
=

pr−1

r

(
1 − p

r(r + 1)
+ O(p2)

)
.

There are some articles devoted to the study of the behavior and properties of
C(Gn,p, 1). In 2014, W. Gawronski and T. Neuschel stated (see also [163])

Theorem 10.3 [97]. For a fixed p ∈ (0; 1), as n → ∞, we have

C(Gn,p, 1) =
1√
r(n)

(
θ3

(
πr(n)

ln(1/p)
, e−2π2/ln(1/p)

)
+ o(1)

)
exp

(
r(n)2 + 2r(n)

2 ln(1/p)

)
,

where θ3(z, q) is the Jacobi’s third Theta function, r(n) is defined as the positive solution

t of the equation t
(
et +

√
1/p
)

= n
√

1/p ln(1/p).
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In 2012–13 [41, 43], J. Brown, K. Dilcher and V. Manna initiated to study the poly-

nomials fn(z) =
n∑

k=0

(
n
k

)
z(k

2) for complex variable z. For real z ∈ [0; 1], fn(z) = C(Gn,z, 1).

Statement 10.4 [43]. a) For each n ≥ 0, f2n+1(z) is divisible by zn + 1.
b) For each n ≥ 3 the roots of fn(z) lie inside a circle of radius 1 + 3 lnn

n
.

c) For each n ≥ 3 the roots of fn(z) lie outside a circle of radius 2/n.

d) For each n ≥ 4 there is a negative real root of fn(z) in the interval −2+ 2
n

n
< z < − 2

n
.

Finally, in Picture 8, the borders of the possible values of β(G)/n are drawn (asymp-
totically).

Weighted clique-type polynomials are defined in §11. Given a simple graph G and
the set Cl(G) of all cliques of G, define the weighted dependence polynomial of G as

Dw(G, x) =
∑

B∈Cl(G)

(−1)|B|w(B), w(B) =
∏

v∈B
αvx

dv , αv, dv ∈ R+.

If αv = dv = 1 for all v ∈ V (G), then Dw(G, x) coincides with D(G, x).
Define the weighted PC-polynomial of G as PCw(G, x) = xw0Dw(G, 1/x) for w0 =

deg(Dw(G, x)). S. Lavallée and C. Reutenauer in 2009 and S. Lavallée in 2010 proved
the following results which we gathered in one statement.

Theorem 11.1. a) [131] The set of all weighted dependence polynomials with αv, dv ∈
N>0 coincide with the set of all polynomials of the form det(E−xM), where M is a square
matrix with natural entries.

b) [132] The set of all weighted dependence polynomials with dv ∈ N>0 coincide with
the set of all polynomials of the form det(E − xM), where M is a square matrix with
nonnegative entries.

In the proof, we partly follow the original proofs and partly suggest new steps. In
particular, we state the next result about the largest real root βw(G) of PCw(G, x).

Lemma 11.1. Let G be a graph such that Ḡ is connected. Let Dw(G, x) be a
weighted dependence polynomial such that the set {dv | v ∈ V (G)} is coprime. Then
the number 1/βw(G) is the only complex root of Dw(G, x) with modulus less or equal to
1/βw(G).

Corollary 11.1. a) [132] The set of all weighted PC-polynomials with dv ∈ N>0

multiplied by xk, k ∈ N, coincide with the set of all characteristic polynomials of square
matrices with nonnegative entries.

b) [131] The set of all weighted PC-polynomials with αv, dv ∈ N>0 multiplied by xk,
k ∈ N, coincide with the set of all characteristic polynomials of square matrices with
natural entries.

In 2015, C. McMullen considered [153] weighted dependence polynomial Dw(G, x)
with αv = 1 for all v ∈ V (G), see observation of his results directly in §11.

In 2005, A. Scott and A. Sokal found [177] the deep connection between weighted
(in)dependence polynomials and Lovász local lemma.

For a graph G, we define the weighted independence polynomial Iw(G, x) as Dw(Ḡ, x).
Theorem 11.4 [57, 177]. Assume that given a graph G and there is an event

Ai assigned to each vertex i. Assume that Ai is totally independent of the events
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{Ak | (i, k) 6∈ E(G)}. Set P (Ai) = pi and define the weighted independence polyno-
mial Iw(G, x) with αi = pi and di = 1 for all i = 1, . . . , n.

a) Assume that Iw(G, t) > 0 for t ∈ [0; 1], then P
( n⋂
i=1

Ai

)
≥ Iw(G, 1) > 0.

b) Assume that Iw(G, t) = 0 for some t ∈ [0; 1]. Then there exist a probability space
and a family of events Bi, i = 1, . . . , n, with P (Bi) ≤ pi and with dependency graph G

such that P
( n⋂
i=1

Bi

)
= 0.

Corollary 11.2 [57, 177]. Let Ai, i = 1, . . . , n, be events with dependence graph G

such that P (Ai) ≤ t for all i = 1, . . . , n. Then P
( n⋂
i=1

Ai

)
> 0 if and only if t ≤ 1/β(Ḡ).

Corollary 11.3. a) [177] For any graph G, β(G) ≤ dd

(d−1)d−1 < ed, where d = ∆(Ḡ)≥2.

For d = 1, we have β(G) = 2.
b) Let G be a (n− d− 1)-regular graph, then 1 + d ≤ β(G) < ed.
Corollary 11.4. Let G be a graph with n ≫ 1 vertices and k edges, Ai, i = 1, . . . , n,

are events with dependence graph G. Then P
( n⋂
i=1

Ai

)
> 0, if

a) k ≤ 0.24326n2 and P (Ai) ≤ 4/(3n), i = 1, . . . , n, or
b) k ≤ n2/4 and P (Ai) ≤ 1.3316/n, i = 1, . . . , n.
Note that in analogous way one can produce another global versions of Lovász local

lemma in case k ≤ αn2. It is an open question: Wether such version of Lovász local
lemma like in Corollary 11.4 is useful?

The main goal of §12 is to prove the Chudnovsky—Seymour theorem (2004). It was
conjectured by Y. Hamidoune in 1990 [111] and R. Stanley in 1998 [184].

Theorem 12.1 [18, 51]. If G is a claw-free graph then all roots of I(G, x) are real.
We follow the proof of F. Bencs [18] (maybe, the simplest one).
Corollary 12.1. If Ḡ is a claw-free graph then all roots of PC(G, x) are real.
Corollary 12.2. Let G be a graph with n vertices and k edges.
a) If Ḡ is claw-free then n− 2k

n
≤ β(G) ≤ n− k

n
and 1

n
≤ e(G) ≤ 2

n
.

b) If β(G) > n− k
n

then Ḡ has a claw.

c) Let G, Ḡ be claw-free [169], then β(G) + β(Ḡ) ≤ 3n+1
2

, β(G)β(Ḡ) ≤
(
3n+1
4

)2
.

In §12.2, we study the matching polynomial µ(G, x) =
ν(G)∑
k=0

(−1)kmkx
n−2k, where n =

|V (G)|, mk denotes the number of matchings with k edges in G and ν(G) is the maximum

of sizes of matchings in G. The matching-generating polynomial M(G, x) =
ν(G)∑
k=0

mkx
k

and matching polynomial are are connected in the following way:

µ(G, x) = xnM(G,−x−2), M(G, x) = I(L(G), x),

where L(G) denotes the line graph of G.
From Theorem 12.1 follows the result of O. Heilmann and E. Lieb from 1972:
Corollary 12.3 [114]. All roots of µ(G, x) and M(G, x) are real.
Denote the largest root of µ(G, x) as t(G). By the definition, t2(G) = β(L(G)).
Statement 12.1 [88]. For a graph G with n vertices and k edges, t2(G) ≥ 4k

n
− 1.
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Statement 12.2 [88, 114]. Let ∆ > 1 denote the maximal degree of graph G, then
the following inequalities hold

√
∆ ≤ t(G) ≤ 2

√
∆ − 1.

Statement 12.3 [133]. If Ḡ is a claw-free graph then α(G) ≤ β(G) ≤ 4 max{α(G)−
1,∆(G)}.

At the end of §12, we list some results about matchings. Denote by m(G) the number
of matchings in a graph G and by pm(G) = m|V (G)|/2(G) the number of perfect matchings.

Statement 12.6 [67]. For all d-regular graphs G on n vertices (where 2d divides n),
mk(G) ≤ 2

√
n · mk(Hd,n), where Hd,n denotes the d-regular, n-vertex graph that is the

disjoint union of n/(2d) copies of Kd,d.

By the edge occupancy fraction [67] we mean αM(G, x) =
xM ′(G, x)

|E(G)|M(G, x)
.

Statement 12.7 [67]. For any d-regular graph G, the following inequalities hold
a) αM(G, x) ≤ αM(Kd,d, x),
b) M(G, x) ≤ M(Kd,d, x)n/(2d).
Moreover, the maximum is achieved only by unions of copies of Kd,d.
Corollary 12.4 [67]. For any d-regular graph G, m(G) ≤ m(Kd,d)

n/(2d).
Corollary 12.5 [34, 67]. For any d-regular graph G, pm(G) ≤ (d!)n/(2d).
Theorem 12.2 [61]. Let G be a d-regular bipartite graph on 2n vertices, let p = k

n
,

and pµ be the probability that a random variable with distribution Binomial(n, p) takes
its mean value µ = k. Then

mk(G) ≥ pµ

(
n

k

)2(
d− p

d

)n(d−p)

(dp)np.

Corollary 12.6 [61, 175]. Let G be a d–regular bipartite graph on 2n vertices, then

pm(G) ≥
(

(d−1)d−1

dd−2

)n
.

The §13 is actually survey section. In §13.1, we discuss real-rootedness of PC-polyno-
mials. In the paper of J. Brown and R. Nowakowski of 2005 [39], it was stated that for
almost all graphs PC-polynomial has a complex non-real root. Unfortunately, their proof
seems to be not complete. Thus, the next problem is still open.

Problem 13.1. To state if for almost all graphs PC-polynomial has a non-real root.
The subsection §13.2 is devoted to weaker conditions than real-rootedness. A polyno-

mial F (x) =
n∑

i=0

aix
i, ai ∈ R, is called unimodal if a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an

for some k ∈ {0, 1, . . . , n} and log-concave if a2i ≥ ai−1ai+1 for all i = 1, . . . , n− 1.
In 1987, Y. Alavi, J. Malde, A. Schwenk, P. Erdős proved that
Theorem 13.2 [2]. For every permutation π ∈ Sn there exists a graph G with

ω(G) = n such that cπ(1) < cπ(2) < . . . < cπ(n).
The central problem of this area of research is
Conjecture 13.1 [2]. Let Ḡ be a tree. Then C(G, x) is unimodal.
A graph G is said to be well-covered if every maximal independent set of G is also a

maximum independent set. In 2003, T. Michael and W. Traves stated that
Theorem 13.4 [154]. Let Ḡ be a well-covered graph and w = ω(G). Then c1(G) ≤

c2(G) ≤ . . . ≤ c⌈w/2⌉(G).
In 2014, J. Cutler and L. Pebody proved

16



Theorem 13.5 [65]. For every permutation π of the set {⌈w/2⌉, ⌈w/2⌉ + 1, . . . , w}
there exists a well-covered graph G such that cπ(⌈w/2⌉)(G) < cπ(⌈w/2⌉+1)(G)< . . . < cπ(w)(G)
and w = ω(G).

Corollary 13.1 [65, 135]. Let k ≥ 4. There exists a well-covered graph Ḡ with
ω(G) = k such that C(G, x) is not unimodal.

A well-covered graph G is called a very well-covered graph [83], if G contains no
isolated vertices and |V (G)| = 2α(G).

In 2006, V. Levit and E. Mandrescu stated the following theorem.
Theorem 13.6 [136]. Let Ḡ be a very well-covered graph, |V (G)| ≥ 2, w = ω(G).

Then a) c1(G) ≤ c2(G) ≤ . . . ≤ c⌈w/2⌉(G) and c⌈(2w−1)/3⌉(G) ≥ . . . ≥ cw−1(G) ≥ cw(G);
b) C(G, x) is unimodal for w ≤ 9 and log-concave for w ≤ 5.
In §13.3, the following notion is considered. A class of graphs K is called PC-recogni-

zable if for any two graphs G,H ∈ K the equality PC(G, x) = PC(H, x) implies G ∼= H .
In 1994, C. Hoede and X. Li formulated [116] the question: Which classes of graphs are
PC-recognizable? D. Stevanovic in 1997 proved that

Theorem 13.8 [185]. The class of threshold graphs is PC-recognizable.
In 2008, V. Levit and E. Mandrescu stated
Conjecture 13.2 [137]. Let Ḡ be a connected graph, T̄ be a well-covered tree. If

PC(Ḡ, x) = PC(T̄ , x), then Ḡ is a well-covered tree.
In §13.4, the bounds on roots of PC-polynomials (including of random graph) are

discussed. Let us list only few results.
Theorem 13.10 [38]. For any graph G with n vertices and clique number w ≥ 2,

modulus of any root of PC(G, x) is not less than
(
w−1
n

)w−1
+ O(n−w). This bound is

tight.
Theorem 13.11 [40]. Given a well-covered graph G, modulus of any root of PC(G, x)

is not less than 1/ω(G).
The subsection §13.5 involves a new graph polynomial. In 1987, R.-Y. Liu de-

fined [142] for a graph G the adjoint polynomial h(G, x) =
n∑

k=1

(−1)n−kak(G)xk, where

n = |V (G)| and ak(G) denotes the number of ways one can cover all vertices of G by
exactly k disjoint cliques of G. In 2017, F. Bencs stated the following result.

Theorem 13.13 [20]. For any graph G there exists a graph Ĝ such that h(G, x) =

xnI(Ĝ, 1/x) = xn−wPC(Ĝ, x), where n = |V (G)| and w = ω(G).
This result allows to apply the theory of clique-type polynomials and results of β(G)

for the adjoint polynomial.
In §13.6, we investigate the sum I(G,−1) = 1−s1(G)+s2(G)− . . .+(−1)α(G)sα(G)(G)

which was called in [33] as the alternating number of independent sets.
Given a graph G, the decycling number ϕ(G) [17] is the minimum number of vertices

that need to be removed in order to eliminate all cycles in G.
The following result was initially proved by A. Engström in 2009, V. Levit and E. Man-

drescu found its elementary proof in 2011.
Theorem 13.13 [78, 138]. For any graph G, |I(G,−1)| ≤ 2ϕ(G).
J. Cutler and N. Kahl in 2016 proved that
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Theorem 13.14 [64]. Given a positive integer k and an integer q with |q| ≤ 2k, there
is a connected graph G with ϕ(G) = k and I(G,−1) = q.

In §13.7, we discuss different problems about the extremal values of β±(n, k) and
possible strategies to struggle with them.
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0 Preliminaries on polynomials and sequences

Pringsheim’s Theorem [90, p. 240–242]. If f(z) is representable at the origin by
a series expansion that has non-negative coefficients and radius of convergence R, then
the point z = R is a singularity of f(z).

Let f(z) =
∞∑
n=0

fnz
n and Supp (f) = {k | fk 6= 0}. The sequence (fn), as well as f(z), is

said to admit a span d if for some r, there holds Supp (f) ⊂ r+dZ≥0 = {r, r+d, r+2d, . . .}.
The largest span, p, is the period, all other spans being divisors of p. If the period is
equal to 1, then the sequence (fn) and the function f(z) are said to be aperiodic.

Applying triangle inequality, it is easy to prove
Daffodil Lemma [90, p. 266–267]. Let f(z) ∈ C[z] be analytic in |z| < R and have

nonnegative coefficients at 0. Assume that f does not reduce to a monomial and that
for some nonzero nonpositive s satisfying |s| < R, one has |f(s)| = f(|s|). Then, the
following hold:

(i) s = |s|eiθ with θ/2π = r/p ∈ Q (an irreducible fraction) and 0 < r < p;
(ii) f admits p as a span.
Fekete’s Lemma [146, Lemma 1.2.2]. Let {an}, n ≥ 1, be a sequence of real

numbers such that as+t ≤ as + at for all s, t ∈ N>0. Then there exists a limit lim
n→∞

an
n

and

the limit equals inf
n≥1

an
n

.

Eneström—Kakeya Theorem [5]. Let f(x) =
n∑

j=0

ajx
j ∈ R[x] be any polynomial

with aj > 0 for all j = 0, . . . , n. Then for any zero ρ of f(x), we have

min
j=0,...,n−1

{|aj/aj+1|} ≤ |ρ| ≤ max
j=0,...,n−1

{|aj/aj+1|}.

Samuelson’s Inequality [118]. Let all roots of a polynomial f(x) =
n∑

j=0

ajx
j ∈ R[x]

be real. Then all roots of f(x) lie in the segment [x−; x+], where

x± = −an−1

nan
± n− 1

nan

√
a2n−1 −

2n

n− 1
anan−2.

Ostrowski’s Theorem [23]. Let f(z), g(z) be two monic polynomials of degree n
with complex coefficients:

f(z) = zn + a1z
n−1 + . . . + an, g(z) = zn + b1z

n−1 + . . . + bn.

Then the roots of f and g can be enumerated as α1, . . . , αn, β1, . . . , βn respectively in
such a way that

max
k=1,...,n

{|αk − βk|} ≤ 4 · 2−1/n

(
n∑

i=1

|ai − bi|γn−i

)1/n

,

where γ = 2 max
k=1,...,n

{|ak|1/k, |bk|1/k}.
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A matrix M ∈ Mn(R) is primitive if all entries of M are nonnegative and for some t,
all entries of M t are strictly positive.

Boyle—Handelman Theorem [31, 123]. Let Λ = (λ1, λ2, . . . , λd) be a tuple of
nonzero complex numbers and let S = Z or S = R. Also,

s(Λ, n) =
d∑

i=1

λn
i , t(Λ, n) =

∑

k|n
µ(n/k)s(Λ, k).

There is a primitive matrix M with entries from S and with characteristic polynomial

χM(x) = xm
d∏

i=1

(x− λi) for some m ≥ 0 if and only if

(1) the coefficients of the polynomial χM (x) belong to S,
(2) there exists λj ∈ Λ such that λj > |λi| for all i 6= j,
(3) if S = Z, then t(Λ, n) ≥ 0 for all n ≥ 1,
(3′) if S = R, then for all n ≥ 1, s(Λ, n) ≥ 0 and for all k ≥ 1, s(Λ, n) > 0 implies

s(Λ, nk) > 0.
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1 PC-polynomial of graph

Let X be a finite alphabet, G = G(V,E) be a simple graph whose vertices are in
one-to-one correspondence with the elements of X.

Denote by M(X,G) a partially commutative monoid M〈X | ab = ba, (a, b) ∈ E〉. We
may regard elements of M(X,G) as words in the alphabet X and two words x and y are
equal if there exists a sequence z1, z2, . . . , zk of words such that x = z1, y = zk, and for
all i, 1 ≤ i < k, there exist words z′i, z

′′
i and letters ai, bi satisfying:

zi = z′iaibiz
′′
i , zi+1 = z′ibiaiz

′′
i , (ai, bi) ∈ E.

Lemma 1.1 [69]. Let u, v ∈ X∗.
a) If au = av in M(X,G) for a ∈ X, then u = v.
b) If su = sv in M(X,G) for s ∈ X∗, then u = v.
Proof. a) Let av to be obtained from au by a finite sequence of arrangements

in a pair of neighbour letters. If the initial letter a does not participate in all such
arrangements, then we have the equality u = v by the same sequence of arrangements.
Otherwise, call all arrangements in which initial a participates as 0-arrangements and all
other ones as 1-arrangements. By the sequence of all 1-arrangements with the preserved
order we also have u = v.

b) It follows from a).
We assume that X is totally ordered, and we consider the corresponding lexicographi-

cal ordering < on X∗. Given a word w ∈ M(X,G), its normal form [w] is defined as
a maximal word among the set of all words in M(X,G) which are equal to w. As the
lexicographic ordering is a total order and |X| is finite, each word has a unique normal
form.

Lemma 1.2 [69]. A word w ∈ M(X,G) is in normal form if and only if for any
equality w = xaybz, x, y, z ∈ X∗, a, b ∈ X, a < b, the inclusion (a, b) ∈ E implies that
there exists a letter t of y such that (t, b) 6∈ E.

Proof. It is easy to check that any word in normal form satisfies the conditions of
Lemma.

Let a word w satisfy the conditions of Lemma. To the contrary, suppose that there
exists a word u equal to w such that u > w. Denote w = xay, u = xbz for some
x, y, z ∈ X∗, a, b ∈ X, a < b. By Lemma 1.1, we have ay = bz. Let us find the first
occurrences of the letter b in y: y = y′by′′. Then ay′by′′ = bz. There exists a sequence of
arrangements converting ay′by′′ to bz, thus, b is adjacent with all letters of ay′ in G. We
arrive at a contradiction to the condition holding for w = xay′by′′.

Corollary 1.1 [69]. Let A ⊂ X∗ be a set consisting of all normal forms of words in
M(X,G). Then A is a regular language which is closed under taking subwords.

Let Mn = Mn(X,G) denote the set of all normal forms of words of length n in
M(X,G) and mn = |Mn|. Assume that M1 = {1}.

A clique is a subset of vertices of a graph such that every two distinct vertices in
the clique are adjacent. The number of vertices of a clique is called a size of the clique.
A maximum clique of a graph H is a clique of maximum possible size for H . The size of
the maximum clique of H is called a clique number of H and is denoted by ω(H).
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Let t0 = ω(G). Denote by ci(G) the number of all cliques of size i in G. In particular,
c1(G) = |V |, c2(G) = |E|. Put c0(G) = 1.

The following Theorem 1.1, which is the main result of §1, was actually stated by
P. Cartier and D. Foata in 1969 [46]. The precise form of the result was written down
by D.C. Fisher in 1989 [84]. Below the new proof of this result is proposed. Of course,
the proofs of P. Cartier, D. Foata and D.C. Fisher as well as the one presented below are
very similar in their ideas.

Theorem 1.1 [46, 84]. The numbers mn, n ≥ 1, satisfy the reccurence relation

mn = c1(G)mn−1 − c2(G)mn−2 + . . . + (−1)t0+1ct0(G)mn−t0 (1)

with initial data m0 = 1, m−1 = . . . = m−t0+1 = 0.
Proof. Define sets

N1 = {(u, x) | u ∈ Mn−1, x ∈ X},
N2 = {(u, x1, x2) | u ∈ Mn−2, x1, x2 ∈ X, x1 > x2, (x1, x2) ∈ E},

. . .

Nt0 = {(u, x1, . . . , xt0) | u ∈ Mn−t0 ,

x1, . . . , xt0 ∈ X, x1 > x2 > . . . > xt0 , (xi, xj) ∈ E, i, j = 1, . . . , t0}

and maps
fi : Ni → Mn, (u, x1, . . . , xi) → [ux1 . . . xi], i = 1, . . . , t0.

Given a word w ∈ Mn, define the numbers ki(w) = |f−1
i [{w}]|, i = 1, . . . , t0, i.e., the

cardinality of the preimage of {w} under fi. Also, define k0(w) =
t0∑
i=1

(−1)i+1ki(w).

Applying the equalities ci(G)mn−i = |Ni| =
∑

w∈Mn

ki(w), conclude

c1(G)mn−1 − c2(G)mn−2 + . . . + (−1)t0+1ct0(G)mn−t0

= |N1| − |N2| + . . . + (−1)t0+1|Nt0 |

=

t0∑

i=1

(−1)i+1
∑

w∈Mn

ki(w) =
∑

w∈Mn

k0(w). (2)

If k0(w) = 1 for all w ∈ Mn, then the RHS of (1) equals
∑

w∈Mn

k0(w) =
∑

w∈Mn

1 = mn

by (2), we are done. Thus, it remains to prove
Lemma 1.3. For w ∈ Mn, n ≥ 1, we have k0(w) = 1.
Proof. Let (u, x1, . . . , xi) ∈ f−1

i [{w}], i ∈ {1, . . . , t0}, u ∈ Mn−i. By Lemma 1.2, the
normal form w of the word ux1 . . . xi could be obtained by inserting x1, . . . , xi somewhere
in u and preserving in w the order of all letters from u. Moreover, by Lemma 1.2, we
have the next remark: if a letter xs, s ∈ {1, . . . , i}, stays in the k-th position in the word
w = w1w2 . . . wn, wi ∈ X, then (xs, wl) ∈ E for all l = k + 1, . . . , n. Therefore, ki(w)
equals a number of tuples of i letters wp1, . . . , wpi, p1 < p2 < . . . < pi, of the word w
such that they are pairwise adjacent and they are adjacent to all letters ws with pi < s.
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Let k ∈ {1, . . . , n} be a minimal number such that (wk, wl) ∈ E for l = k + 1, . . . , n.
Define the set Bi = {(u, y1, y2, . . . , yi) ∈ Ni | wk ∈ {y1, . . . , yi}} and the numbers

k′
i(w) =

∣∣f−1
i [{w}] ∩ Bi|, k′′

i (w) =
∣∣f−1

i [{w}] ∩ (Ni \Bi)|. (3)

Note that

ki = k′
i + k′′

i , i = 1, t0, k′
1(w) = 1, k′′

t0
(w) = 0, k′

i(w) = k′′
i−1(w), i = 2, t0. (4)

Due to (3), (4), we finish the proof of Lemma 1.3 by the following calculations

k0(w) =
t0∑

i=1

(−1)i+1ki(w) =
t0∑

i=1

(−1)i+1k′
i(w) +

t0∑

i=1

(−1)i+1k′′
i (w)

= k′
1(w) +

t0∑

i=2

(−1)i+1k′
i(w) +

t0−1∑

i=1

(−1)i+1k′′
i (w)

= 1 +

t0−1∑

i=1

(−1)i+1(k′′
i (w) − k′′

i (w)) = 1. (5)

Define PC-polynomial on graph G as a characteristic polynomial of the recurrence
relation (1):

PC(G, x) = xt0 − c1(G)xt0−1 + c2(G)xt0−2 + . . .+ (−1)t0−1ct0−1(G)x+ (−1)t0ct0(G), (6)

where t0 = ω(G).
Example 1.1 [86]. We have
a) PC(K̄n, x) = x− n for empty graph K̄n;
b) PC(Kn, x) = (x− 1)n for complete graph Kn;
c) PC(Kq1,...,qs) = (x − q1) . . . (x − qs) for complete multipartite graph with parts

q1, . . . , qs, in particular, PC(Kn/p,...,n/p) =
(
x− n

p

)p
for complete multipartite graph with

p equal parts;
d) PC(Tn, x) = x2 − nx + n− 1 = (x− 1)(x− n + 1) for a tree Tn with n vertices.
Note that

xt0PC(G, 1/x) = D(G, x), (7)

where D(G, x) =
ω(G)∑
k=0

(−1)kck(G)xk is the dependence polynomial of G. Hence, the sets of

roots of polynomials PC(G, x) and D(G, x) respectively are in one-to-one correspondence
by the rule x ↔ 1/x, as zero is not root of neither PC(G, x) nor D(G, x).

Lemma 1.4 [46, 86]. The function 1/D(G, x) is a generating function for the sequence
{mn}, i.e.,

1

D(G, x)
=
∑

n≥0

mnx
n. (8)

Proof. The statement of Lemma is equivalent to the equality

1 = (1 − c1(G)x + c2(G)x2 − . . . + (−1)t0ct0(G)xt0)

(∑

n≥0

mnx
n

)

holding by Theorem 1.1.
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By G[A] for A ⊂ V (G) we denote the subgraph of G induced by the set of vertices A.
Let N(v) be a neighbourhood of a vertex v ∈ V (G), i.e., N(v) = {u ∈ V | (v, u) ∈ E}.
Given two graphs G1, G2 with V (G1) ∩ V (G2) = ∅, the graphs G1 ∪ G2 and G1 + G2

are defined as follows: V (G1 ∪ G2) = V (G1 + G2) = V (G1) ∪ V (G2), E(G1 ∪ G2) =
E(G1) ∪ E(G2), E(G1 + G2) = E(G1) ∪ E(G2) ∪ {(u, v) | u ∈ E(G1), v ∈ E(G2)}.

Lemma 1.5 [108, 116]. Given a graph G, we have
a) D(G, x) = D(G \ v, x) − xD(G[N(v)], x), v ∈ V (G);
b) D(G, x) = D(G \ uv, x) + x2D(G[N(u) ∩N(v)], x), (u, v) ∈ E(G);
c) D′(G, x) = − ∑

v∈V (G)

D(G[N(v)], x);

d) D(G1 ∪G2) = D(G1) + D(G2) − 1;
e) D(G1 + G2) = D(G1)D(G2).
Proof. a) Let v ∈ V (G). All cliques in G could be divided into two types, the first

ones contain v but not the second ones. So, all cliques of the first type are counted in
a summand xD(G[N(v)], x) and all cliques of the second type — in D(G \ v, x).

b) All cliques in G are of two types, the first ones contain the edge (u, v) but not the
second ones. So, all cliques of the first type are counted in x2D(G[N(u) ∩N(v)], x) and
all cliques of the second type — in D(G \ uv, x).

c) Prove the statement by induction on n = |V (G)|. For G = {v}, we have D(G, x) =
1 − x and D′(G, x) = −1 = −D(∅, x).

Differentiating the equality from a) and further applying the same equality and the
induction hypothesis, we have

D′(G, x) = D′(G \ v, x) −D(G[N(v)], x) − xD′(G[N(v)], x)

= −D(G[N(v)], x) +
∑

u∈V (G\v))
D(G \ v[N(u)], x) + x

∑

u∈N(v)

D(G[N(v) ∩N(u)], x)

= −D(G[N(v)], x) −
∑

u∈V (G\N(v))

D(G \ v[N(u)], x)

−
∑

u∈N(v)

(D(G \ v[N(u)], x) − xD(G[N(v) ∩N(u)], x))

= −D(G[N(v)], x) −
∑

u∈V (G\N(v))

D(G[N(u)], x) −
∑

u∈N(v)

D(G[N(u)], x)

=
∑

w∈V (G)

D(G[N(w)], x).

d) It follows from the fact that any clique in G1 ∪G2 is a clique in either G1 or G2.
e) We conclude that D(G1 + G2) = D(G1)D(G2) by the following equality

cp(G1 + G2) =

p∑

k=0

ck(G1)cp−k(G2).

24



2 Largest root of PC-polynomial

Let z0(G) be a largest on modulus (complex) root of PC(G, x), β(G) = |z0(G)|.
Lemma 2.1 [86]. The number β(G) is a root of PC(G, x).
Proof. Let s = 1/β(G). By (8) and minimality of modulus of the root 1/z0(G)

of D(G, x), we get that the convergence radius of 1/D(G, z) equals s. By Pringsheim’s
Theorem, the function 1/D(G, z) is not analytic in s. Thus, we have D(G, s) = 0 and
PC(G, β(G)) = 0.

Lemma 2.2 [59]. Given a graph G and proper induced subgraph H of G, the rational
function D(H, x)/D(G, x) is representable at the origin by a series expansion that has
positive integer coefficients.

Proof. Let us prove the statement by induction on n = |V (G)|. For n = 1, the
empty graph if the only proper induced subgraph. So,

D(H, x)

D(G, x)
=

1

1 − x
=
∑

k≥0

xk.

It is enough to prove the statement for H = G \ v. Indeed, let H be a proper induced
subgraph of G, i.e., H = G \ {v1, . . . , vl}. Then

D(H, x)

D(G, x)
=

D(G \ v1, x)

D(G, x)

D(G \ {v1, v2}, x)

D(G \ v1, x)
. . .

D(G \ {v1, . . . , vl}, x)

D(G \ {v1, . . . , vl−1}, x)
,

where by induction all factors except the first one have a series expansion with positive
coefficients.

By Lemma 1.5a,

D(G \ v, x)

D(G, x)
=

D(G \ v, x)

D(G \ v, x) − xD(G[N(v)], x)

=
1

1 − xD(G[N(v)],x)
D(G\v,x)

=
∑

k≥0

(
x
D(G[N(v)], x)

D(G \ v, x)

)k

.

If G[N(v)] is a proper subgraph of G\v, then by induction D(G[N(v)],x)
D(G\v,x) is representable by a

series expansion with positive coefficients. Otherwise, G[N(v)] = G\v and D(G\v,x)
D(G,x)

= 1
1−x

.
Lemma is proved.

Remark 2.1. In [59], P. Csikvári wondered if some interpretation of the series
expansion of D(H, x)/D(G, x), where H is a subgraph of G, could be found. In 2006,
C. Krattenthaler proved the following result [8, 125]. Let w = w1w2 . . . wn be a word from
Mn(G,X) (in the normal form). Call the set {wk | (wk, wl) ∈ E(G), l = k + 1, . . . , n} as
the type τ(w) of w. So, the generating function of all words from M(X,G) which type is
a subset of V (G) \ V (H) is equal to the ratio D(H, x)/D(G, x) [8, 125]. Also, this result
implies Lemma 2.2.

Let G be a supergraph of a complete multipartite graph with parts H1, H2, . . . , Hk,
k ≥ 2, (i.e., G = H1+H2 + . . .+Hk) such that H̄1, . . . , H̄k, are connected. By Lemma 5e,
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PC(G, x) =
k∏

i=1

PC(Hi, x). A part Hi is called a maximal one if β(G) is a root of

PC(Hi, x). A maximal part can be not unique, e.g., for G = H + H , where H̄ is
connected, both parts are maximal.

Lemma 2.3 [59, 110]. Let G be a graph.
a) For any induced subgraph H of G, we have β(H) ≤ β(G).
b) For any proper induced subgraph H of G, we have β(H) = β(G) if and only if G is

a supergraph of a complete multipartite graph with parts having connected complements
and H contains a maximal part of G.

Proof. a) Prove the statement by induction on n = |V (G)|. For n = 1, 2 it is true.
For inductive step, it is enough to show that β(G\ v) ≤ β(G) for all v ∈ V (G). Applying
Lemma 1.5a for α = 1/β(G \ v, x) and the induction hypothesis, calculate

D(G,α) = D(G \ v, α) − αD(G[N(v)], α) = −αD(G[N(v)], α) ≤ 0,

so, D(G, x) has a root in (0, α] as D(G, 0) = 1 and β(G) ≥ β(G \ v).
b) It is easy to see that if G and H satisfy the conditions, then β(H) = β(G).
Suppose that β(H) = β(G). We prove the statement by induction on n = |V (G)|. For

n = 2 it is true. Consider the case when G is such a graph that Ḡ is connected. If G is a
supergraph of a complete multipartite graph with parts having connected complements,
then by Lemma 1.5e and induction, we reduce such case to the one stated above.

Let us prove that β(G) > β(G\v) for all v ∈ V (G), then the statement for any proper
induced subgraph H follows from a). Note that the connectedness of Ḡ provides that v
is not connected to all vertices of G, i.e., G[N(v)] is a proper induced subgraph in G \ v.

Assume that β(G) = β(G \ v). Then by Lemma 1.5a, β(G \ v) = β(G[N(v)]). If the
complement of G\v is connected, then by the induction hypothesis β(G\v) > β(G[N(v)]),
a contradiction.

Assume that the complement of G\v is disconnected, then from the equality β(G\v) =
β(G[N(v)]) by the induction hypothesis we conclude that G \ v is a supergraph of a
complete multipartite graph with parts H1, . . . , Hk, H̄i, is connected, and G[N(v)] is an
induced subgraph of G \ v containing a maximal part Hi0 . Therefore, Ḡ is disconnected
as the part Hi0 has no any edges to all other vertices of Ḡ. Lemma is proved.

The following Theorem 2.1, the main result of the current paragraph, was initially
formulated but only partly proved by D.C. Fisher and A.E. Solow in 1990 [86]. Actually
they proved Lemma 2.1. In 2000, M. Goldwurm and M. Santini proved Theorem 2.1 [102]
with the help of Perron—Frobenius theory. We consider the proof of P. Csikvári stated
in 2013 [59].

Theorem 2.1 [59, 102]. The number β(G) is the only complex root of PC(G, x) with
modulus greater or equal to β(G).

Proof. Let us prove that 1/β(G) is the only complex root of D(G, x) equal to
1/β(G).

If G is a supergraph of a complete multipartite graph with parts H1, . . . , Hk, H̄i is

connected, then by Lemma 1.5e D(G, x) =
k∏

i=1

D(Hi, x). Thus, we may assume that Ḡ is

connected. Also, |V (G)| ≥ 2, as for |V (G)| = 1 the statement is trivial.
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For any v ∈ V (G), G[N(v)] is a proper induced subgraph of G \ v. Otherwise v is
connected to all vertices of V (G) \ v and so Ḡ is disconnected.

Consider the functions

g(x) =
D(G \ v, x)

D(G, x)
=

1

1 − xD(G[N(v)],x)
D(G\v,x)

, f(x) = x
D(G[N(v)], x)

D(G \ v, x)
.

By Lemma 2.3a, β(G[N(v)]) ≤ β(G \ v) and the convergence radius of the series
expansion of f(x) is greater or equal to 1/β(G \ v). Let ρ be a complex root of D(G, x)
with modulus 1/β(G), ρ 6= 1/β(G). Then by Lemma 2.3b, ρ is a pole of g(x). Hence,
f(ρ) = 1 and |f(ρ)| = f(ρ). By Daffodil Lemma, ρ = (1/β(G))e2πir/p, where p is a span
of f(x). By Lemma 2.2, all coefficients of the series expansion of f(x) are positive, thus,
f(x) is aperiodic. We get a contradiction. Theorem is proved.

Example 2.1 [86]. a) β(Kn) = 1,
b) β(K̄n) = n,
c) β(Kn1,...,np

) = max{n1, . . . , np},
d) β(Tn) = n− 1 for a tree Tn with n vertices.
Let {an}n≥0 be a sequence of nonnegative real numbers. If the limit a = lim

n→∞
n
√
an

exists, then a is called the (exponential) growth rate of the sequence {an}.
Given a graph G(V,E), an associative algebra As(X,G) = As〈X | ab = ba, (a, b) ∈ E〉

for X = V is called a partially commutative algebra. Denote by an the dimension of
homogeneous space of all words of length n in the alphabet X in As(X,G).

The growth rate of M(X,G) and As(X,G) is called the growth rate of the sequence
{mn} and {an} respectively.

Corollary 2.1 [102]. a) The growth rate of partially commutative monoid M(X,G)
equals β(G).

b) The growth rate of partially commutative associative algebra As(X,G) equals β(G).
Proof. a) Prove an additional statement. Let α1, . . . , αk be roots of PC(G, x) with

multiplicities s1, . . . , sk respectively. Then

mn =
k∑

j=1

Pj(n)αn
j , (9)

where Pj(x) is a polynomial of degree sj − 1.
Indeed, consider a full partial fraction expansion for the rational function 1/D(G, x):

1

D(G, x)
=

k∑

j=1

sj∑

r=1

cj,r
(1 − αjx)r

, cj,r ∈ R, (10)

where we have cj,sj 6= 0. Continuing on dealing with (10), we get

1

D(G, x)
=

k∑

j=1

sj∑

r=1

cj,r
∑

n≥0

(
n + r − 1

r − 1

)
αn
j

=
∑

n≥0

k∑

j=1

(
cj,1

(
n

0

)
+ . . . + cj,sj

(
n + sj − 1

sj − 1

))
αn
j ,
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the expressions in brackets are exactly the polynomials Pj(n) of degree sj − 1.
Let β(G) = |α1| > |α2| ≥ . . . ≥ |αk|, then we have an asymptotics mn ∼ C0n

s1−1αn
1 .

Moreover, the real constant C0 is positive as mn are nonnegative. Therefore,

lim
n→∞

n
√
mn = lim

n→∞
n
√

C0ns1−1αn
1 = α1 lim

n→∞
n
√

C0ns1−1 = α1 = β(G).

b) It follows from a) as an = mn for n ≥ 1.
Remark 2.2. It is easy to show the existence of the limit lim

n→∞
n
√
mn directly. Indeed,

by Corollary 1.1 the set of all normal forms of words in M(X,G) is closed under taking
subwords. Thus, we have the inequality ms+t ≤ msmt for all s, t ∈ N. It remains to
apply Fekete’s Lemma for the sequence {lnmn}.

Lemma 2.4 [59, 110]. Let G be a graph.
a) For any spanning subgraph H of G, we have β(G) ≤ β(H).
b) For any proper spanning subgraph H of G, we have β(H) < β(G) provided that

Ḡ is connected.
c) For any spanning subgraph H of G, we have β(H) = β(G) if and only if G is

a supergraph of a complete multipartite graph with parts H1, . . . , Hk having connected
complements, moreover, if Hi is a maximal part of G, then G[V (Hi)] = H [V (Hi)], H̄i

is a connected component in H̄ and Hi is a maximal part of H (the decomposition of
H̄ into connected components could be not exactly H̄1, . . . , H̄k, some of them could be
joined).

Proof. a) By the condition, we have inequalities mn(G) ≤ mn(H), n ≥ 1. Hence,

β(G) = lim
n→∞

n
√
mn(G) ≤ lim

n→∞
n
√

mn(H) = β(H).

b) Let us prove that β(G \ uv) > β(G) for any pair of u, v ∈ V (G). To the contrary,
there exists a pair of vertices u, v ∈ V (G) such that β(G \ uv) = β(G). Then by
Lemma 1.5b we have β(G[N(u)∩N(v)]) ≥ β(G). As Ḡ is connected, the graph G[N(u)∩
N(v)] is a proper induced subgraph of G. By Lemma 2.3b, β(G[N(u) ∩N(v)]) < β(G),
a contradiction.

c) If G,H satisfy the conditions, then β(H)=β(G). Conversely, it follows from a), b).
Lemma 2.5 [59]. a) If G is not a supergraph of a complete multipartite graph, then

β(G) is a simple root of PC(G, x).
b) If G is a supergraph of a complete multipartite graph with parts having connected

complements, then the multiplicity k of the root β(G) of PC(G, x) equals the number of
maximal parts of G.

Proof. a) Apply Lemma 1.5c: D′(G, x) = − ∑
v∈V (G)

D(G[N(v)], x). By Lemma 2.3b,

we have D(G[N(v)], 1/β(G)) < 0 for any v ∈ V (G). Thus, D′(G, 1/β(G)) < 0 and
1/β(G) is a simple root of D(G, x).

b) It follows from Lemma 1.5e and a).
Corollary 2.2. a) For almost all graphs, the largest root of PC-polynomial is simple.
b) The largest root of either PC(G, x) or PC(Ḡ, x) is simple.
Proof. a) It follows from Lemma 2.5 and connectedness of almost all graphs [27].
b) At least one of G and Ḡ is connected and we are done.

28



Lemma 2.6 [86, 153]. a) Given a graph G with n = |V (G)|, we have

n

ω(G)
≤ β(G) ≤ n. (11)

Moreover, the lower bound is reached if and only if n/ω(G) ∈ N and G is the complete
multipartite graph with all parts having n/ω(G) vertices. The upper bound is reached if
and only if G is the empty graph.

b) If G is not complete graph and n > 1, then 2 ≤ β(G).
Proof. a) Assume that β(G) < n/ω(G), then all real roots and real parts of all

complex non-real roots of PC(G, x) are less than n/ω(G). Hence, the sum of all roots of
PC(G, x) is less than n, a contradiction. Suppose that β(G) = n/ω(G), it means that
all roots of PC(G, x) are real and equal β(G). Therefore, PC(G, x) = (x− n/ω(G))ω(G).
As all coefficients of PC(G, x) are integers, n/ω(G) ∈ N. So, G is (ω(G) + 1)-clique-free
graph with

(
1 − 1

ω(G)

)
n2

2
edges. It’s the Turán graph, i.e., G is the complete multipartite

graph with ω(G) parts of size n/ω(G). Conversely, we apply Example 2.1.
Consider the empty spanning subgraph H of G. Then PC(H, x) = x−n and β(H)=n.

By Lemma 2.4a, we have β(G) ≤ n. If G is a not empty graph such that β(G) = n, then
we arrive at a contradiction by Lemma 2.4b.

b) Let u and v be disadjacent vertices in G. Consider in G a subgraph H induced by
the set of vertices {u, v}. By Lemma 2.3a, 2 = β(H) ≤ β(G).

Lemma 2.7 [85]. Let G be a graph with clique number w, j ≤ w. Then
a) βj − c1β

j−1 + c2β
j−2 − . . .− cj ≤ 0 for odd j,

b) βj − c1β
j−1 + c2β

j−2 − . . . + cj ≥ 0 for even j.
Proof. Following notations from Theorem 1.1 and Lemma 1.3, it is easy to show

that
mt − c1mt−1 + c2mt−2 − . . . + (−1)jcjmt−j = (−1)j

∑

w∈Mt(X,G)

k′
j+1(w).

Thus, mt − c1mt−1 + c2mt−2 − . . .− cjmt−j ≤ 0 for odd j and mt − c1mt−1 + c2mt−2 −
. . . + cjmt−j ≥ 0 for even j. It remains to divide the inequalities by mt−j and consider
the limit t → ∞.
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3 Applications in graph theory

Statement 3.1 (Mantel’s Theorem) [110]. The maximum number of edges in an
n-vertex triangle-free graph is [n2/4].

Proof. Write down PC-polynomial of G as PC(G, x) = x2 − nx + k, where k =
|E(G)|. By Lemma 2.1, the equation x2 − nx + k = 0 has real roots, i.e., k ≤ n2/4.

The complete bipartite graph K[n/2],n−[n/2] is the example of a triangle-free graph with
[n2/4] edges.

Statement 3.2 [110]. Given a graph G with n vertices, we have
a) α(G) ≤ β(G), where α(G) = ω(Ḡ) is the independence number of G,
b) n/β(G) ≤ χ(G), where χ(G) is the chromatic number of G,

c) g(G) ≤ β2(G)

β(G) − 1
provided that g(G) < ∞, where g(G) is the girth of G.

Proof. a) Consider the subgraph H in G induced by the set of α(G) vertices form-
ing the maximal independent set. Then β(G) ≥ β(H) = α(G) by Example 2.1b and
Lemma 2.3a.

b) It follows from a) and the well-known inequality α(G)χ(G) ≥ n.
c) Consider the subgraph H in G induced by a cycle of length g(G). For g(G) = 3, we

have PC(H, x) = x3 − g(G)x2 + g(G)x− 1 = (x− 1)3. So, β(H) = 1 and the statement
follows from the inequalities

β(G)2 − 3β(G) + 3 =
(β(G) − 1)3 + 1

β(G)
≥ 1

β(G)
> 0

holding by Lemma 2.6.
For g(G) ≥ 4, we have PC(H, x) = x2 − g(G)x + g(G). Thus,

β(H) =
g(G) +

√
g(G)2 − 4g(G)

2
≤ β(G)

or (2β(G) − g(G))2 ≥ g2(G) − 4g(G) which gives the required inequality.
Statement 3.3 [81]. Let f : G → H be a surjective homomorphism from G to H , i.e.,

a surjective map f : V (G) → V (H) such that (f(u), f(v)) ∈ E(H) for all (u, v) ∈ E(G).
Then β(H) ≤ β(G).

Proof. Let V (H) = {v1, . . . , vm}. Consider u1, . . . , um ∈ V (G) such that f(ui) = vi.
Define G′ as G[U ] for U = {u1, . . . , um}. By Lemma 2.3a and Lemma 2.4a, we have
β(H) ≤ β(G′) ≤ β(G).

The following Theorem was initially proved in 2009 by D. Galvin [93], actually the
proof was based on the result of V. Alekseev [3].

Theorem 3.1 [3, 68, 93]. Given a graph G with w = ω(G), n = |V (G)|, we have
C(G, x) ≤

(
1+ nx

w

)w
for all x > 0 with equality if and only if G is a complete multipartite

graph with equal parts.
Proof. For w = 1, the statement is trivial. Let w > 1. Prove the statement by

induction on n = |V (G)|. The case n = 1 is also trivial.
Let G equal H1 +H2 + . . .+Hk with connected H̄i, i = 1, . . . , k. Define ni = |V (Hi)|,

wi = ω(Hi). It is clear that
k∑

i=1

ni = n,
k∑

i=1

wi = w. Applying Lemma 1.5e, Jensen’s
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inequality and the induction hypothesis, we get

C(G, x) =
k∏

i=1

C(Hi, x) ≤
k∏

i=1

(
1 +

nix

wi

)wi

≤
(

k∑

i=1

wi

(
1 +

nix

wi

)/
w

)w

=
(

1 +
nx

w

)w
. (12)

We have equality in (12) if and only if all ni are equal, it means all components of G
have the same order.

Let G be a graph such that Ḡ is connected. Choose a vertex v ∈ V (G) of minimal
degree d(v) = n−∆−1. By Lemma 1.5a, C(G, x) = C(G\v, x)+xD(G[N(v)], x). Since
ω(G \ v) ≤ w, ω(G[N(v)]) ≤ w− 1, and the function (1 + nx/w)w is increasing in w > 0
for all x > 0, we have

C(G, x) ≤
(

1 +
(n− 1)x

w

)w

+ x

(
1 +

(n− ∆ − 1)x

w − 1

)w−1

. (13)

It is easy to show the inequality ∆ ≥ n−1
w

when Ḡ is either complete graph or a cycle
of an odd length. Otherwise, by Brooks’ theorem ∆ ≥ χ(Ḡ) ≥ n

α(Ḡ)
= n

w
. Inserting the

inequality ∆ ≥ n−1
w

into (13), we obtain

C(G, x) ≤
(

1 +
(n− 1)x

w

)w

+ x

(
1 +

(n− 1)x

w

)w−1

and so

C(G, x) −
(
1 + nx

w

)w
(
1 + (n−1)x

w

)w ≤ 1 +
xw

w + (n− 1)x
−
(

1 +
x

w + (n− 1)x

)w

≤ 0

with equality if and only if w = 1, i.e., G is complete. Theorem is proved.
Corollary 3.1 [3, 80]. Let G be a graph with w = ω(G), |V (G)| = n and c(G)

denotes the number of all cliques in G. Then c(G) ≤
(
1 + n

w

)w
. We have equality if and

only if G is a complete multipartite graph with equal parts.
Proof. Note that c(G) = c0(G) + c1(G) + . . . + cw(G) = D(G,−1). It remains to

apply Theorem 3.1.
Corollary 3.2. Given a graph G with w = ω(G), n = |V (G)|, for all x < 0 we

have PC(G, x) ≤
(
x− n

w

)w
for even w and PC(G, x) ≥ −

(
x− n

w

)w
for odd w. We have

equality if and only if G is a complete multipartite graph with equal parts.
Remark 3.1. In [68], Theorem 3.1 was proved with the help of the Moon—Moser

inequalities [156] on the numbers of cliques of sizes s− 1, s and s + 1 in a graph G:

cs+1 ≥
s2

s2 − 1
cs

(
cs
cs−1

− n

s2

)
, (14)

where s ≥ 2, cs−1 6= 0.
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Remark 3.2. In [89], Corollary 3.1 was stated directly with the help of the following
inequalities [89, 121]

(
c1(
w
1

)
)1/1

≥
(

c2(
w
2

)
)1/2

≥
(

c3(
w
3

)
)1/3

≥ . . . ≥
(

cw(
w
2

)
)1/w

, w = ω(G). (15)

Indeed, from (15) it follows that cj ≤ Cj
w

(
n
w

)j
and c(G) = 1 + c1 + . . . + cw ≤

(
1 + n

w

)w
.

Corollary 3.3 (Turán’s Theorem). Given a graph G with w = ω(G), |V (G)| = n,
we have k = |E(G)| ≤ n2

2

(
1 − 1

w

)
.

Proof. Let w be even, then

PC(G, x) = xw − nxw−1 + kxw−2 − . . .

≤ xw − nxw−1 +
n2(w − 1)

2w
xw−2 − . . . =

(
x− n

w

)w
. (16)

For x ≪ −1, the inequality (16) is fulfilled only if k ≤ n2

2

(
1 − 1

w

)
.

The proof for odd w is analogous.
Statement 3.4. Let G be a graph with w = ω(G), |V (G)| = n. Turán’s Theorem is

equivalent to the fact that the polynomial PC(w−2)(G, x) has real roots.
Proof. Let k = |E(G)|, then

1

(w − 2)!
PC(w−2)(G, x) =

w(w − 1)

2
x2 − n(w − 1)x + k. (17)

The discriminant of the RHS from (17) is nonnegative if and only if k ≤ n2

2

(
1 − 1

w

)
.

Initiated by an effort of A. Granville to resolve the Cameron—Erdős conjecture,
N. Alon proposed in 1991 the following

Conjecture 3.1 [4]. For any n-vertex d-regular graph G, we have i(G) ≤ (2d+1−1)
n
2d .

Here i(G) = c(Ḡ) equals the number of all independent sets in G.
Note that for n divisible by 2d, we have the equality i(G) = (2d+1 − 1)

n
2d when G is

a disjoint union of n/(2d) complete bipartite graphs Kd,d. In 2001, J. Kahn proved
Conjecture 3.1 for any bipartite graph G [119]. In 2009, Y. Zhao proved Conjecture 3.1
completely [198], we state here this proof concerned with independence polynomial.

Let I(G) denote the set of all independent sets in G.
For A,B ⊂ V (G), say that A is independent from B if any a ∈ A and any b ∈ B are

disconnected. Let J (G) denote the set of pairs (A,B) of subsets of vertices of G such
that A is independent from B and G[A ∪B] is bipartite. For a pair (A,B) of subsets of
V (G), define its size as |A| + |B|.

Lemma 3.1 [198]. For a graph G, there is a bijection between I(G)×I(G) and J (G).
Proof. For every W ⊂ V (G) such that G[W ] is bipartite, fix a bipartition W =

W1 ∪W2 so that W1 and W2 are both independent in G. Let K(G) be the set of pairs
(A,B) of subsets of V (G) such that G[A∪B] is bipartite. Note that I(G)×I(G) ⊂ K(G)
and J (G) ⊂ K(G). Indeed, if A,B ∈ I(G) then A ∪ (B \ A) is already a bipartition.

Let us construct a bijection ϕ : K(G) → K(G) as follows. For any (A,B) ∈ K(G), let
W1 ∪W2 be the chosen bipartition of W = A ∪ B. We define

ϕ((A,B)) = ((A ∩W1) ∪ (B ∩W2), (A ∩W2) ∪ (B ∩W1)).
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It is easy to check that ϕ is a bijection on K(G) that maps I(G) × I(G) to J (G) and
vice versa.

Theorem 3.2 [198]. Given a d-regular graph G with n = |V (G)|, for all x ≥ 0 we
have I(G, x) ≤ (2(1 + x)d − 1)n/(2d).

Proof. Let G×K2 denote the bipartite graph with

V (G×K2) = {(v, i) | v ∈ V (G), i = 0, 1}, E(G×K2) = {((v, 0), (w, 1)) | (v, w) ∈ E(G)}.

Thus, independent sets in G × K2 correspond to pairs (A,B) of subsets of V (G) such
that A is independent from B. Applying Lemma 3.1, for all x ≥ 0 we have

I(G×K2, x) =
∑

I∈I(G×K2)

x|I| =
∑

A,B⊂V (G)
A indep. from B

x|A|+|B|

≥
∑

(A,B)∈J (G)

x|A|+|B| =
∑

A,B∈I(G)

x|A|+|B| = I(G, x)2. (18)

Note that G × K2 is also a d-regular graph. Applying the inequality of Statement
holding for bipartite graphs [96], by (18) we have for all x ≤ 0

I(G, x) ≤ I(G×K2, x)1/2 ≤ I(Kd,d, x)n/(2d) = (2(1 + x)d − 1)n/(2d).

Corollary 3.4 [198]. For any n-vertex d-regular graph G, i(G) ≤ (2d+1 − 1)
n
2d .

Corollary 3.5 [198]. Given a d-regular graph G with n = |V (G)|, for all x ≤ 0 we

have C(G, x) ≤ (2(1 + x)n−d − 1)
n

2(n−d) and c(G) = C(G, 1) ≤ (2n−d+1 − 1)
n

2(n−d) .
Let us state without proofs some results devoted to the applications of (in)dependence

polynomial in graph theory.
Theorem 3.3 [174]. Let G be a graph and dv denote the degree of vertex v in G.
a) Suppose that G is without isolated vertices. Then for all x > 0

I(G, x) ≤
∏

uv∈E(G)

I(Kdv,du , x)1/(dudv) =
∏

uv∈E(G)

((1 + x)du + (1 + x)dv − 1)1/(dudv).

Equality holds if and only if G is a disjoint union of complete bipartite graphs.
b) For all x > 0, we have

I(G, x) ≥
∏

v∈V (G)

I(Kdv+1, x)1/(dv+1) =
∏

v∈V (G)

((dv + 1)x + 1)1/(dv+1).

Equality holds if and only if G is a disjoint union of cliques.
Corollary 3.6 [66, 174]. Let G be a graph.
a) If G is without isolated vertices, then i(G) ≤ ∏

uv∈E(G)(2
du + 2dv − 1)1/(dudv).

Equality holds if and only if G is a disjoint union of complete bipartite graphs.
b) We have i(G) ≥∏v∈V (G)(dv+2)1/(dv+1). Equality holds if and only if G is a disjoint

union of cliques.
Let Hd,n denote the d-regular, n-vertex graph that is the disjoint union of n/(2d)

copies of Kd,d.
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Statement 3.5 [67]. For all d-regular graphs G on n vertices (where 2d divides n),
ik(G) ≤ 2

√
n · ik(Hd,n).

By the occupancy fraction we mean the expected fraction of vertices that appear in
the random independent set

α(G, x) =
E(|I|)
|V (G)| =

1

|V (G)|
∑

I∈I(G)

|I| · Pr[I] =
xI ′(G, x)

|V (G)|I(G, x)
= x

(
1

|V (G)| ln I(G, x)

)′
.

Here Pr[I] =
x|I|
∑

J∈I(G)

x|J | is so called hard-core distribution which is simply the uniform

distribution over all independent sets of G at fugacity x. The expression
ln I(G, x)

|V (G)|
is called the free energy. The independence polynomial is interpreted as the partition

function of the hard-core model on G at fugacity x.

Example 3.1. a) α(K̄n, x) =
nx(1 + x)n−1

n(1 + x)n
=

x

1 + x
;

b) α(Kn, x) =
xn

n(1 + nx)
=

x

1 + nx
;

c) α(C̄n, x) =
x(n + 2nx)

n(1 + nx + nx2)
=

x(1 + 2x)

1 + nx + nx2
, where Cn denotes the n-vertex cycle.

Statement 3.6 [67, 199]. Let G be a d-regular graph. For all x ≥ 0, we have the

following inequality α(G, x) ≤ α(Kd,d, x) =
x(1 + x)d−1

2(1 + x)d − 1
.

Let od(1) denote a quantity that tends to zero as d tends to infinity.
Statement 3.7 [68]. a) For any graph G, α(G, x) is monotone increasing in x.
b) Let G be a triangle-free graph on n vertices with maximum degree d, we have

α(G, x) ≥ (1 + od(1)) lnd
d

for any x ≥ 1/ ln d.
Proof. a) Show that the derivative of nα(G, x) is positive:

(nα(G, x))′ =

(
xI ′(G, x)

I(G, x)

)′
=

I ′(G, x)

I(G, x)
+

xII ′′(G, x) − x(I ′(G, x))2

I2(G, x)

=
I ′(G, x)

I(G, x)
+

1

x

(
x2I ′′(G, x)

I(G, x)
−
(
xI ′(G, x)

I(G, x)

)2
)

=
E(|I|) + E(|I|2) − E(|I|) − (E(|I|))2

x
=

D(|I|)
x

≥ 0,

where I is a random independent set drawn from the hard-core model at fugacity x.
b) See in [68] the proof based on a) and the lower bound on α(G, x) for triangle-free

graphs via Lambert W -function.
Corollary 3.8 [68, 180]. For the Ramsey numbers R(3, k), we have the upper bound

R(3, k) ≤ (1 + o(1)) k2

ln k
.

Proof. Suppose that G is triangle-free graph with no independent set of size k.
Then G must have maximum degree less than k. By Statement 3.7b, on the one hand
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nα(G) ≥ nα(G, 1) ≥ (1+o(1)) lnk
k
n. On the other hand, α(G) < k, i.e., k > (1+o(1)) lnk

k
n

as required.
The upper bound for R(3, k) from Corollary 3.7 is still the best known one. In

[26, 166], it was proved that R(3, k) ≥ (1/4 + o(1))k2/ ln k. Reducing the factor 4 gap
between these bounds is an open hard problem.

In [68], the following conjecture about the ratio of the maximum and average indepen-
dent set sizes was formulated.

Conjecture 3.2 [68]. a) For every Kr-free graph G, α(G)
α(G,1)

≥ 1 + 1
r
.

b) For every Kr-free graph G of minimum degree d, α(G)
α(G,1)

≥ 2− od(1) with r fixed as
d → ∞.

Statement 3.8. Let G be not empty graph with n vertices and the spectral radius ρ.
Then α(Ḡ, x) ≥ 1

n
for any x ≥ 1/ρ.

Proof. Let us prove the inequality for x = 1/ρ. For greater x it will follow by
Statement 3.7a.

Let w = ω(G), by the condition w ≥ 2. In 2002, V. Nikiforov proved [158] the
inequality

ρw ≤ c2(G)ρw−2 + 2c3(G)ρw−2 + . . . + (i− 1)ci(G)ρw−i + . . . + (w − 1)cw(G), (19)

which is equivalent to f ′(ρ) ≤ 0 for the function

f(x) = x +
w∑

i=2

cix
1−i = x

(
1 +

w∑

i=2

ci
xi

)
= x(C(G, 1/x) − n/x).

Since

f ′(x) = C(G, 1/x) − n/x + x

(
− 1

x2
C ′(G, 1/x) +

n

x2

)
= C(G, 1/x) − (1/x)C ′(G, 1/x),

we have C(G, 1/ρ) ≤ (1/ρ)C ′(G, 1/ρ). In terms of independence polynomial and occu-
pancy fraction, we get the inequality

α(Ḡ, 1/ρ) =
I ′(Ḡ, 1/ρ)

nρI(Ḡ, 1/ρ)
≥ 1

n

and we are done.
See the exposition [199] for another applications of the stated results for counting col-

orings, graph homomorphisms and independent sets of graphs with different constraints.
Just note that for colorings, the Potts model plays the same role as (in)dependent poly-
nomial for (co)cliques.

In the preprint [164], the applications of the independence polynomial were also shown
for sphere packings problems.

In the book [14], the different problems concerned roots of matching and independence
polynomials were considered including applications for permanents.

35



4 Partially commutative Lie algebras

It is well-known that any associative algebra 〈A, ·〉 under the commutator

[x, y] = x · y − y · x (20)

is a Lie algebra. Denote the Lie algebra obtained as A(−). If a Lie algebra g is a Lie
subalgebra of A(−), then A is called an (associative) enveloping of g.

Let g be a Lie algebra and X be a linear basis of g. The universal enveloping asso-
ciative algebra U(g) is defined as enveloping of g such that U(g) is generated by X and
any enveloping of g generated by X is a homomorphic image of U(g). The algebra U(g)
is unique up to isomorphism.

Poincaré—Birkhoff—Witt Theorem. Let {xi : i ∈ I} be a basis of a Lie algebra g
totally ordered by a set I. Then words xi1 . . . xin , i1 ≤ . . . ≤ in, form a basis of U(g).

Remark 4.1. One can endow U(g) with the operation ◦ such that 〈U(g), ◦〉 ∼=
k[xi]i∈I , the polynomial algebra on xi.

Remark 4.2. Any Lie algebra g (injectively) embeds into U (−)(g).
Define a partially commutative Lie algebra L(X,G) as Lie 〈X|[a, b] = 0, (a, b) ∈

E(G)〉. Denote the dimension of the homogeneous space of all products of length n in the
alphabet X in L(X,G) as ln. Consider in As(−)(X,G) the Lie subalgebra T generated
by the set X.

In 1992, G. Duchamp and D. Krob proved that
Lemma 4.1 [73]. a) U(L(X,G)) ∼= As(X,G), b) L(X,G) ∼= T .
Proof. In the algebra U = U(L(X,G)) the relations ab = ba for (a, b) ∈ E(G) hold.

Since U is generated by X, there exists a homomorphism ϕ : As(X,G) → U such that
ϕ(As(X,G)) = U . Moreover, L(X,G) is a homomorphic image of T under ϕ.

On the other hand, in As(−)(X,G) the relations [a, b] = 0 for (a, b) ∈ E(G) are
fulfilled. Thus, T is a homomorphic image of L(X,G) and we have proved b). Therefore,
the algebra As(X,G) is an enveloping of L(X,G) generated by X. We have that As(X,G)
is a homomorphic image of U and hence, As(X,G) ∼= U . Lemma is proved.

Given roots x1, . . . , xt0 of PC(G, x), t0 = ω(G), define the numbers

pn =

t0∑

j=1

xn
j . (21)

The numbers pn could be expressed by the Newton’s identities via the coefficients of
PC(G, x), i.e., via the numbers ck(G).

In the same work [73], G. Duchamp and D. Krob actually proved the following result
(but not in the most comfortable form).

Theorem 4.1 [73]. We have

ln =
1

n

∑

d|n
µ(d)pn/d, (22)

where µ is the Möbius function and the numbers pi are defined by (21).
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Proof. Form in L(X,G) a linear basis F which is a union of linear bases of homo-
geneous spaces of products of the same length in the alphabet X:

f11, . . . , f1l1 , f21, . . . , f2l2 , . . . , fn1, . . . , fnln , . . . .

Given a word w = xi1 . . . xis from the basis of U(L(X,G)), the sum of the lengths of
letters xij is called a degree of w. The degree of w equals the degree of the homogeneous
expression xi1 . . . xis in the alphabet X after calculating it in U(L(X,G)) by (20). The
generating function of the sequence formed by the numbers of words of the fixed degree in

U(L(X,G)) consisting only of letters from {fn1, . . . , fnln} equals
(

1
1−xn

)ln
. Since letters

xij of the basic word xi1 . . . xis can be any Lie words of any length, the generating function
of the sequence formed by the numbers of words of the fixed degree in U(L(X,G)) equals

∏

n≥1

(
1

1 − xn

)ln

.

Poincaré—Birkhoff—Witt Theorem implies the equality

∏

n≥1

(
1

1 − xn

)ln

=
∑

m≥0

amx
m,

where am equals the dimension of the homogeneous space of all words of length m in
As(X,G). Let x1, . . . , xt0 be roots (including complex) of PC(G, x). By (8)

∏

n≥1

(
1

1 − xn

)ln

=
1

D(G, x)
=

1
t0∏
j=1

(1 − xjx)

.

Calculating logarithm on both sides of the last equality, we get

ln(D(G, x)) =
∑

n≥1

ln ln(1 − xn)

or
t0∑

j=1

∑

m≥1

xm
j x

m

m
=
∑

n≥1

ln
∑

k≥1

xnk

k
.

Comparing the coefficients by the same degree xn, find

t0∑

j=1

xn
j

n
=
∑

d|n

ld
n/d

=
1

n

∑

d|n
dld

which implies
t0∑
j=1

xn
j =

∑
d|n

dld. Applying the Möbius inversion formula, we have

ln =
1

n

∑

d|n
µ(d)

(
t0∑

j=1

x
n/d
j

)
=

1

n

∑

d|n
µ(d)pn/d.
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Corollary 4.1. If G = Kn, then the growth rate of partially commutative Lie algebra
L(X,G) equals 0. Otherwise, it equals β(G).

Proof. For G = Kn, we calculate {ln} = {1, |X|, 0, 0, . . . , 0, . . .}, thus, the growth
rate equals 0. Otherwise, by Lemma 2.6 β(G) ≥ 2 and due to (21), (22) we get the

asymptotics ln ∼ βn(G)
n

and lim
n→∞

n
√
ln = lim

n→∞
n

√
βn(G)

n
= β(G). Corollary is proved.

Note that the classical Witt’s formula could be derived from (22) as a particular case.
Indeed, the free Lie algebra generated by X is exactly partially commutative Lie algebra
L(X, K̄n). Let q = |X|, then PC(G, x) = x− q and

ln =
1

n

∑

d|n
µ(d)qn/d.

Remark 4.3. Applying Corollary 4.1, the part of Lemma 2.6 devoted to the upper
bound β(G) ≤ n and when it is reached follows from [11]. In [11], the growth rate of
subalgebras, ideals and subideals of a free finitely generated Lie algebra was studied.

Corollary 4.2. a) Let G be a tree with q vertices, then for n ≥ 2

ln(G) =
1

n

∑

d|n
µ(d)(q − 1)n/d = ln(K̄q−1).

b) For G = Kq1,...,qs, we have for n ≥ 2

ln(G) =
1

n

s∑

j=1

∑

d|n
µ(d)q

n/d
j = ln(K̄q1) + . . . + ln(K̄qs).

Proof. It follows from Example 1.1, the formulas (21), (22) and the properties of
the Möbius function.

Let us write down some results found by computations.
Corollary 4.3. a) Let G = K2 ∪K1 ∪K1 ∪K1 ∪K1. For n ≥ 3 the sequence ln(G)

coincides with A212443 [182].
b) Let G = K2 ∪K1. For n ≥ 3 the sequence ln(G) coincides with A072337 [182].
c) Let G = K2∪K1∪K1. For n ≥ 3 the sequence ln(G) coincides with A072279 [182].
Proof. a) We have PC(G, x) = x2 − 6x + 1, so 3 ± 2

√
2 are roots of PC(G, x).

By (22)

ln(G) =
1

n

∑

d|n
µ(d)((3 + 2

√
2)n/d + (3 − 2

√
2)n/d).

It is known that the sequence A212443 [182] equals

an =
1

n

∑

d|n
µ(d)((1 +

√
2)n/d + (1 −

√
2)n/d)2,

which for n ≥ 3 implies

an = ln(G) +
2

n

∑

d|n
µ(d)(−1)n/d = ln(G).
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b) By [115], A072337 equals a sequence of the dimensions of homogeneous spaces of
the Lie Yang—Mills algebra over an algebraically closed field of characteristic zero

nm(k) = Lie

〈
x1, . . . , xk |

k∑

i=1

[xi, [xi, xj ]], j = 1, . . . , k

〉

for k = 3. Let YM(k) = U(nm(k)) be its universal enveloping algebra.
The generating function of the dimensions bn of YM(3) equals 1

(1−x2)(1−3x+x2)
. For

G = K2 ∪K1, we have PC(G, x) = x2 − 3x + 1 and t1,2 = 3±
√
5

2
are roots of PC(G, x).

By (22) and the properties of the Möbius function, for n ≥ 3 we have

bn =
1

n

∑

d|n
µ(d)

(
t
n/d
1 + t

n/d
2 + 1n/d + (−1)n/d

)
=

1

n

∑

d|n
µ(d)

(
t
n/d
1 + t

n/d
2

)
= ln(G).

c) The statement follows from the properties of the sequence A072279 [182] and the
formula (22). The sequence appears as the sequence of the dimensions of homogeneous
spaces of the Lie algebra nm(4). As in b), the generating function of the dimensions of
YM(4) equals 1/((1 − x2)D(G, x)).

Remark 4.4. By computational experiments, the following connection between par-
tially commutative Lie algebras and the Lie algebras L(l) of primitive elements in the
connected cocommutative Hopf algebra Sym(l) [162] was found. Let G = C3 ∪ K1,
H = K3 ∪K3. For n ≥ 3, the sequences ln(G) and ln(H) coincide with the sequences of
the dimensions of L(l) for l = 2 (A141312 [182]) and l = 3 (A185162 [182]) respectively.
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5 Random graphs

5.1 PC-polynomial of random graph

Consider PC-polynomial and clique polynomial for the random graph Gn,p with n
vertices and edge probability p

PC(Gn,p, x) = xn−
(
n

1

)
xn−1+

(
n

2

)
pxn−2− . . .+(−1)k

(
n

k

)
p

k(k−1)
2 xk+ . . .+(−1)np

n(n−1)
2 ,

C(Gn,p, x) = 1 +

(
n

1

)
x +

(
n

2

)
px2 + . . . +

(
n

k

)
p

k(k−1)
2 xk + . . . + p

n(n−1)
2 xn.

Denote by β(Gn,p) the largest real root of PC(Gn,p, x) (see Theorem 5.1 below for the
correctness of the definition).

For p = 0, we have PC(Gn,0, x) = x − n = 0 and β(Gn,0) = n. For p = 1, we have
PC(Gn,1, x) = (x− 1)n = 0 and β(Gn,1) = 1. So, we are interested on the properties of
PC(Gn,p) for p ∈ (0, 1). Let us denote Gn,p as Gp, when the number n is known.

For n = 2, we have C(Gp, x) = 1+2x+px2 and PC(Gp, x) = x2−2x+p. The largest
root of PC(Gp, x) equals

β(G2,p) =
2 +

√
4 − 4p

2
= 1 +

√
1 − p. (23)

Let us prove the analogue of Lemma 1.5 for random graph.
Lemma 5.1 [42]. The following equalities hold:
a) C(Gn,p, x) = C(Gn−1,p, x) + xC(Gn−1,p, px),
b) C ′(Gn,p, x) = nC(Gn−1,p, px),
c) PC ′(Gn,p, x) = nPC(Gn−1,p, x).
Proof. a) Fix a vertex v. Divide all cliques in Gn,p into two types, the first ones con-

tain v but not the second ones. All cliques of the second type are counted in a summand
C(Gn−1,p, x). All cliques of the first type are listed in the sum

x

n−1∑

i=0

(
n− 1

i

)
pip

i(i−1)
2 xi = x

n−1∑

i=0

(
n− 1

i

)
p

i(i−1)
2 (px)i = xC(Gn−1,p, px),

where the factor pi equals the probability of having all edges between v and all vertices
of a clique of size i in Gn,p \ v.

The proof of b) and c) is analogous.
The following theorem was stated by J. Brown and R. Nowakowski in 2005 [39] for

p = 1/2 and by J. Brown et al in 2012 [42] for any p.
Theorem 5.1 [42]. Let p ∈ (0, 1).
a) All roots of C(Gn,p, x) are real and simple.
b) Write roots of C(Gn,p, x) in ascending order rn < . . . < r1 < 0. Then pri+1 < ri

for all i = 1, . . . , n− 1.
Proof. We proceed by induction on n. For n = 1, the polynomial C(G1,p, x) has

the unique root −1. For n = 2, the polynomial C(G2,p, x) = 1 + 2x + px2 has roots

r± = −1±√
1−p

p
and we have the required inequality pr− < r+.
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By the induction hypothesis, C(Gn−1,p, x) has n− 1 real roots,

rn−1 < rn−2 < . . . < r1 < 0,

and pri+1 < ri. By Lemma 5.1a, C(Gn,p, x) = C(Gn−1,p, x) + xC(Gn−1,p, px).
The numbers ri/p, i = 1, . . . , n−1, and 0 are roots of the polynomial xC(Gn−1,p, px).

Moreover, we know how the roots of C(Gn−1,p, x) and xC(Gn−1,p, px) lie on the real line:

rn−1/p < rn−1 < rn−2/p < rn−2 < . . . < r2/p < r2 < r1/p < r1 < 0.

It is easy to check that signs of C(Gn−1,p, x) and xC(Gn−1,p, px) coincide in all intervals

d1 = (rn−1/p, rn−1), d2 = (rn−2/p, rn−2), . . . , dn−1 = (r1/p, r1), (0,+∞),

although C(Gn−1,p, x) and xC(Gn−1,p, px) have different signs in a pair of intervals di, di+1,
i = 1, . . . , n− 2. Hence, C(Gn,p, x) has a real root in all intermediate intervals

(rn−1, rn−2/p), (rn−2, rn−3/p), . . . , (r2, r1/p), (r1, 0).

The remaining n-th root of C(Gn,p, x) lies in (−∞, rn−1/p). The required inequalities for
neighbour roots of C(Gn,p, x) follow from the form of intervals in which the roots lie.

Remark 5.1. Real-rootedness of C(Gn,p, x) could be obtained from the result of

E. Laguerre. By change of variables q =
√
p, y = x/q, we have C(Gn,p, x) =

n∑
k=0

(
n
k

)
qk

2
yk.

Since all roots of the polynomial
n∑

k=0

(
n
k

)
yk = (1 + y)n are real, we may apply [127] for

|q| ≤ 1 to state that all roots of
n∑

k=0

(
n
k

)
qk

2
yk are real.

Let q =
√
p, y = qn−1x. Define the polynomial

C̃(Gn,q, y) = C(Gn,p, x) =
n∑

k=0

(
n

k

)
yk

qk(n−k)
. (24)

A polynomial F (x) =
n∑

i=0

aix
i of degree n is called symmetric if ai = an−i for all

i = 0, . . . , n. By (24), we immediately get

Statement 5.1. a) The polynomial C̃(Gn,q, y) is symmetric.

b) For odd n, p
n−1
2 is a middle root of PC(Gn,p, x). All other roots of PC(Gn,p, x)

for odd n and all roots for even n could be gathered in pairs with the roots product
equal pn−1.

Corollary 5.1. For p ∈ (0, 1), we have

β(G3,p) = 1 +
1 − p

2
+

√
3(1 − p)(3 + p)

2
, (25)

β(G4,p) = 1 + (1 − p)

√
2 + p

2
+

√
(1 − p)(4 + p + p2 + 2

√
2
√

2 + p)

2
, (26)
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β(G5,p) = 1 +
1 − p2

4
+

√
5(1 − p)

√
5 + 2p + p2

4

+

√
1 − p

√
5(5 + p + p2 + p3) + (5 − p2)

√
5
√

5 + 2p + p2

2
√

2
. (27)

Proof. Let q =
√
p, y = qn−1x. For n = 3, we have

C̃(Gq, y) = 1 +
3y

q2
+

3y2

q2
+ y3 = 1 +

3y

p
+

3y2

p
+ y3 = (1 + y)

(
y2 + y

(
3

p
− 1

)
+ 1

)
.

The smallest root of C̃(Gp, x) equals y0 =
p− 3 +

√
3(3 − 2p− p2)

2p
, so,

β(Gp) = − 2p2

p− 3 +
√

3(3 − 2p− p2)
= 1 +

1 − p

2
+

√
3(1 − p)(3 + p)

2
.

For n = 4, we have

C̃(Gq, y) = 1 +
4y

q3
+

6y2

q4
+

4y3

q3
+ y4 = y2

(
1

y2
+

4

yq3
+

6

q4
+

4y

q3
+ y2

)
= 0.

For a new variable z = y + 1/y, we get the equation z2 + 4z
q3

+ 6
q4
− 2 = 0 which roots are

z± =

− 4
q3

±
√

16
q6

− 4
(

6
q4

− 2
)

2
= − 2

q3
± 1

q3

√
4 − 6p + 2p3.

To solve the equation y2± − z±y± + 1 = 0, write down

D± = z2± − 4 =
2(4 − 3p− p3 ∓ 2

√
2
√

2 − 3p + p3)

p3
, (y±)± =

z± ±√
D±

2
.

Since all numbers (y±)± are negative, the smallest root of C̃(Gq, y) should be the one
among (y±)+ = −1

2
(|z±| −

√
D±). Since the function x −

√
x2 − 4 is monotonically

decreasing for x ∈ [2,∞), the (y−)+ is the smallest root of C̃(Gq, y) and

β(Gp) = − 2q3

z− +
√
D−

=
q3(−z− +

√
D−)

2

= 1 + (1 − p)

√
2 + p

2
+

√
(1 − p)(4 + p + p2 + 2

√
2
√

2 + p)

2
.

For n = 5, express

C̃(Gq, y) = 1 +
5y

p2
+

10y2

p3
+

10y3

p3
+

5y4

p2
+ y5

= (1 + y)

(
y4 + y3

(
5

p2
− 1

)
+ y2

(
10

p3
− 5

p2
+ 1

)
+ y

(
5

p2
− 1

)
+ 1

)
.
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Changing a variable z = y + 1/y, we get the equation

z2 + z

(
5

p2
− 1

)
+

10

p3
− 5

p2
− 1 = 0

which roots are

z± =
p2 − 5 ±

√
5
√

5 − 8p + 2p2 + p4

2p2
.

To solve the equation y2± − z±y± + 1 = 0, we calculate its discriminant

D± = z2± − 4 =
5(5 − 4p− p4) ∓ (p2 − 5)

√
5
√

5 − 8p + 2p2 + p4

2p4
, (y±)± =

z± ±√
D±

2
.

Analogously to the case n = 4 we find β(Gp) = p2(−z− +
√
D−)/2 which implies (27).

5.2 Random algebra

Let X = {x1, . . . , xn} be a finite set. Fix an order on X such that xi > xj if i < j.
Consider a word w = w1w2 . . . wm ∈ X∗ of length m = |w|. Let a letter xij occurs in w
exactly mi ≥ 1 times, i = 1, . . . , k. We suppose that xi1 > xi2 > . . . > xik . Consider a
new alphabet

X ′ = X ′(w) = {x1
i1
, . . . , xm1

i1
, x1

i2
, . . . , xm2

i2
, . . . , x1

ik
, . . . , xmk

ik
}.

Define an order on the set X ′: xs
ia > xt

ib
if a < b or a = b and s < t.

Given a word w ∈ X∗, let us construct a word w′ ∈ (X ′)∗ of the same length as
follows. If wj is the t-th occurrence (counting from the left) of a letter xs in w, then the
j-th letter of w′ equals xt

s. For example, (abccdaba)′ = a1b1c1c2d1a2b2a3.
Denote the set of all multipartite graphs with parts {x1

i1
, . . . , xm1

i1
}, . . . , {x1

ik
, . . . , xmk

ik
}

as MP (w). Define M = M(w) be equal to the product m1m2 . . .mk.
Let p ∈ [0; 1]. Define a weight sp(w) of a word w as

sp(w) =
∑

G∈MP (w)

p|E(G)|(1 − p)M−|E(G)|I(w′ is in n.f. in M(X ′, G)), (28)

where n.f. means “normal form”, M =
k∏

i=1

mi, I(A) =

{
1, A is true,

0, otherwise.

Actually sp(w) equals a probability of the event that w′ is in the normal form in hy-
pothetical partially commutative monoid with commutativity graph Gp(w), the random
multipartite graph with fixed parts with m1, . . . , mk vertices and edge probability p.

Example 5.1. Let w = acb and a > b > c. Note that MP (w) = G3,p. To calculate
sp(w), we should avoid an edge (b, c) in a graph G with 3 vertices. Thus,

sp(w) = (1 − p)3 + p(1 − p)2 + p(1 − p)2 + p2(1 − p) = 1 − p.

Call a word w = w1w2 . . . wk ∈ X∗ monotonic if wi ≥ wi+1 for all i = 1, . . . , k − 1.
For example, abbcccd is monotonic but not acb if a > b > c > d.
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Lemma 5.2. a) For a monotonic word w ∈ X∗, sp(w) = 1 for all p ∈ [0, 1]. If w ∈ X∗

is not monotonic, then sp1(w) < sp2(w) for any p1, p2 ∈ [0; 1], p1 > p2.
b) For any word w ∈ X∗ of length m, we have sp(w) ≥ (1 − p)m(1−1/n).
c) If there is precisely t different pairs of not equal neighbour letters in w ∈ X∗, then

sp(w) ≥ (1 − p)t. (We do not distinguish the pairs ab and ba in the word abba.)
Proof. a) If a word w ∈ X∗ is monotonic, then sp(w) = 1 by Lemma 1.2 and (28).
Let w be not monotonic, G ∈ MP (w). By Lemma 1.2, w′ is not in normal form

in M(X,G) if and only if there exists a pair a, b ∈ X ′ such that a < b, (a, b) ∈ E(G),
w′ = xaybz for x, y, z ∈ (X ′)∗ and (t, b) ∈ E(G) for all t ∈ y. The probability that a
triple (a, b, y) ∈ X ×X ×X∗ breaks normality of w′ in Gp(w) equals a probability that
we have a star graph K(a, b, y) connecting a and all letters from y to b. Interpret the
probability P (a, b, y) of appearance of K(a, b, y) like a geometric probability in the space

[0; 1](
n
2), n = |X|, where we relate an edge e in Kn to a line segment [0; p] if e belongs

to K(a, b, y) or to a line segment [0; 1] otherwise. Thus, P (a, b, y) equals a volume of the
constructed body. Hence, the probability that w′ is not in normal form equals a union of
all such bodies constructed for every K(a, b, y). By this observation we conclude that the
greater edge probability p implies the greater probability that w′ is not in normal form.

b) Let G ∈ MP (w) and w = w1w2 . . . wm. Draw in G all anti-edges (i.e., we draw
edges in Ḡ) between wi and wi+1 if wi < wi+1. Then w′ is in normal form in M(X ′, G)
by Lemma 1.2.

For m ≤ n, we have equal or less than m− 1 pairs of neighbour letters in w′ and the
statement follows from the inequality m−m/n ≥ m− 1.

Let m > n. Since |X| = n, there exists a pair of letters wi, wi+1 in a subword
w1w2 . . . wn+1 such that wi ≥ wi+1. We can find a such pair in a subword wn+1 . . . w2n+1

and so on. Therefore, we need equal or less m−m/n anti-edges to provide that w′ is in
normal form.

c) Let G ∈ MP (w), draw anti-edges between all pairwise distinct neighbour letters
in w. Then w′ is normal form in M(X ′, G) and thus sp(w) ≥ (1 − p)t. Lemma is proved.

Define on the free associative algebra As〈X〉 as on the vector space a new product ·.
Let Xn denote the set of all words of length n in the alphabet X. Due to distributivity,
it is enough to define the product · on elements wi ∈ Xni

, i = 1, 2,

w1 · w2 =
1

sp(w1)sp(w2)

∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|I(w′
1, w

′
2 in n.f.)[(w1w2)

′]

=
1

sp(w1)sp(w2)

∑

u∈Xn1+n2

P (w′
1, w

′
2 in n.f., u = [(w1w2)

′])u

=
∑

u∈Xn1+n2

P (u = [(w1w2)
′] | w′

1, w
′
2 in n.f.)u, (29)

where [w] denotes the normal form of w, P (A) denotes the probability of an event A in
the probability theory model constructed by the random multipartite graph Gp(w1w2)
and P (A | B) denotes the conditional probability of A given B.

To avoid the division by 0, we define · for p = 1 by the third line of (29). For p < 1,
we have sp(w) > 0 for any w ∈ X∗ by Lemma 5.2.
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Let us call the space As〈X〉 under the product · defined by (29) as partially commutati-
ve algebra with random commutativity graph or as random algebra for short denoting it
by As(X, p).

Define a weight function sp on all elements from As(X, p) by linearity.
Lemma 5.3. a) For 0 ≤ p < 1, the algebra As(X, p) is isomorphic to the free

associative algebra As〈X〉. For p = 1, As(X, p) is isomorphic to the polynomial algebra
R[X ].

b) The map sp : As(X, p) → 〈R, ·〉 is a semigroup homomorphism.
Proof. a) Note that for p = 1, we have sp(w) = 1 if w is monotonic and sp(w) = 0

otherwise. Hence, As(X, p) under the product · defined by the third line of (29) coincides
with the polynomial algebra R[X ].

Let p < 1. Define a linear map ϕ : As〈X〉 → As(X, p) acting on a word w as follows

ϕ(w) =
∑

G∈MP (w)

p|E(G)|(1 − p)M−|E(G)|[w′]. (30)

Prove that ϕ is an isomorphism of the algebras. Let us state that ϕ is injective.
To the contrary, ϕ(x) = 0 for x 6= 0. Express x via the basis: x =

∑
λiwi, λi 6=

0, wi ∈ X∗. Choose the smallest word w0 among {wi} in the lexicographic ordering
of words in X∗. Expressing ϕ(x) via the basis, ϕ(x) has a nonzero coefficient on w0,
a contradiction. By (30), spaces of words of given length and given set of letters (with
the numbers of occurrences) are ϕ-invariant. Since ϕ is injective and all such spaces are
finite-dimensional, ϕ is bijective.

Let us prove that ϕ is a homomorphism. Write down

ϕ(w1w2) =
∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|[(w1w2)
′], (31)

ϕ(w1) · ϕ(w2)

=
∑

Hi∈MP (wi),
G∈MP (w1w2)

p|E(G)|+|E(H1)|+|E(H2)|(1 − p)MG+MH1
+MH2

−|E(G)|−|E(H1)|−|E(H2)|

× 1

sp([w′
1])sp([w

′
2])

IG([w′
1], [w

′
2])[([w

′
1]H1 [w

′
2]H2)

′], (32)

where IG(w) denotes I(w in n.f. in M(X ′, G)), MG = M(w1w2), MHi
= M(wi), i = 1, 2,

[w′]H equals the normal form of w′ in M(X ′, H).
A choice of G ∈ MP (w1w2) is equivalent to an independent choice of graphs Gi ∈

MP (wi), i = 1, 2, and G12 ∈ MP (w1 − w2)), where MP (w1 − w2) denotes the set of all
subgraphs MP (w1w2) in which all vertices of w′

1 as well as w′
2 are pairwise disconnected.

Rewrite (31), (32):

ϕ(w1w2) =
∑

Gi∈MP (wi),
G12∈MP (w1−w2)

p|E(G1)|+|E(G2)|+|E(G12)|

(1 − p)MG1
+MG2

+MG12
−|E(G1)|−|E(G2)|−|E(G12)|[([w′

1]G1 [w
′
2]G2)

′], (33)
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ϕ(w1) · ϕ(w2) =
∑

Hi∈MP (wi),
G12∈MP (w1−w2)

p|E(H1)|+|E(H2)|+|E(G12)|

× (1 − p)MH1
+MH2

+MG12
−|E(H1)|−|E(H2)|−|E(G12)|

×
2∏

i=1

(
1

sp([w
′
i])

∑

Gi∈MP (wi)

p|E(Gi)|(1 − p)MGi
−|E(Gi)|IGi

([w′
i])

)
[([w′

1]H1 [w
′
2]H2)

′]

=
∑

Hi∈MP (wi),
G12∈MP (w1−w2)

p|E(H1)|+|E(H2)|+|E(G12)|

(1 − p)MH1
+MH2

+MG12
−|E(H1)|−|E(H2)|−|E(G12)|[([w′

1]H1 [w
′
2]H2)

′]. (34)

By change of “variables” Gi ↔ Hi, i = 1, 2, the RHS of (33), (34) coincide. Thus, we
get ϕ(w1w2) = ϕ(w1) · ϕ(w2).

b) It is enough to prove that sp(w1 ·w2)/(sp(w1)sp(w2)) = 1 for any wi ∈ Xni
, i = 1, 2.

By the third line from (29), we calculate

sp(w1 · w2) =
∑

u∈Xn1+n2

P (u = [(w1w2)
′] | w′

1, w
′
2 in n.f.)sp(u)

=
∑

u∈Xn1+n2

P (u = [(w1w2)
′] | w′

1, w
′
2 in n.f.)

∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|I(u in n.f.)

=
∑

G∈MP (w1w2)

p|E(G)|(1−p)M−|E(G)|
( ∑

u∈Xn1+n2

P (u = [(w1w2)
′] | w′

1, w
′
2 in n.f.)I(u in n.f.)

)

=
∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|I(w′
1, w

′
2 in n.f.). (35)

Applying (35), we get

sp(w1 · w2)

sp(w1)sp(w2)
=

1

sp(w1)sp(w2)

∑

G∈MP (w1w2)

p|E(G)|(1 − p)M−|E(G)|I(w′
1, w

′
2 in n.f.)

=
1

sp(w1)sp(w2)
P (w′

1, w
′
2 in n.f. in M(X ′, G(w1w2)))

=
1

sp(w1)sp(w2)
P (w′

1 in n.f. in M(X ′, G(w1w2)))P (w′
2 in n.f. in M(X ′, G(w1w2))) = 1,

as the events {w′
1 in n.f. in M(X ′, G(w1w2))} and {w′

2 in n.f. in M(X ′, G(w1w2))} are
independent and their probabilities do not interchange when we consider the supergraph
G(w1w2) instead of G(w1) and G(w2) respectively.

Corollary 5.2. For wi ∈ Xni
, i = 1, 2, 3, we have in As(X, p)

w1 · w2 · w3 =
∑

t∈Xn1+n2+n3

P (t = [(w1w2w3)
′] | w′

1, w
′
2, w

′
3 in n.f. in M(X ′, G(w1w2w3)))t.

Remark 5.2. The algebra As(X, p) is a trivial deformation [98] of the free associative
algebra As〈X〉, as for p = 0 we have w1 · w2 = w1w2 and As(X, p) = As〈X〉.
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Given a subset D = {d1, . . . , dk} of X∗, define a weight sp(D) of D be equal to
sp(d1) + . . . + sp(dk). Let mt(p) = sp(Xt).

Example 5.2. Denote n = |X|. Let us calculate mt(p) for t = 1, 2:

m1(p) =

n∑

i=1

sp(xi) =

n∑

i=1

1 = n,

m2(p) =

n∑

i=1

sp(x
2
i )+

∑

xi>xj

sp(xixj)+
∑

xi<xj

sp(xixj) = n+

(
n

2

)
+(1 − p)

(
n

2

)
= n2−

(
n

2

)
p.

Theorem 5.2. The numbers mt(p), t ≥ 1, satisfy the reccurence relation

mt(p) =

(
n

1

)
mt−1(p) −

(
n

2

)
pmt−2(p) + . . .

+ (−1)k+1

(
n

k

)
p(k

2) + . . . + (−1)n+1p(n
2)mt−n(p) (36)

with initial data m0(p) = 1, m−1(p) = . . . = m−n+1(p) = 0.
Proof. The proof will be very similar to the proof of Theorem 1.1. Define the sets

Ni = {p(i
2)u · (xj1xj2 . . . xji) | u ∈ Mt−i, xjs ∈ X, xj1 > xj2 > . . . > xji}, i = 1, . . . , n,

where · is the product in As(X, p).
Given a word w ∈ Xt, define

li(w) =
∑

u∈Xt−i,xjs∈X,
xj1

>...>xji

P ([(uxj1xj2 . . . xji)
′] = w, u in n.f., xjs ∼ xjt , s 6= t)

=
∑

G∈MP (w)

p|E(G)|(1 − p)MG−|E(G)|IG(w)

×
( ∑

u∈Xt−i,xjs∈X,
xj1

>...>xji

IG(w′ = (uxj1xj2 . . . xji)
′)IG(u)IG(xjs ∼ xjt , s 6= t)

)
, (37)

l0(w) =

n∑

i=1

(−1)i+1li(w),

where x ∼ y denotes that x and y are connected. Denote by k̃i(w) the expression from
the last line of (37).

Applying Lemma 5.3b, we get

∑

w∈Xt

li(w) =
∑

w∈Xt

∑

u∈Xt−i,xjs∈X,
xj1

>...>xji

P ([(uxj1xj2 . . . xji)
′] = w, u in n.f., xjs ∼ xjt , s 6= t)
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=
∑

u∈Xt−i

∑

xj1
>...>xji

∑

G∈MP (uxj1
...xji

)

p|E(G)|(1 − p)MG−|E(G)|IG(u)IG(xjs ∼ xjt , s 6= t)

=
∑

u∈Xt−i

∑

H1∈MP (u)

p|E(H1)|(1 − p)MH1
−|E(H1)|IH1(u)

×
∑

xj1
>...>xji

∑

H2∈MP (xj1
xj2

...xji
)

p|E(H2)|(1 − p)MH2
−|E(H2)|IH2(xjs ∼ xjt , s 6= t)

=

( ∑

u∈Xt−i

sp(u)

)
× p(i

2)
∑

xj1
>...>xji

1 =

(
n

i

)
p(i

2)mt−i(p) = sp(Ni). (38)

Therefore, by (38)

(
n

1

)
mt−1(p) −

(
n

2

)
pmt−2(p) + . . . + (−1)n+1p(n

2)mt−n(p)

=
n∑

i=1

(−1)i+1sp(Ni) =
∑

w∈Xt

(−1)i+1li(w) =
∑

w∈Xt

l0(w). (39)

Suppose that l0(w) = sp(w) for all w ∈ X∗, then the RHS of (36) by (39) equals∑
w∈Xt

l0(w) =
∑

w∈Xt

sp(w) = mt(p), and we are done.

Given a word w ∈ Xt, we prove that l0(w) = sp(w) by the following equalities

n∑

i=1

(−1)i+1li(w) =

n∑

i=1

(−1)i+1
∑

G∈MP (w)

p|E(G)|(1 − p)MG−|E(G)|IG(w)k̃i(w)

=
∑

G∈MP (w)

p|E(G)|(1 − p)MG−|E(G)|IG(w)

n∑

i=1

(−1)i+1k̃i(w)

=
∑

G∈MP (w)

p|E(G)|(1 − p)MG−|E(G)|IG(w) = sp(w),

since for IG(w) = 1 the coefficients k̃i(w) equal the numbers ki(w
′) for partially commuta-

tive monoid M(X ′, G) from the proof of Theorem 1.1. By Lemma 1.3 we are done.
Corollary 5.3. The polynomial PC(Gn,p, x) is a characteristic polynomial for the

sequence {mt(p)} and β(Gn,p) equals its growth rate.
Lemma 5.4. a) The following inequalities hold

1 + (n− 1)(1 − p) ≤ β(Gn,p) ≤ 1 + (n− 1)
√

1 − p. (40)

b) The number β(Gn,p) for fixed n is strictly monotonic function on p ∈ [0; 1] decreas-
ing from n to 1.

Proof. a) The upper bound follows from Theorem 5.1a and Samuelson’s Inequality.
Prove the lower bound.

Let X = V (G). Consider the random graph H with n vertices, edge probability 1−p
and loops in all vertices. Denote by Wt = Wt(H) the expected value of the numbers of
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walks in H of length t. Let us show the inequality Wt ≤ mt(p) where mt(p) = sp(Xt).
Given a word w ∈ Xt, denote by t the number of different pairs of not equal neighbour
letters in w. Then the walk w will be counted in a sum Ws as (1 − p)k. By Lemma 5.2c,
sp(w) ≥ (1 − p)k.

By Fekete’s Lemma, there exists the limit lim
t→∞

t
√

Wt(G). By [62, 112], lim
t→∞

t
√

Wt(G) =

ρ(G) for any simple graph G, where ρ(G) equals the largest eigenvalue of the adjacency
matrix A(G) (so called spectral radius of G). This result could be easily proved for H ,
since it is the corollary of the Perron—Frobenius theory.

The adjacency matrix of H

A = A(H) = (aij), aij =

{
1, i = j,

1 − p, i 6= j,

is symmetric. It is easy to state that ρ(H) = 1 + (n− 1)(1 − p). Finally, we have

β(Gn,p) = lim
t→∞

t
√
mt(p) ≥ lim

t→∞
t
√

Wt(H) = ρ(H) = 1 + (n− 1)(1 − p).

b) By Lemma 5.2a and Corollary 5.3, we have that β(Gn,p) is not strictly monotonic
function. Suppose that there exist p1 < p2, p1, p2 ∈ [0; 1], such that β(Gn,p1) = β(Gn,p2).
Then we have β(Gn,p1) = β(Gn,p) for all p ∈ [p1; p2]. Thus, polynomials PC(Gn,p1, x) and
PC(Gn,p, x) are not coprime for all p ∈ [p1; p2]. It means that the resultant of this pair
of polynomials as a polynomial on p has infinite number of zeros, a contradiction.

Remark 5.3. Let us show that two natural lower bounds are worse than (40). At
first, the lower bound on β(Gn,p) arisen from Lemma 5.2b is always not better than the
lower bound from Lemma 5.4a, as

n(1 − p)1−1/n = n(1 − p)

(
1 +

p

1 − p

)1/n

≤ n(1 − p)

(
1 +

p

n(1 − p)

)
= n(1 − p) + p = 1 + (n− 1)(1 − p).

By Theorem 5.1b, we can get the bound β(Gn,p) > n(1 − p) with the help of geometric
progression. But this bound is still worse than one we have considered above.

Corollary 5.4. a) For p = 1/2, we have

n

2
< β(Gn,1/2) <

n√
2

+ 1. (41)

b) [39] The polynomial C(Gn,1/2) equals the arithmetic mean of clique polynomials
computed for all graphs with n vertices.

Proof. a) It follows from Lemma 5.4.

b) Any clique C of size k is calculated in C(Gn,1/2) with coefficient 2−(k2). The clique C

is calculated in the sum 1

2(
n
2)

∑
G : |V (G)|=n

C(G, x) with the same coefficient 2(
n
2)−(k

2)

2(
n
2)

= 2−(k
2).
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In 2012, J. Brown et al [42] got the following bounds on the smallest root α(Gn,p) of
PC(Gn,p, x):

pn−1

n
≤ α(Gn,p) ≤

pn−1

1 +
√

1 − p
.

Below we improve both bounds.
Corollary 5.5. For any p ∈ (0, 1), we have the following bounds

pn−1

1 + (n− 1)
√

1 − p
≤ α(Gn,p) ≤

pn−1

1 + (n− 1)(1 − p)
.

Proof. It follows from Statement 5.1b and Lemma 5.4.
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6 Planar graphs

Denote the set of all planar graphs with n vertices and k edges as P l(n, k).
Let find minimal and maximal values of β(G) for G ∈ P l(n, k). We also show graphs

for these extremal values.
For any planar graph, the degree of PC(G, x) is not higher than 4. Nore the following

upper bounds on the clique numbers [196] for any planar graph with n vertices:

c2 ≤ 3n− 6, c3 ≤ 3n− 8, c4 ≤ n− 3. (42)

Case 1. For n < 3 and any k or n ≥ 3 and 0 ≤ k ≤ 2 either PC(G, x) = x − n or
PC(G, x) = x2 − nx + k = 0. In both variants, we have

λ−(n, k) = λ+(n, k) =
n +

√
n2 − 4k

2
. (43)

Case 2. Consider the four particular variants of values of n, k. For n = k = 3, we
have PC(G, x) = (x− 1)3 and

λ−(3, 3) = λ+(3, 3) = 1. (44)

Analogously,
λ−(4, 6) = λ+(4, 6) = 1. (45)

For n = 4, k = 5, we have the planar graph K1,1,2. Thus, by Example 2.1c,

λ−(4, 5) = λ+(4, 5) = 2. (46)

For n = 5, k = 9, we have the planar graph K1,1,1,2. By Example 2.1c,

λ−(5, 9) = λ+(5, 9) = 2. (47)

Case 3. Let n ≥ 4, 3 ≤ k ≤ 2n − 4. We can construct a bipartite graph G−
consisting of two parts with 2 and n − 2 vertices. Indeed, the complete bipartite graph
K2,n−2 contains 2(n− 2) ≥ k edges. Then PC(G−, x) = x2 − nx + k = 0 and

λ−(n, k) =
n +

√
n2 − 4k

2
. (48)

Note that λ− as the function on k for fixed n is strictly monotonic decreasing. The
formula (48) gives λ− = n− 1 for k = n− 1 and λ− = n− 2 for k = 2n− 4.

Lemma 6.1. Let G ∈ P l(n, k), n ≥ 4, k ≤ 2n− 4, c3(G) > 0, then β(G) > λ−(n, k).
Proof. Let λ = λ−(n, k), then

PC(G, λ) = −c3(G)λ + c4(G) < 0,

as c4 ≤ n− 3 by (42) and λ ≥ n− 2 by Lemma 2.4.
Case 4. Let n ≥ 5, 2n−4 < k < 3n−6. Construct the graph G− as a supergraph of

K2,n−2 with parts V1 = {e1, e2} and V2 = {s1, s2, . . . , sn−2} in which k − 2n + 4 < n− 2
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Figure 1: Graph G− for the case n ≥ 5, 2n− 4 < k < 3n− 6.

edges in V2 are drawn in such way that these edges form a tree with k − 2n + 5 vertices
inside V2 (see Picture 1).

Then
PC(G−, x) = x3 − nx2 + kx− 2(k − 2n + 4) = 0. (49)

One of the roots of the equation (49) equals 2, so,

λ−(n, k) =
n− 2 +

√
(n− 2)2 − 4(k − 2n + 4)

2
= −1 +

n +
√
n2 + 4n− 4k − 12

2
. (50)

In particular, λ−(n, 3n− 7) = n− 3.
Lemma 6.2. Let G ∈ P l(n, k), n ≥ 5, k = 2n− 4 + s, 1 ≤ s ≤ n− 3. Then
a) c3(G) ≥ 2s,
b) c3(G) > 2s if c4(G) > 0.
Proof. a) To the contrary, suppose that c3 = 2s− t, t > 0. By the Euler’s formula,

G has f ≥ 2+k−n = n−2+s faces. Since there are not greater than 2s−t triangle faces
in G, remaining n− 2 − s + t (or more) faces contain at least 4 vertices on their border.
Then the doubled number of all edges in G equals, from the one hand, 2k = 4n− 8 + 2s.
From the other hand, 2k ≥ N , where N equals the number of all edges of which consist
borders of all faces. By the following

N ≥ 3(2s− t) + 4(n− 2 − s + t) = 4n− 8 + 2s + t > 4n− 8 + 2s

we arrive at a contradiction.
b) Let c4(G) > 0, find a subgraph K4 in G. In every of four faces on which the

subgraph K4 divides the plane, there is ki vertices and li edges of G, i = 1, 2, 3, 4,
different from the ones of the chosen K4. We have that every face of K4 together with
the border forms a planar graph with ki + 3 vertices and li + 3 edges.

By a), the joint number of all triangles in all four faces is not less than the following
number doubled:

4∑

i=1

(li + 3 − 2(ki + 3) + 4) =
4∑

i=1

(li − 2ki + 1) = (2n− 4 + s− 6) − 2(n− 4) + 4 = s + 2.

Thus, c3(G) ≥ 2s + 4.
Corollary 6.1. Let G ∈ P l(n, k), n ≥ 5, 2n−4 < k < 3n−6, then β(G) ≥ λ−(n, k).
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Proof. We apply Lemma 6.2. The proof is analogous to the proof of Lemma 6.1
with only one refinement: λ−(n, k) ≥ n− 3, so we have a not strict upper bound β(G) ≥
λ−(n, k).

Case 5. Let n ≥ 6, k = 3n− 6. Construct the graph G− as a supergraph of K2,n−2

with parts V1 = {e1, e2}, V2 = {s1, s2, . . . , sn−2} in which the part V2 is a cycle with n−2
vertices. To draw this graph on plane, we put the vertex e1 inside the cycle and we put
e2 outside (see Picture 2).

Figure 2: Graph G− for the case n ≥ 5, k = 3n− 6.

We have
PC(G−, x) = x3 − nx2 + (3n− 6)x− 2n + 4 = 0. (51)

We find that 2 is a root of the equation (51), so

λ−(n, 3n− 6) =
n− 2 +

√
(n− 2)2 − 4(n− 2)

2
=

n +
√
n2 − 8n + 12

2
− 1. (52)

Note that β(G−) = λ−(n, 3n− 6) = β(Cn−2) for the cycle Cn−2 with n− 2 vertices.
Lemma 6.3. Let G ∈ P l(n, 3n− 6), n ≥ 6, then β(G) ≥ λ−(n, 3n− 6).
Proof. The graph G is planar, otherwise we can draw at least one additional edge

preserving planarity, a contradiction to (42). By the Euler’s formula, G has 2n− 4 faces.
Since G is maximal planar graph, all faces are triangle. Thus, c3(G) ≥ 2n− 4 = c3(G−).

Let λ = λ−(n, 3n− 6). If c4(G) = 0, then PC(G, λ) ≤ 0 and β(G) ≥ λ. Otherwise,

PC(G, λ) = −(c3(G) − 2n + 4)λ + c4(G). (53)

Since G contains K4, hence, G contains a separating triangle (it means which is a border
of any face). So, c3(G) − 2n + 4 ≥ 1. For n ≥ 6, we have λ ≥ n − 4. If c4(G) ≤ n − 4,
then PC(G, λ) ≤ 0 by (53). If c4(G) = n − 3, then c4(G) ≥ 3 for all n ≥ 6. Therefore,
we can find at least two separating triangles in G and

PC(G, λ) = −(c3(G) − 2n + 4)λ + c4(G) ≤ −2(n− 4) + n− 3 = 5 − n < 0.

Case 6. Let n ≥ 4, k ≥ 3. Construct a graph G+ as follows. Initially we draw
K3. On each step, we add one new vertex inside of some (triangle) face of the graph
and connect it with each vertex of the face. We proceed on while we have edges (see
Picture 3). Sometimes, the constructed graph is called an Apollonian network. For
k = 3n− 6, this graph maximizes the number of all cliques for planar graphs [196].

53



Figure 3: Graph G+ for the case n ≥ 4, k ≥ 3.

For 3 ≤ k < 6, G+ contains no cliques of size 4, so

PC(G+, x) = x3 − nx2 + kx− (1 + [(k − 3)/2]. (54)

If 6 ≤ k ≤ 3n− 6, we have

PC(G+, x) = x4 − nx3 + kx2 −
(

1 +

[
k − 3

3

]
+

[
2(k − 3)

3

])
x +

[
k

3

]
− 1. (55)

In particular, for k = 3s:

PC(G+, x) = x4 − nx3 + 3sx2 − (3s− 2)x + s− 1, (56)

for k = 3s + 1:

PC(G+, x) = x4 − nx3 + (3s + 1)x2 − (3s− 2)x + s− 1, (57)

for k = 3s + 2:

PC(G+, x) = x4 − nx3 + (3s + 2)x2 − (3s− 1)x + s− 1, (58)

Denote the largest root of the equations (54) and (55) (i.e., of PC(G+, x)) as λ+(n, k).
For k = 3n− 6, by (56) we write down

PC(G+, x) = x4 − nx3 + 3(n− 2)x2 − (3n− 8)x + n− 3 = 0. (59)

The value x = 1 is a root of PC(G+, x). Thus, we find that λ+(n, 3n− 6) = n− 3.
Lemma 6.4. Let G ∈ P l(n, k), n ≥ 4, k ≥ 3, then c3(G) ≤ c3(G+).
Proof. We prove the statement by induction on n. For n = 4, it is easy to show

that the statement is true.
If k ≤ 2n − 1, then there exists a vertex v of degree d(v) ≤ 3 in a planar graph G.

Hence, we can reorder edges in G in such way that the number of triangles will be not
less and v will be isolated. So, we may apply the induction hypothesis.

If G is disconnected, then we are done by the induction hypothesis and by (55).
For k ≥ 2n, we have c3(G+) ≥ 2n − 3. We may assume that G is connected. If

c3(G) > c3(G+), then by the Euler’s formula G has a separating triangle T . Let G1 (G2)
be a subgraph of G induced by V (T ) and all vertices lying inside (outside) T . Applying
the induction hypothesis for G1 and G2, we prove the inductive step.
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Lemma 6.5. Let G ∈ P l(n, k), n ≥ 4, k ≥ 3. If c4(G) < c4(G+), then c3(G) <
c3(G+).

Proof. Prove the statement by induction on n. For n = 4, the statement if checked
directly. We may assume that G is connected, otherwise we apply the induction hypoth-
esis. If G contains no separating triangles, then by the Euler’s formula n+ c3(G) ≤ k−2
and so c3(G) < c3(G+). Let T be a separating triangle in G. Let G1 (G2) be a subgraph
of G induced by V (T ) and all vertices lying inside (outside) T . Let Gi contain ni vertices
and ki edges, G+,i = G+(ni, ki), i = 1, 2.

There are k = k1+k2+3 edges and [k1+k2
3

] cliques of size 4 in G+. Let c4(G) < c4(G+),
then we have either c4(Gi) < c4(Hi) for some i ∈ {1, 2} and we may apply the induction
hypothesis and Lemma 6.4 or c4(Gi) = c4(Hi), i = 1, 2,

c4(G1) + c4(G2) =

[
k1
3

]
+

[
k2
3

]
<

[
k1 + k2

3

]
. (60)

The last inequality in (60) holds only if by division on 3 the numbers k1, k2 have reminders
either 1,2, or 2,1, or 2,2 respectively. In all cases, we can rearrange one edge in G to get a
new graph G′ such that the numbers of edges inside (outside) T will give reminders 0,0 or
0,1 by division on 3. Applying Lemma 6.4, we have inequalities c3(G) < c3(G

′) ≤ c3(G+).
Corollary 6.2. Let G ∈ P l(n, k), n ≥ 4, k ≥ 3, then β(G) ≤ λ+(n, k).
Proof. Note that by Lemma 2.4, λ = λ+(n, k) ≥ λ+(n, 3n − 6) = n − 3. If

c3(G) = c3(G+), then by Lemma 6.5 c4(G) ≥ c4(G+). So,

PC(G+, β(G)) = c4(G+) − c4(G) ≤ 0

and λ ≥ β(G).
Let c3(G) < c3(G+). Supposing that β(G) > λ ≥ n− 3, we have by (42)

PC(G+, β(G)) = −(c3(G) − c3(G+))β(G) + (c4(G+) − c4(G)) < −(n− 3) + n− 3 = 0,

a contradiction.
Remark 6.1. The following equality holds

λ−(n, 3n− 7) = λ+(n, 3n− 6),

i.e., moving edges in a planar graph we can “eat” the whole edge.
Remark 6.2. In 1991 N.B. Boots with G.F. Royle [29] and in 1993 D. Cao with

A. Vince [45] independently posed the conjecture that the graph G+(n, 3n−6) = K2∪Pn−2

has the maximal spectral radius among n-vertex planar graphs. Although the conjecture
fails for some small n, in 2017 M. Tait and J. Tobin solved this conjecture [190] showing
that the graph G+(n, 3n − 6) is the unique planar graph on n vertices with maximum
spectral radius for all sufficiently large n. We believe that this result could be proved
(with concrete lower bound on n) with the help of the Kelmans transformation and
beyond (see §8.1).

Another conjecture of D. Cao with A. Vince [45] says that the graph G−(n, 3n −
6) = K̄2 ∪Cn−2 has the maximal spectral radius among n-vertex planar graphs with the
minimal degree 4.
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Theorem 6.1. Let G ∈ P l(n, k), then

λ−(n, k) = min
G∈P l(n,k)

β(G), λ+(n, k) = max
G∈P l(n,k)

β(G),

where the numbers λ±(n, k) are defined by (43)–(48), (50), (52), (54) and (55). All these
bounds are reached.

Proof. If n < 3 or k ≤ 2, see Case 1. If n = 3 and k = 3, see Case 2.
Thus, we may consider only n ≥ 4 and k ≥ 3. For the maximal value of β(G) for

G ∈ P l(n, k), see Corollary 6.2.
For the minimal value of β(G) for G ∈ P l(n, k), for n = 4 see Case 2 when k = 5, 6

and Lemma 6.1 when k ≤ 4. For n = 5 see Case 2 when k = 9 and Corollary 6.2 when
k ≤ 8 (the case n = 5, k = 10 gives K5 which is not planar). For n ≥ 6 see Lemma 6.3.

Let P l(n) denote the set of all planar graphs with n vertices. In 2007, O. Giménez
and M. Noy stated [99] that |P l(n)| ∼ C0n

−7/2γnn! for γ ≈ 27.227 and a planar graph
in average contains κ ≈ 2.213n edges. Moreover, the expected values and dispersions of
the values c3 and c4 in a planar graph with n vertices equal respectively

µn(K3) ∼
n

6γ3
, µn(K4) ∼

n

24γ4
, σ2

n(K3), σ
2
n(K4) ∼ γn. (61)

Introduce the PC-polynomial of random planar graph as follows

PC(P l(n), x) = x4 − nx3 + κnx2 − nx

6γ3
+

n

24γ4
.

It is easy to verify that for n ≫ 1, PC(P l(n), x) has a root

n− κ−
(

6γ3κ2 − 1

6γ3

)
1

n
+ O

(
1

n2

)
≈ n− κ.

Since PC(P l(n), κ) < 0 for n ≫ 1 and PC(P l(n), 0) > 0, another root lies in the
interval (0, κ).

Lemma 6.6. Let n ≫ 1.
a) The polynomial PC(P l(n), x) has two real and two complex non-real roots. Com-

plex roots lie in the right half-plane, real roots are simple.
b) Let ρ be a root of PC(P l(n), x), then |ρ| ≥ 1/(6γ3κ).
Proof. a) By Hurwitz stability criterion [170, Theorem 11.4.5], to show that all roots

of PC(P l(n), x) lie in the right half-plane, it is enough to check the following inequalities:

n > 0, κn2 >
n

6γ3
,

κn3

6γ3
>

n3

24γ4
+

n2

6γ3
,

n

24γ4
> 0,

which are clearly fulfilled.
The Sturm series calculated for PC(P l(n), x) via its derivative gives two real roots

and two complex non-real roots.
b) It follows from the Eneström—Kakeya Theorem applied for PC(P l(n),−1/x).
Theorem 6.2. a) PC(G, x) of almost all planar graphs is a polynomial of 4-th degree,

has two complex and real roots. Complex roots lie in the right half-plane, real roots are
simple.
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b) Let ε > 0, then for almost all planar graphs we have |ρ| > 1−ε
6γ3κ

for any root ρ of
PC-polynomial.

Proof. By (61) and Chebyshev’s inequality, we nay assume that for almost all planar
graphs with n vertices

ck(G) = εkck(PC(P l(n), x)), k = 2, 3, 4,

where ck(PC(P l(n), x)) are the coefficients of PC(P l(n), x) by the degree x4−k and εk
lie in some neighbourhood of 1. It remains to repeat the proof of Lemma 6.6.

Remark 6.3. Let us consider the example showing that roots of PC-polynomial
of planar graph could lie in the left half-plane. For G = K4 ∪ K̄96, the polynomial
PC(G, x) = x4 − 100x3 + 6x2 − 4x + 1 has the following approximate values of the roots
due to [195]

0, 17028, 99, 940, −0, 05532 ± 0, 23601i.

Statement 6.1. The average value of the growth rate of partially commutative
monoid with planar commutativity graph equals

βev,P l(n) =
1

|P l(n)|
∑

G∈P l(n)

β(G) = n− κ + O(1/n).

Proof. By the construction of λ±(n, k), we have

λ− = n− k + 4

n
+

2k

n2
− k2

n3
+ O(1/n2), k > 2n− 4,

λ+ = n− k

n
+

k

n2
− k2

n3
+ O(1/n2),

(62)

from which the statement follows.
Remark 6.4. By (62), we get that the difference λ+(n, k) − λ−(n, k) in average

asymptotically equals
4

n
− κ

n
≈ 1.787

n
.

Statement 6.2. Let G be a planar graph, |V (G)| = n, |E(G)| ≤
√

16n
13

, w(G) = 3.

Then PC(G, x) has one real root and two complex non-real roots.
Proof. It is clear that n ≥ 8, otherwise k = |E(G)| < 3 and c3 = 0. Applying the

inequality 1 ≤ c3 < k, compute the discriminant of the cubic equation −PC(G,−x) =
x3 + nx2 + kx + c3 = 0:

∆ = n2k2 − 4k3 − 4n3c3 − 27c23 + 18nkc3 <
16

13
n3 − 4n3 + 18 · 16

13
n2 =

36

13
n2(8 − n) ≤ 0.

Hence, PC(G,−x) as well as PC(G, x) has only one real root.
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7 Lower bounds on β(G)

By analogy with the well-known Nordhaus—Gadddum inequalities [202, 160]

2
√
n ≤ χ(G) + χ(Ḡ) ≤ n + 1,

n ≤ χ(G)χ(Ḡ) ≤
(
n + 1

2

)2 (63)

for chromatic number of a graph G and its complement, we are interested on
Problem 1. To find the tight bounds for the expressions β(G)+β(Ḡ) and β(G)β(Ḡ).
Denote by G(n, k) the set of all graphs with n vertices and k edges. Introduce

β−(n, k) = min
G∈G(n,k)

β(G), β+(n, k) = max
G∈G(n,k)

β(G).

Problem 2. To find the values β±(n, k) and the graphs on which they are reached.
Given G ∈ G(n, k), we denote by k̄ the number |E(Ḡ)| =

(
n
2

)
− k. For fixed n

and k, the value β(G) could essentially exchange depending on G. For example, let
Ḡ1 = K2,2,...,2 ∈ G(n, k) with k̄ = n/2 and Ḡ2 = Ks,1,1,...,1 ∈ G(n, k) with n/2 =

(
s
2

)
.

Then the ratio β(G2)
β(G1)

= s
2

could be any arbitrarily large natural number when n ≫ 1.

For a graph G ∈ G(n, k), define e(G), the edge PC-density of G, as follows:

e(G) =
n− β(G)

k
.

We will see that this parameter could not essentially exchange and has excellent bounds.
For k = 0, define e(K̄n) = 1

n
.

Example 7.1. We have the following values of e(G)
a) for the complete multipartite graph with p equal parts,

e(Kn/p,n/p,...,n/p) =
n− n

p

n(n−n/p)
2

=
2

n
;

b) for a tree with n vertices,

e(Tn) =
n− (n− 1)

n− 1
=

1

n− 1
;

c) for the planar graph G+(n, 3n− 6) (see Case 6 from §6),

e(G+) =
n− (n− 3)

3n− 6
=

1

n− 2
;

d) for the random planar graph PC(P l(n), x),

e(PC(P l(n), x)) ∼ n− (n− κ)

κn
=

1

n
;
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d) for the graph Ks,1,1,...,1 with n vertices,

e(Ks,1,1,...,1) =
n− s(
n
2

)
−
(
s
2

) =
2(n− s)

(n− s)(n + s− 1)
=

2

n + s− 1
;

e) for random graph with n vertices, by Lemma 5.4,

1

n
≤ e(Gn,p) ≤

2

n
.

Given a simple graph G, define the graph Ḡloop with loops (without multiedges):

V (Ḡloop) = V (G), E(Ḡloop) = {(u, v) | (u, v) 6∈ E(G), u 6= v} ∪ {(u, u) | u ∈ V (G)}.

The following lower bound for β(G) (part a)) was proved by D.C. Fisher in 1989.
Theorem 7.1. a) [85] Given a graph G with n vertices and k edges, β(G) ≥ n− 2k

n
.

b) The bound from a) is reached if and only if G is an empty graph or G is a complete
multipartite graph with equal parts.

Proof. a) The proof will be very similar to the proof of Lemma 5.4a. Let H = Ḡloop.
Denote by Ws = Ws(H) the number of walks of length s in H . The inequality Ws ≤
ms(G) holds, since a word from partially commutative monoid M(V (G), G) correspond-
ing to a walk from Ws is always in normal form by Lemma 1.2. As it was noticed in the
proof of Lemma 5.4 , we have lim

s→∞
s
√

Ws(G) = ρ(G), where ρ(G) is the spectral radius

of G. It is easy to show [187, Theorem 1.1] that Ws equals the sum of all entries of the
matrix As, where A = A(H) is the adjacency matrix of H .

By the construction of H , we have ρ(H) = 1 + ρ(Ḡ). Applying the known lower
bound ρ(Ḡ) ≥ 2k̄

n
[53] for simple graphs, we conclude

β(G) = lim
s→∞

s
√

ms(G) ≥ lim
s→∞

s
√
Ws(G) = ρ(H) = 1 + ρ(Ḡ) ≥ 1 +

2k̄

n
= n− 2k

n
.

b) By Example 1.1, the lower bound is reached on empty graph or on a complete
multipartite graph with equal parts. Let G be a graph with n vertices, k edges, k > 0,
and β(G) = n − 2k

n
= 1 + 2k̄

n
= 1 + ρ(Ḡ). It is known that [53] the bound ρ(Ḡ) = 2k̄

n
is

attained only if Ḡ is a regular graph. If G is a complete multipartite graph (with not
necessary equal parts), then regularity implies that all parts of G are equal.

Let G be not complete multipartite graph, so G is a supergraph of a complete mul-
tipartite graph with parts G1, G2, . . . , Gr, and Ḡi is connected for all i = 1, . . . , r. By

Lemma 1.5e, PC(G, x) =
r∏

i=1

PC(Gi, x). Define ni = |V (Gi)|, k̄i = |E(Ḡi)|, i = 1, . . . , r.

From the following relations

1 +
2k̄

n
= β(G) ≥ 1 + max

i

2k̄i
ni

≥ 1 +
2(k̄1 + . . . + k̄r)

n1 + . . . + nr
= 1 +

2k̄

n
,

we conclude that 2k̄1
n1

= 2k̄2
n2

= . . . = 2k̄r
nr

. Thus, β(G) = β(G1) = . . . = β(Gr) and all Gi

are regular and not empty.
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Consider one of parts Gi. We may assume that i = 1 Let us show that for any
v ∈ V (G1) there exist u, w ∈ V (G1) such that

(v, u), (v, w) ∈ E(Ḡ1), (u, w) 6∈ E(Ḡ1). (64)

Consider d = 2k̄1
n1

vertices from the neighbourhood N(v) of v. If any two vertices from

N(v) are connected, then by regularity and connectedness of Ḡ1, we get Ḡ1 = Kd+1, a
contradiction.

Let H1 = Ḡ1
loop

, ρ(H1) = 1 + ρ(Ḡ1). To get a contradiction, it is enough to prove
that ρ(H1) < β(G1).

Denote by B the adjacency matrix of H1,

Spec(B) = {ρ(H1) = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn1},

the inequality λ1 > λ2 holds due to the Perron—Frobenius theory [187, p. 8], as the graph
H1 is connected. For D = diag{λ1, λ2, . . . , λn1}, there exists an orthogonal matrix S such
that B = S−1DS.

A walk w1w2 . . . wt is called closed if w1 = wt. The number of closed walks of length t

equals tr (Bt) =
n1∑
i=1

λt
i [112]. Since

Bt = S−1DtS = S−1diag{λt
1, λ

t
2, . . . , λ

t
n1
}S

= λt
1S

−1diag

{
1,

λt
2

λt
1

, . . . ,
λt
n1

λt
1

}
S ∼ λt

1S
−1diag{1, 0, . . . , 0}S

for t ≫ 1, we can find a vertex v ∈ V (H1) such that the number Wt(v) of closed walks
of length t starting with v is not less than λt

1/(n + 1) for t ≫ 1. Thus, there exists a
positive constant z such that Wt(v) ≥ λt

1/z for all t ≥ 1.
Consider t ≫ 1. For v, find u, w ∈ V (H1) such that (64) holds. Therefore, (u, w) ∈

E(G1) and (v, u), (v, w) 6∈ E(G1). Define on the set V (G1) an order with u > w. By
Lemma 1.2, the word Y = vuwv is in normal form. Construct a set of normal words
from Mt(V (G1), G1) as follows. For any 0 ≤ s ≤ t/4, we consider the word Y s of length
4s. In all s + 1 positions between the blocks of Y we put t− 4s letters in such way that
a word x written between neighbour Y -blocks safisfies the condition that the word vxv
is a walk in H1 (a word x could be empty). All obtained words of length t are in normal
form and pairwise distinct, so we may estimate

mt(V (G1), G1) ≥
t/4∑

s=0

(
s + t− 4s

s

)
λt−4s
1

zs+1
=

λt
1

z

t/4∑

s=0

(
t− 3s

s

)
1(

λ4
1z
)s

≥ λt
1

z

t/4∑

s=0

(
t/4

s

)
1(

λ4
1z
)s =

λt
1

z

(
1 +

1

λ4
1z

)t/4

.

Hence,

β(G1) ≥ λ1

(
1 +

1

λ4
1z

)1/4

> λ1 = ρ(H1).
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Corollary 7.1. For any graph G with n vertices, e(G) ≤ 2
n
.

Corollary 7.2. Let G be a graph with n vertices and k edges.
a) If k ≤ n2

4
, then β(G) ≥ n

2
.

b) If k ≤ n(n−1)
4

, then β(G) ≥ n+1
2

.
Corollary 7.3. For any graph G with n vertices,
a) n + 1 ≤ β(G) + β(Ḡ),
b) n ≤ β(G)β(Ḡ).

Moreover, the bounds are reached only if and only if {G, Ḡ} = {Kn, K̄n}.
Proof. a) By Theorem 7.1a,

β(G) + β(Ḡ) ≥ n− 2k

n
+ n− 2k̄

n
= 2n− 2

(
n
2

)

n
= 2n− (n− 1) = n + 1.

We have equality if and only if both G and Ḡ are empty or complete multipartite grfaph
with equal parts. It coud happen only if {G, Ḡ} = {Kn, K̄n}.

b) Analogously, by Theorem 7.1 we have

β(G)β(Ḡ) ≥
(
n− 2k

n

)(
n− 2k̄

n

)
= n2 − n(n− 1) +

4kk̄

n2
≥ n.

The equality holds only if kk̄ = 0, i.e., {G, Ḡ} = {Kn, K̄n}.
Remark 7.1. Corollary 7.3b could be derived from Corollary 7.2b and Lemma 2.6b.
Corollary 7.4. For any graph G with n vertices and k edges,

a) n + 4kk̄
n2 ≤ β(G)β(Ḡ), in particular for k = n(n−1)

4
we have

(
n+1
2

)2 ≤ β(G)β(Ḡ),
b) 2(n− 1) ≤ β(G)β(Ḡ) if {G, Ḡ} 6= {Kn, K̄n}.
Proof. a) The statement was actually proved in Corollary 7.3b.
b) It follows from Lemma 2.6b and Corollary 7.3a.
Remark 7.2. Let G be a graph with n vertices and k edges. In light of Theorem 7.1

and Lemma 2.6a, Turán’s Theorem could be interpreted as follows: the lower bound n
ω(G)

on β(G) is always not better than the one n− 2k
n

.
Corollary 7.5 [85]. For any graph G, we have β(G) ≥ 1 + ρ(Ḡ).

Statement 7.1. Let k ≤ n2

4
, then β−(n, k) = n+

√
n2−4k
2

. This value is reached for
a graph G ∈ G(n, k) if and only if G is a triangle-free graph.

Proof. If G is a triangle-free graph with n vertices and k edges, then PC(G, x) =

x2−nx+k and β(G) = A = n+
√
n2−4k
2

≥ n
2
. Let H be a graph with n vertices and k ≤ n2

4

edges. By Lemma 2.7 we have β2 − nβ + k ≥ 0 which by Corollary 7.2 implies β ≥ A.
Suppose that c3 = c3(H) > 0. If c4 = c4(H) = 0, then PC(H,A) = −c3A < 0 and hence
β > A. For c4 > 0, by Lemma 2.7, we have β4 − nβ3 + kβ2 − c3β + c4 ≥ 0. If β = A,
then c4 ≥ c3A ≥ nc3

2
, a contradiction to the simple inequality c4 ≤ n−3

4
c3.

Statement 7.2. Let k = n2

2

(
1 − 1

w

)
, w ∈ N, w ≥ 3, then β−(n, k) = n − 2k

n
. This

value is reached for a graph G ∈ G(n, k) if and only if G is the complete multipartite
graph with equal w parts.

Proof. It follows from Theorem 7.1 and Example 7.1 .
Corollary 7.6 [85, 171]. Let G be a graph with n vertices and n2

2
≤ k ≤ n2

3
edges.

Then c3 ≥ (9nk − 2n3 − 2(n2 − 3k)3/2)/27.
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Proof. Consider the function g(x) = x3 − nx2 + kx− c3. By Lemma 2.7, g(β) ≤ 0,
where β = β(G). By the conditions and Theorem 7.1, we have n/3 ≤ s = n− 2k/n ≤ β,
so, min

x≥s
g(x) ≤ 0. Since g′′(x) = 3x − n ≥ 0 for x ≥ s, the unique critical point of g(x)

for x ≥ s is the point x0 = (n +
√
n2 − 3k)/3. Thus,

0 ≥ min
x≥s

g(x) = g(x0) =
9nk − 2n3 − 2(n2 − 3k)3/2

27
− c3.

Let us finish the paragraph with the lower bound on β(G) proven by D.C. Fisher and
J.M. Nonis which is stronger than the obtained one in Theorem 7.1.

Lemma 7.1 [87]. Let A1, A2, . . . , An be a sequence of finite sets. Then for all s ∈ N,
(
s

2

)∣∣∣∣
⋃

1≤i≤n

Ai

∣∣∣∣− s
∑

1≤i≤n

|Ai| +
∑

1≤i<j≤n

|Ai ∩ Aj| ≥ 0. (65)

Proof. Let an element a be in exactly m sets of the Ai’s. Then a is counted(
s+1
2

)
− sm +

(
m
2

)
=
(
s−m+1

2

)
≥ 0 times on the left side of (65).

Given a partially commutative monoid M(X,G), let us denote by Mj(w) the set of
words in M(X,G) of the length j that can end with w. So, Mj = Mj(∅) and remind that
mj = |Mj|. Oce can prove (in a manner similiar to Lemma 1.1) that

Mj(x) ∩Mj(y) =

{
Mj(xy), (x, y) ∈ E,

∅, otherwise.
(66)

Lemma 7.2 [87]. Given a graph G with n vertices and k edges, we have for all s ∈ N,
a)
(
s+1
2

)
mj(G) − snmj−1(G) + kmj−2(G) ≥ 0,

b)
(
s+1
2

)
β2(G) − snβ(G) + k ≥ 0.

Proof. a) With the help of (66), we state that
(
s + 1

2

)
mj =

(
s + 1

2

)∣∣∣∣
⋃

x∈X
Mj(x)

∣∣∣∣ ≥ s
∑

x∈X
|Mj(x)| −

∑

x,y∈X,x 6=y

|Mj(x) ∩Mj(y)|

= s
∑

x∈X
|Mj(x)| −

∑

(x,y)∈E
|Mj(xy)| = snmj−1 − kmj−2.

b) It is enough to divide the inequalities from a) by mj−2 and consider the limit
j → ∞.

Theorem 7.2 [87]. Given a graph G with n vertices and k edges, let w be such
a natural number that

(
1 − 1

w−1

)
n2

2
< k ≤

(
1 − 1

w

)
n2

2
. Then

β(G) ≥ n

w

(
1 +

√
1 − 2kw

n2(w − 1)

)
. (67)

Proof. By Theorem 7.1,

β(G) ≥ n− 2k

n
≥ n− n

(
1 − 1

w

)
=

n

w
.

Thus, the statement follows from Lemma 7.2b for s = w − 1.
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8 Upper bound on β(G)

8.1 Maximum value β+(n, k)

Let us define a relation ≥ on simple graphs as follows. We write that G ≥ H if
D(G, x) ≤ D(H, x) on the line segment [0; 1/β(G)]. From G ≥ H , we have β(G) ≥ β(H).

In the proofs of Lemmas 2.3 and 2.4 (via Lemma 1.5), we actually have stated that
Lemma 8.1 [56]. a) Given an induced subgraph H of G, we have G ≥ H ;

b) Given a spanning subgraph H of G, we have H ≥ G.
Let G be a graph, u, v ∈ V (G), u 6= v. In 1981, A. Kelmans defined [120] so called

Kelmans transformation which transfers a graph G into a graph G′ = KT (G, u, v). To
get G′, we erase all edges between v and N(v) \ (N(u) ∪ {u}) and add all edges between
u and N(v) \ (N(u) ∪ {u}) (see Picture 4). The obtained graph has the same number
of edges as G. In 2011, P. Csikvári stated [56] some important properties of Kelmans
transformations.

u v

G G'

u v

Figure 4: The Kelmans transformation G′ = KT (G, u, v).

Lemma 8.2 [56, 57]. Let G be a graph and G′ be a graph obtained from G by a
Kelmans transformation. Then

a) G′ ≥ G and so, β(G′) ≥ β(G),
b) ck(G′) ≥ ck(G) for all k.
Proof. Let G′ = KT (G, u, v) and we may assume that N(u) \N(v) 6= ∅, otherwise

G and G′ are isomorphic.
a) Prove the statement by induction on n = |V (G)|. For n = 1, 2, the statement is

true as G′ = G. For w ∈ N(u) \N(v), write down by Lemma 1.5 ,

D(G, x) = D(G \ w, x) − xD(G[N(w)], x), (68)

D(G′, x) = D(G′ \ w, x) − xD(G′[N(w)], x). (69)

Since G′ \w = KT (G \w, u, v), we have G \w ≤ G′ \w by the induction hypothesis.
Note that G[N(w)] is isomorphic to the spanning subgraph of G′[N(w)]. Hence, by
Lemma 8.1b and (68) we derive

D(G, x) ≥ D(G′, x), x ∈ [0; 1/max{β(G′ \ w), β(G[N(w)])}].
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We have G′ ≥ G′ \ w by Lemma 8.1a, as G′ \ w is an induced subgraph of G′. Since
G′[N(w) ∪ {v}] \ {u} is a spanning subgraph of G[N(w)], by Lemma 8.1 we have

G′ ≥ G′[N(w) ∪ {v}] \ {u} ≥ G[N(w)].

Altogether, we get β(G′) ≥ max{β(G′ \ w), β(G[N(w)])}. It implies D(G, x) ≥ D(G′, x)
for x ∈ [0; 1/β(G′)], i.e., G′ ≥ G.

b) Let Ak and A′
k denote the set of all cliques of size k in G and G′ respectively. It is

easy to see that S ∈ Ak \A′
k has to contain v and at least one vertex from NG(v)\NG(u).

So, u is not a vertex of S. For any such clique S, we have a new clique S ′ ∈ A′
k \ Ak

obtained by the replacement of v on u. Thus, |A′
k| ≥ |Ak|. Moreover, we can say that

|A′
k| − |Ak| equals the number of cliques of size k in G′ such that contain u, at least one

vertex from NG(v)\NG(u) and at least one vertex from NG(u)\NG(v). Lemma is proved.
A threshold graph is a graph that can be constructed from a single vertex by repeated

applications of the following operations: a) addition of a isolated vertex, b) addition of a
vertex connected to all previous vertices. By the definition, we may identify a threshold
graph G with n vertices with a vector from thr (G) ∈ Zn−1

2 as follows. The i-th coordinate
of the vector equals 0 if the i-th vertex appeared in G is isolated and 1, otherwise.

It is easy to show that (see [55]) any graph by a series of Kelmans transformations
can be transformed to a threshold graph.

Let G be a graph such that V (G) = V (G1) ·∪V (G2). Moreover, let any vertex of
G2 be either connected or disconnected with all vertices of G1 and u ∈ V (G1) be such
hanging vertex in G1 that G1 \ u is not complete. Define the isolating transformation
which transforms G to a graph G′ = I(G, u) as follows. We obtain a G′ by arising the
only edge in G1 incident to u and adding an edge in G1 \ u.

Lemma 8.3. Let G be a graph such that V (G) = V (G1) ·∪V (G2). Moreover, let any
vertex of G2 be either connected or disconnected with all vertices of G1 and u ∈ V (G1)
be such hanging vertex in G1 that G1 \ u is not complete. There exists an isolating
transformation G′ = I(G, u) such that β(G′) ≥ β(G).

Proof. Let V = V (G), V (G2) = V ′
2 ∪ V ′′

2 , where all vertices from V ′
2 are connected

with all vertices from V1 = V (G1) and all vertices from V ′′
2 are disconnected with all

vertices from V1. Denote by e = (u, w) the only edge in G1 incident to u.
If there exists a vertex t ∈ V1 such that (w, t) 6∈ E(G1), we consider the isolating

transformation which maps e to (w, t). Otherwise, we construct the isolating transforma-
tion which maps e to an edge (v, t) with v, t distinct from u, w. Let us consider the
second case (see Picture 5), the proof in the first one is analogous. Note that E(G1) ∋
(w, v), (w, t).

Let us define an order on V : all vertices from V2 are greater than all vertices from V1.
Further, w > u > v > t and t is greater than all vertices from V1 \ {u, v, w, t}.

Fix a natural number n. Consider the graph F = G \ e and Mn(V, F ), the set
of normal words of length n in the partially commutative monoid M(V, F ). The set
Mn(V,G) could be obtained from Mn(V, F ) by removing the subset Sn of all words which
are not in normal form if adding the edge e. By Lemma 1.2, Sn consists of words from
Mn(V, F ) containing uw as a subword. Analogously, Mn(V,G′) could be obtained from
Mn(V, F ) by removing the set Tn of all words Mn(V, F ) containing a subword tv or a
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v

G

V2'

t

w

u

V2''
V1

v

F

V2'

t

w

u

V2''
V1

v

G'

V2'

t

w

u

V2''
V1

Figure 5: The isolating transformation G′ = I(G, u).

subword vt in such a position that the entire word is not in normal form iff adding the
edge e′ (call such a subword vt in words from Mn(V, F ) as special one). Prove that
|Sn| ≥ |Tn| for all n, it means that mn(V,G) ≤ mn(V,G′) and so, β(G) ≤ β(G′).

Introduce Pn = Sn ∩ Tn. We want to show that |Sn \ Pn| ≥ |Tn \ Pn|. The set Sn \Pn

consists of words from Mn(V, F ) of the form

χ0uwχ1uwχ2 . . . χk−1uwχk, k ≥ 1,

where χi, i = 0, 1, . . . , k, are any words in normal form from M(V, F ) not containing
subwords uw, tv and special vt. Some of words χi could be empty.

The set Tn \ Pn consists of words from Mn(V, F ) of the form

χ0(tv)ε1χ1(tv)ε2χ2 . . . χk−1(tv)εkχk, εi ∈ {±1}, i = 1, . . . , k, k ≥ 1,

where (tv)1 := tv, (tv)−1 := vt; χi, i = 0, 1, . . . , k, are any words in normal form from
M(V, F ) not containing subwords uw, tv and special vt. Moreover, χi−1(tv)εiχi, i =
1, . . . , k, should be in normal from in M(V, F ).

Consider the set A of all words from Sn \ Pn with fixed positions of occurrences of
subwords uw and the set B of words from Tn \Pn with the same positions of occurrences
of subwords tv (or special vt). Define the map ϕ : B → A:

ϕ(χ0(tv)ε1χ1(tv)ε2χ2 . . . χk−1(tv)εkχk) = χ0uwχ1uwχ2 . . . χk−1uwχk.

The map ϕ is well-defined because of order on V (G). Let us state that words χi−1tvχi,
χi−1vtχi ∈ Tn \Pn could not be in normal form simultaneously in M(V, F ), it will imply
that signs εi are uniquely determined. Indeed, if a word χi−1vtχi ∈ Tn \ Pn is in normal
form in M(V, F ) but not in normal form by adding the edge e′, then by Lemma 1.2,
χi−1 = cyd for y ∈ V , c, d,∈ V ∗, y < t, t is connected with y and all letters from d. Thus,
the word χi−1tvχi is not in normal form in Mn(V, F ).

Hence, ϕ(B) ⊂ A and |A| ≥ |B|. So, |Sn \ Pn| ≥ |Tn \ Pn| for all n ≥ 1. Lemma is
proved.

Now we are ready to prove the generalization of Conjecture 1 from [87].

65



Theorem 8.1. Let n, k be natural numbers, k =
(
d
2

)
+ e ≤

(
n
2

)
for 0 ≤ e < d.

Construct a graph G with n vertices and k edges as follows. We add a vertex of degree e to
the complete graph Kd and leave all other vertices to be isolated. Then β+(n, k) = β(G).

Proof. Note that the constructed graph G is the threshold graph with the corres-
ponding vector record thr (G) = (1, . . . , 1︸ ︷︷ ︸

d−e−1

, 0, 1, . . . , 1︸ ︷︷ ︸
e

, 0, . . . , 0).

Let H be a graph with n vertices, k edges and β(H) = β+(n, k). By Lemma 8.2, we
may assume that H is a threshold graph. Consider the maximal right position of zero
coordinate in thr (H) such that there is a 1 to the right of the zero. Denote by s the
position of this zero and by u the vertex corresponding to the s-th coordinate. Let V1

be a subset of V (H) formed by the initial vertex and all vertices corresponding to the
coordinates of thr (H) from the 1st to (s + 1)-th and define V2 as V (H) \ V1. If H is
not isomorphic to G, we can apply the isolating transformation H ′ = I(H, u) with the
respect to the parts V1, V2. By Lemma 8.3, β(H ′) = β(H) = β+(n, k). Repeating such
procedure, on some step we get G. On any step, β is the same. Theorem is proved.

Now we can deduce some sort of Kruskal—Katona theorem.
Corollary 8.1 [66, 196]. The constructed graph G from Theorem 8.1 maximizes all

numbers ck among graphs from G(n, k). In particular, C(H, x) ≤ C(G, x) for any graph
H ∈ G(n, k) and for all x ≥ 0.

Proof. It follows from Lemma 8.2b, the proof of Theorem 8.1 and the fact that any
isolating transformation does not decrease ck for any k.

Remark 8.1. By the same strategy of the proof what we did in Theorem 8.1, one can
reprove the analogous result for the spectral radius (the problem initially posed by Brualdi
and Hoffman in 1976 [44] and solved by P. Rowlinson in 1988 [173]2). Indeed, P. Csikvári
in [56] showed that the spectral radius of a graph is not decreasing by a Kelmans trans-
formation. Let us show the same property for an isolating transformation G′ = I(G, u)
in terms of Lemma 8.3. Consider the set Wn(V,H) of all walks of length n in a graph
H = G ∪ {(w, t)}. To get Wn(V,G′), we remove all walks from Wn(V,H) containing the
edge e and to get Wn(V,G), we remove all walks containing (w, t). By the definition, for
Wn(V,G′) we avoid all walks having subwords auwb, awub and wuw, where a, b ∈ V ′

2 .
But for Wn(V,G) we avoid not less walks, since we forbid at least all subwords atwb, awtb
and wtw, a, b ∈ V ′

2 . So, we have ρ(G) = lim
s→∞

s
√

Ws(V,G) ≤ lim
s→∞

s
√

Ws(V,G) = ρ(G′) and

it remains to apply the algorithm of the proof of Theorem 8.1.

8.2 Upper bound on β(G) and Nordhaus—Gadddum inequalities

Statement 8.1. Let G be a graph with n vertices such that all roots of PC(G, x)
are real. Then β ≤ n− k

n
and e(G) ≥ 1

n
.

Proof. Let w = ω(G), β = β(G). By Samuelson’s Inequality,

β ≤ n

w
+

w − 1

w

√
n2 − 2wk

w − 1
≤ n

w
+

n(w − 1)

w

(
1 − wk

n2(w − 1)

)
= n− k

n
,

2 More precisely, P. Rowlinson stated that the graph G is a unique graph with the maximal spectral
radius among graphs from G(n, k). We will prove the same refinement for β(G) in Corollary 9.1.
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hence, e(G) = n−β
k

≥ 1
n
.

Corollary 8.2. Given a graph G with n vertices and e(G) < 1
n
, the polynomial

PC(G, x) has complex non-real roots.
Now we want to derive the upper bound on β(G) of the form β(G) ≤ n− αk

n
applying

Theorem 8.1. Before the proof we need

Lemma 8.4. Let G be a graph with n ≫ 1 vertices and k ≥ n2

2

(
1 − 1

pep+2

)2
edges,

then β(G) < n
p

and e(G) > 2
n

(
1 − 1

p

)
.

Proof. Since, k ≤
(
n
2

)
, we get the inequality pep+2 ≤ n(2 + o(n)) < en. It implies

that there exists ε > 1/2 such that s =
[
n
(
1 − 1

pep+2

)]
= n

(
1 − 1

pep+ε

)
for the floor

function. By Lemma 2.4 and Theorem 8.1, β(G) ≤ β(Hs) for Hs = Ks ∪ K̄n−s. Since
PC(Hs, x) = (x− 1)s − (n− s)xs−1, we bound for x ≥ n

p
the following expression

PC(Hs, x)

(x− 1)s
= 1 − (n− s)

xs−1

xs
= 1 − n

xpep+ε

(
x

x− 1

)s

> 1 − 1

ep+1/2

((
1 +

1

x− 1

)x−1
)n/(x−1)

> 1 − 1

ep+1/2
en/(x−1)

≥ 1 − e
np

n−p
−p

e1/2
= 1 − ep

2/(n−p)

e1/2
> 0.

To prove the second part of the statement, we bound

e(G) =
n− β

k
>

n

k

(
1 − 1

p

)
>

2n

n2

(
1 − 1

p

)
=

2

n

(
1 − 1

p

)
.

Theorem 8.2. Let n ≫ 1. For any graph G with n vertices and k edges, we have
a) β(G) ≤ n− αk

n
,

b) e(G) ≥ α
n
,

where α ≈ 0.9408008.
Proof. For k = 0 or k =

(
n
2

)
, the statement is true. Suppose that 0 < k <

(
n
2

)
. By

Theorem 8.1, we know a graph on which the maximal value β(n, k) is reached. At first,
let k =

(
s
2

)
for some 1 < s < n. Consider a graph Hs = Ks ∪ K̄n−s, then PC(Hs, x) =

(x− 1)s − (n− s)xs−1. For β = β(Hs), we have
(
β−1
β

)s
= n−s

β
. Thus,

es/β(n− s)

β
= θ, 0 < θ = (e1/β(1 − 1/β))s < 1.

Let n = st, t > 1. Then es/β s
β
(t− 1) = θ, which implies

β =
s

W ( θ
t−1

)
=

n

tW ( θ
t−1

)
, (70)

where W (x) is the Lambert W -function, the inverse function to f(y) = yey.
Case 1: s ≥ n(1 − 1

2e4
). By Lemma 8.4, we have e(G) > 1/n and we are done.
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Case 2: s < n(1 − 1
2e4

). Thus, n − s > n
110

= O(n). By Theorem 7.1, we have
β = O(n). Compute

ne(G) = n
n− β

k
=

n2

(
s
2

)
(

1 − 1

tW ( θ
t−1

)

)
=

2ts

s− 1

(
t− 1

W ( θ
t−1

)

)
∼ 2t

(
t− 1

W ( 1
t−1

)

)
.

We apply θ ∼ 1 as

θ =

(
e1/β

(
1 − 1

β

))s

≥
((

1 +
1

β

)(
1 − 1

β

))s

=

(
1 − 1

β2

)s

≥ 1 − s

β2
.

See the plot of f(t) in Picture 6.

Figure 6: The plot of f(t) = 2t
(
t− 1

W ( 1
t−1

)

)
for t ∈ (1; 10) [195].

Let us proceed on the proof of Theorem 8.2 with the following result.
Lemma 8.5. The function f(t) = 2t

(
t− 1

W ( 1
t−1

)

)
satisfies the following properties:

a) lim
t→+1

f(t) = 2,

b) lim
t→∞

f(t) = 1,

c) f(t) is monotonic when t → +1 and t → ∞,
d) f(t) has the minimum value f(t0) ≈ 0.9408008 in the point t0 ≈ 2.6390005.
Proof of Lemma 8.5. The Taylor series of W (x) around +0 is given by

W (x) =
∞∑

i=1

(−i)i−1

i!
xi = x− x2 +

3

2
x3 − 8

3
x4 + . . .. (71)

a) It follows from the fact that W (x) → ∞ when x → ∞.
b) Applying (71) and the formula 1/(1−x) = 1+x+x2 + . . ., we prove the statement

by the following calculations

f(t) = 2t

(
t− 1

W ( 1
t−1

)

)
= 2t

(
t− 1

1
t−1

(1 − ( 1
t−1

− 3
2(t−1)2

+ 8
3(t−1)3

+ O( 1
t4

)))

)
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= 2t

(
t− (t− 1)

×
(

1 +
1

t− 1
− 3

2(t− 1)2
+

8

3(t− 1)3
+

1

(t− 1)2
− 3

(t− 1)3
+

1

(t− 1)3
+ O

(
1

t4

)))

= 2t

(
t− (t− 1) − 1 +

1

2(t− 1)
− 2

3(t− 1)2
+ O

(
1

t3

))

=
t

t− 1
− 4t

3(t− 1)2
+ O

(
1

t2

)
= 1 − 1

3t
+ O

(
1

t2

)
. (72)

c) The function f(t) monotonically increases when t ≫ 1 by (72). Let a = 1/(t− 1),
then

f(t) = g(a) =

(
1 +

1

a

)2

−
(

1 +
1

a

)
1

W (a)
.

To prove that f(t) monotonically decreases when t is in a right neighbourhood of 1, we
will show that f ′(t) < 0 in such neighbourhood. Equivalently, let us show that g′(a) > 0

when a ≫ 1. The derivative of W (x) equals W ′(x) = W (x)
x(1+W (x))

[63]. We compute

g′(a) = −2

(
1 +

1

a

)
1

a2
+

1

a2W (a)
+

(
1 +

1

a

)
1

W 2(a)
· W (a)

a(1 + W (a))

or

a2g′(a) = −2

(
1 +

1

a

)
+

1

W (a)
+

a + 1

W 2(a) + W (a)

∼ −2 +
a + 1

W 2(a) + W (a)
= −2 +

W (a)eW (a) + 1

W 2(a) + W (a)
> 0

for a ≫ 1.
d) It follows due to [195]. Lemma is proved.
By Lemma 8.5, we are done in Case 2.
At second, consider the case G ∈ G(n, k) for k =

(
s
2

)
+e, 0 < e < s. For s = O(n), the

claim follows from the above stated results. Indeed, by Lemmas 2.3 and 2.4, β(Hs+1) ≤
β(G) ≤ (Hs) and also |E(G)|, |E(Hs)|, |E(Hs+1)| ∼ s2

2
. For s = o(n), we consider two

variants. If s ≥ 100, then by previous part, we may bound

e(G) =
n− β(
s
2

)
+ e

≥ n− β(Hs)(
s
2

)
+ e

=
n− β(Hs)(

s
2

)
(
s
2

)
(
s
2

)
+ e

≥ 0.99

n
· 1

1.02
>

0.97

n
.

If s < 100, consider PC(G, x) = (x − 1)s − (n − s − 1)xs−1 − xs−e−1(x − 1)e. We have
β = n(1 − ε), where by Theorem 7.1, ε ∼ α

n2 . So,

0 =
PC(G, β)

(β − 1)s
= 1− n− s− 1

n(1 − ε)

(
1 +

1

n(1 − ε) − 1

)s

− 1

n(1 − ε)

(
1 +

1

n(1 − ε) − 1

)s−e
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= 1 − n− s− 1

n(1 − ε)

(
1 + s

(
1

n(1 − ε)
+

1

n2(1 − ε)2

)
+

s(s− 1)

2n2(1 − ε)2

)

− 1

n(1 − ε)

(
1 +

s− e

n(1 − ε)

)
+ O

(
1

n3

)

= − ε

1 − ε
− εs

n(1 − ε)2
+

s2 − s + 2e

2n2(1 − ε)2
+ O

(
1

n3

)
. (73)

Hence, α = s2−s
2

+ e = k. Thus, β ∼ n
(
1 − α

n2

)
= n − k

n
and e(G) ∼ 1

n
. Theorem is

proved.
Statement 6.1 could be derived from the following
Corollary 8.3. Let G be a graph with n ≫ 1 vertices and k = O(n2θ), θ < 1, edges.

Then β(G) ∼ n− k
n
.

Proof. By Statement 7.1, β(G) ≥ β−(n, k) = n+
√
n2−4k
2

∼ n− k
n
. For s = O(nθ), we

can analogously to (73) state that β(G) . n− k
n
.

Remark 8.2. One can get sufficiently good upper bounds on β(G) of the form
β(G) ≤ n− αk

n
with the help of Moon—Moser inequalities (14) or Fisher—Khadziivanov

inequalities (15) [89, 121] (with α ∈ [0.7; 0.8]). Let us show two upper bounds proven in
1990 by D.C. Fisher and J. Nonis.

Statement 8.2 [87]. Given a graph G with n vertices and k edges, we have
a) β3 − nβ2 + kβ −

√
2k3/2/3 ≤ 0,

b) β ≤
√
n2 − 1.5k.

Proof. a) By (15), we have c3(G) ≤
√

2k3/2/3. Substitute this bound on c3(G) in
the inequality β3 − nβ2 + kβ − c3(G) ≤ 0 holding by Lemma 2.7a and we are done.

b) Given a word w ∈ X∗, define s(w) as the number of pairs of neighbour letters in
w which are connected. For example, we have s(w) = 4 for the word w = abccdaba and
the graph G with V (G) = {a, b, c, d} and E(G) = {(a, b), (c, d)}.

We also define hj =
∑

w∈X, |w|=j

1/2s(w). Let A be the adjacency matrix of G and we

introduce the matrix B = (bij) ∈ Mn(Z) as follows: bij = 2− aij . By the definition of hj ,
we have

hj =
1

2j−1
(1, 1, . . . , 1)B(1, 1, . . . , 1)T ,

so in the “sum-of-squares” norm, we get

hj ≤
‖(1, 1, . . . , 1)‖2‖B‖j−1

2j−1
= n(

√
n2 − 1.5k)j−1.

The statement follows from the inequality β(G) = lim
j→∞

j
√
mj ≤ lim

j→∞
j
√
hj .

Note that Statement 8.2b implies the asymptotic upper bound β(G) . n − 3k
4n

for
k = o(n2).

Corollary 8.4. Let G be a graph with n ≫ 1 vertices and k edges.
a) For k ≥ 0.256736n2, we have e(G) ≥ 1

n
and β(G) ≤ n− k

n
< 3n

4
.

b) For k ≥ n2/4, we have e(G) ≥ 0.996
n

and β(G) ≤ n− 0.996k
n

< 0.751n.
Proof. a) It follows from the proof of Theorem 8.1 and the equality f(δ) = 1 for

δ ≈ 1.3955366. Hence, e(G) ≥ 1
n

and β(G) ≤ n − k
n

are fulfilled for
√

2k ≈ s ≥ n/δ or

equivalently for k ≥ n2

2δ2
≈ 0.256736n2.
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b) Note that f(
√

2) ≈ 0.99607. The rest proof is analogous to a).
Corollary 8.5. For any graph G with n ≫ 1 vertices the following inequalities hold
a) β(G) + β(Ḡ) < 1.50197n,
b) β(G)β(Ḡ) < 0.56398n2.
Proof. Let us consider the case k, k̄ ∈ O(n2). We may suppose that k =

(
s
2

)
and

k̄ =
(
s′

2

)
. Define t = n/s ∈ (1;∞) and t′ = n/s′ ≈ t/

√
t2 − 1. In the same way as we did

in the proof of Theorem 8.2 (see (70)), we have

β(G) + β(Ḡ)

n
.

1

tW ( 1
t−1

)
+

√
t2 − 1

tW (t2 − 1 + t
√
t2 − 1)

.

The function in the RHS has the maximum value 1.50197 when t =
√

2 [195].
If one of k, k̄ is o(n2), then by Lemma 8.4, β(G) + β(Ḡ) = n(1 + o(1)).
b) Analogously to a), we find the maximum of the RHS

β(G)β(Ḡ)

n2
.

1

tW ( 1
t−1

)
·

√
t2 − 1

tW (t2 − 1 + t
√
t2 − 1)

,

which is equal to 0.56398 when t =
√

2 [195].
Example 8.1. The condition n ≫ 1 in Corollary 8.5 is essential. Indeed,

β(K1,2) + β(K1,2) = 2 +
3 +

√
5

2
≈ 4.618 ≈ 1.539n,

β(K1,2)β(K1,2) = 3 +
√

5 ≈ 0.5818n2,

β(K1,3) + β(K1,3) ≈ 3 + 3.1479 = 6.1479 ≈ 1.537n,

β(K1,3)β(K1,3) ≈ 9.4437 ≈ 0.59n2.

Lemma 8.2 says that the Kelmans transformation increases (in weak sense) the value
of β. Note that if G′ = KT (G, u, v), then Ḡ′ = KT (Ḡ, u, v). Thus, the maximal values
of Nordhaus—Gadddum expressions β(G) +β(Ḡ) and β(G)β(Ḡ) are attained when both
G, Ḡ are threshold. We conjecture that the following example gives their maximal values.

Example 8.2. Let G = Ks ∪ K̄n−s, s ≥ 2, st = n ≫ 1, then by (70) compute

β(G) + β(Ḡ)

n
∼ 1

tW ( 1
t−1

)
+

1

t
.

provided that n − s = O(n). Due to [195] the function h(t) = 1
t

(
1 + 1

W ( 1
t−1

)

)
has the

maximal value h(t1) ≈ 1.46594 in the point t1 ≈ 1.2773044.
We deal with β(G)β(Ḡ) analogously. Due to [195] the function l(t) = 1

t2W (( 1
t−1

))
has

the maximal value l(t2) ≈ 0.535919 in the point t2 ≈ 1.31745. Thus, the following values
can be reached

β(G) + β(Ḡ) ≈ 1.46594n,

β(G)β(Ḡ) ≈ 0.535919n2.
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Example 8.3. Let n ≫ 1. Define a graph G such that V (G) = V1 ∪ V2 ∪ V3 ∪ V4,
Vi ∩ Vj = ∅, i 6= j, |Vi| = n/4, i, j = 1, 2, 3, 4. We have the following edges:

E(V ) = {(u, v) | u, v ∈ V3 ∪ V4} ∪ {(u, v) | u ∈ V1, v ∈ V3} ∪ {(u, v) | u ∈ V2, v ∈ V4}.

Then

PC(G, x) = (x− 1)n/2 − n

2
(x− 1)n/4xn/4−1 = (x− 1)n/4

(
(x− 1)n/4 − n

2
xn/4−1

)
.

For β = β(G), we have
(
β−1
β

)n/4
= n

2β
. Since β > n/2, we have e

n
4β n

4β
≈ 1

2
. Hence,

β = n
4W (0.5)

≈ 0.710765n.

Since Ḡ is isomorphic to G, we compute

β(G) + β(Ḡ) ≈ 1.42153n,

β(G)β(Ḡ) ≈ 0.50519n2.

Remark 8.3. Let n ≫ 1. By Corollary 7.5 and Corollary 8.5 we have the upper
bound ρ(G) + ρ(Ḡ) < 1.5158n for any graph G with n vertices.

Of course, this bound is too bad. It was a series of works devoted to Nordhaus—
Gadddum problem for the spectral radius. Analogously to the proof of Theorem 7.1a,
one can state that n − 1 ≤ ρ(G) + ρ(Ḡ). In 1970, E. Nosal proved that ρ(G) + ρ(Ḡ) ≤√

2n [161]. In 2007, V. Nikiforov improved this one to (
√

2−8·10−7)n and conjectured that
ρ(G) + ρ(Ḡ) ≤ 4n/3 [159]. In 2009, P. Csikvári showed that the Kelmans transformation
increases (in weak sense) the spectral radius of G as well as of Ḡ and dealing with

threshold graphs proved ρ(G) + ρ(Ḡ) ≤ 1+
√
3

2
n [55]. Finally, in 2011 T. Terpai proved

Nikiforov’s conjecture [191] with the help of analytic methods. The common example
for the asymptotically tight upper bound for both ρ(G) + ρ(Ḡ) and ρ(G)ρ(Ḡ) is the
following: it is a clique of size 2n/3 and its complement. It is interesting to compare
with the situation with β(G). If Example 8.2 gives the asymptotically tight upper bound
for the Nordhaus—Gadddum expressions for β, they are attained in essentially different
graphs.
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9 Minimum value β−(n, k)

After Statement 7.1, we are interested to find β−(n, k) for k > n2/4.
Given a graph G and two distinct vertices u, v ∈ V (G), let us call a Kelmans trans-

formation KT (G, u, v) as a nontrivial one, if c(G′) − c(G) > 0, where c(H) denotes
the number of all cliques in a graph H . Nontriviality of a Kelmans transformation
KT (G, u, v) is equivalent to the following condition: there exist x ∈ NG(u) \NG(v) and
y ∈ NG(v) \NG(u) such that (x, y) ∈ E(G).

Lemma 9.1. Let G be a graph with connected complement. If a graph G′ is a result
of a nontrivial Kelmans transformation of G, then β(G′) > β(G).

Proof. Let G′ = KT (G, u, v). Denote A = NG(u) \ NG(v) = {a1, . . . , ap}, B =
NG(u) ∩ NG(v) and C = NG(v) \ NG(u) = {c1, . . . , cr}. Due to the definition of the
Kelmans transformation,

D(G′, x) −D(G, x)

= D(G[A ∪ B ∪ C], x) −D(G[A ∪ B], x) −D(G[B ∪ C], x) + D(G[B], x). (74)

Applying Lemma 1.5a successively, we get

D(G[A ∪B ∪ C], x) = D(G[A ∪ B ∪ C] \ c1, x) − xD(G[N(c1) ∩ (A ∪B ∪ C)], x)

= D(G[A ∪ B ∪ C] \ {c1, c2}, x)

− xD(G[N(c1) ∩ (A ∪ B ∪ C)], x) − xD(G[N(c2) ∩ (A ∪ B ∪ C2)], x)

= . . . = D(G[A ∪B], x) − x

(
r∑

i=1

D(G[N(ci) ∩ (A ∪B ∪ Ci)], x)

)
, (75)

where Ci = C \ {c1, c2, . . . , ci}.
Dealing with D(G[B ∪C], x) in a similar way as we did in (75) and substituting (75)

and the obtained formula for D(G[B ∪ C], x) in (74), we have

D(G[A ∪B ∪ C], x) −D(G[A ∪B], x) −D(G[B ∪ C], x) + D(G[B], x)

= −x
r∑

i=1

(D(G[N(ci) ∩ (A ∪B ∪ Ci)], x) −D(G[N(ci) ∩ (B ∪ Ci)], x)). (76)

Now we apply Lemma 1.5a for every D(G[N(ci)∩(A∪B∪Ci)], x) considering successively
vertices from A:

D(G[N(ci) ∩ (A ∪B ∪ Ci)], x) −D(G[N(ci) ∩ (B ∪ Ci)], x)

= −x

p∑

j=1

D(G[N(aj) ∩N(ci) ∩ (Aj ∪B ∪ Ci)], x),

where Aj = A \ {a1, a2, . . . , aj}. Finally, we write down

D(G′, x) −D(G, x) = x2

r∑

i=1

p∑

j=1

D(G[N(aj) ∩N(ci) ∩ (Aj ∪ B ∪ Ci)], x). (77)
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By Lemma 8.2a, β(G′) ≥ β(G). Substituting x = 1/β(G′) in (77), on the one hand
we get a nonpositive number in the LHS. On the other hand, by Lemma 2.3a (Ḡ is
connected!) we have a positive number in the RHS of (77) provided that at least one
of sets Mij = N(aj) ∩ N(ci) ∩ (Aj ∪ B ∪ Ci) is not empty. Suppose that Mij = ∅ for
all i and j. Thus, ck(G′) = ck(G) for all k ≥ 4. Since we consider nontrivial Kelmans
transformation, c3(G

′) > c3(G) and hence β(G′) > β(G). Lemma is proved.
Lemma 9.2. Let G be a graph with connected complement. Let e ∈ E(G) be an

edge lying in a clique of size t ≥ 3 and a, b ∈ V (G) such vertices that (a, b) 6∈ E(G) and
NG(a) ∩NG(b) = ∅. Consider the graph G′ obtained by removing an edge e and adding
an edge (a, b). Then G′ ≤ G and β(G′) < β(G).

Proof. Let e = (u, v), denote A = NG(u) ∩ NG(v). It is easy to get the following
equality (see, e.g., Lemma 1.5b)

D(G′, x) −D(G, x) = x2 − x2D(G[A], x).

Denote β = β(G). Let us show that the function f(x) = 1 − D(G[A], x) increases
strictly monotonically on x ∈ [0; 1/β], it will imply that G ≥ G′ and also

β2D(G′, 1/β) = 1 −D(G[A], 1/β) > 1 −D(G[A], 0) = 0,

hence β(G′) < β(G). Indeed, by Lemma 1.5c,

f ′(x) = −D′(G[A], x) =
∑

w∈A
D(G[A ∩N(w)], x) > 0, x ∈ [0; 1/β],

since the edge e lies in a clique of size t ≥ 3 and D(H, x) > 0, x ∈ [0; 1/β], for every
proper induced subgraph H of G by Lemma 2.3b.

Corollary 9.1. The graph G constructed in Theorem 8.1 is a unique graph with the
maximal β(G) among all graphs with n vertices and k edges with one exception: when
k =

(
d
2

)
+ 1 for some d. In this case, the set {H ∈ G(n, k) | β(H) = β+(n, k)} consists of

all graphs obtained from Kd ∪ K̄n−d by adding one edge.
Proof. The statement is trivial for n < 3 or k < 3. If k̄ < n − 1, then we have

PC(G, x) = (x − 1)n−1−k̄PC(G′, x), where G′ obtained from G by removing n − 1 − k̄
vertices of degree n− 1. So, we may assume that 3 ≤ k ≤

(
n
2

)
− n + 1.

Let H be a graph with β(H) = β+(n, k). Suppose that H̄ is disconnected, i.e.,
G = H1 + . . . + Hs with connected H̄i. Let H1 be a maximal part of H . If at least one
of |V (H2)|, . . . , |V (Hs)| is greater than 1 (say H2), then we apply the Kelmans transfor-
mation G′ = KT (G, u, v) for any v ∈ V (H1) and u ∈ V (H2). Since the maximal part of
G′ contains H1 as the proper induced subgraph we get β(G′) > β(G) by Lemma 2.3, a
contradiction.

Let |V (H2)| = . . . = |V (Hs)| = 1. Let us show that this case is contradictary for
s = 2, the proof for s > 2 is analogous. By Theorem 8.1, β(H) = β(H1) = β(F1), where
the graph F1 consists of the complete graph Kd′ , a vertex v of degree e′ and remaning
n − 1 − d′ − e′ ≥ 1 isolated vertices. Here

(
d′

2

)
+ e′ = k − n + 1 (we have fixed s = 2),

0 ≤ e′ < d′. Let V (H2) = {u}. Introduce the graph F = F1 + {u} and the graph
J obtained from F by removing an edge (u, k) for a vertex k from the clique Kd′ and
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adding an edge (v, i) for some remaining isolated vertex i. Note that both F and J
have connected complements. Therefore, we can apply the proof of Lemma 9.2 for the
pair of graphs F (instead of G′) and J (instead of G). If d′ > 1, we get β(F ) < β(J), a
contradiction. If d′ = 1, it means that F1 (= H1) is an empty graph. Since k̄ ≥ n−1 ≥ 2,
we have |V (H1)| ≥ 3. Thus, F is a triangle-free graph and we have by Statement 7.1
β(F ) < β+(n, k), a contradiction.

We have proved that H has to be connected. If ω(H) < d, then some of the Kel-
mans or isolating transformations (see proof of Theorem 8.1) imply β(H) < β+(n, k) by
Lemma 9.1 or by Lemma 9.2. So, ω(H) = d.

For k =
(
d
2

)
+ e, if e = 0 or e = 1, we are done. Suppose that e ≥ 2. We get the

extremal graph G either from at least one Kelmans transformation or after at least one iso-
lating transformation (and, maybe Kelmans transformations before; see the proof of The-
orem 8.1). In the first case, consider the last Kelmans transformation G = KT (H, u, v),
where β(H) = β(G). Because of the the structure of G and ω(H) = d, this Kelmans
transformation is nontrivial and β(H) < β(G), a contradiction. In the second case,
consider the last isolating transformation G = I(H, u). In the vector notation of thresh-
old graphs, we transformed the graph thr (H) = (1, . . . , 1︸ ︷︷ ︸

d−e

, 0, 1, . . . , 1︸ ︷︷ ︸
e−1

, 0, 1, 0, . . . , 0) to the

graph thr (G) = (1, . . . , 1︸ ︷︷ ︸
d−e−1

, 0, 1, . . . , 1︸ ︷︷ ︸
e

, 0, . . . , 0). As d ≥ 3, we have β(G) > β(H) by

Lemma 9.2.
Corollary 9.2. Let k > [n2/4] and G be a graph such that β(G) = β−(n, k). Then

G is connected graph having diameter 2.
Proof. If Ḡ is disconnected, then G is connected and has diameter 2, we are done.

Let Ḡ be connected.
If G has more than one connected components, by Mantel’s Theorem (Statement 3.1),

at least one component contains a triangle. Applying Lemma 9.2, we get a graph G′ such
that β(G′) < β(G), a contradiction.

Suppose G has diameter 3 or greater. It means that one can find a pair of vertices
u, v ∈ V (G) such that (u, v) 6∈ E(G) and there no a vertex w ∈ V (G) with the property
(u, w), (w, v) ∈ E(G). It remains to apply Lemma 9.2 for a graph G′ obtained by removing
an edge e from any triangle of G and adding an edge (u, v). We get β(G′) < β(G), a
contradiction. Corollary is proved.

Now we formulate the following conjecture modulo which we will find the exact value
of β−(n, k).

Conjecture 9.1. Let k > [n2/4] and G be a graph such that β(G) = β−(n, k). Then
Ḡ is disconnected.

Consider the case when n2/4 < k < n2/3. At first, let n = 2l + 1 and k < l(l + 2). In
this case we construct the graph G− as follows. It is a supergraph of Kl+1,l in which the
k′ = k − l(l + 1) edges form a tree inside the part with l + 1 vertices. Then

β(G−) =
l + 1

2

(
1 +

√
1 − 4k′

(l + 1)2

)
. (78)

At second, let n be either even or odd with k ≥ n2/4 + n/2. Find a natural number
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n1 such that
n1(2n− 3n1) ≤ k < (n1 − 1)(2n− 3n1 + 3). (79)

Note that n/3 < n1 ≤ n/2. The inequalities (79) are equivalent to the following ones:

|E(Kn1,n1,n−2n1)| ≤ k < |E(Kn1−1,n1−1,n−2n1+2)|.

Denote k′ = k − n1(2n − 3n1). From (79) we conclude that 0 ≤ k′ < 6n1 − 2n − 3.
Let us construct the graph G− as follows. It is a supergraph of Kn1,n1,n−2n1 in which the
[k′/2] edges form a tree in the first part and remaining k′ − [k′/2] edges form a tree in
the second part. So, β(G−) is the largest root of the equation x2 − n1x + [k′/2] = 0, i.e.,

β(G−) =
n1

2

(
1 +

√
1 − 2k′

n2
1

+
2ε

n2
1

)
, (80)

where ε = k′/2 − [k′/2] ∈ {0, 1}. Note that we allow for n− 2n1 be equal to zero.
Theorem 9.1. Let n2/4 < k < n2/3. If Conjecture 9.1 holds, then β−(n, k) = β(G−)

for the constructed graph G−. Thus, β−(n, k) is defined by (78) if n = 2l + 1 and
k < l(l + 2) or by (80) otherwise.

Proof. By Conjecture 9.1, a graph H ∈ G(n, k) with β(H) = β−(n, k) has disconnec-
ted complement. Assume that H is a supergraph of the complete multipartite graph with
parts H1, . . . , Hs such that H̄i are connected.

If n = 2l + 1 and k < l(l + 2), then s = 2, since we have too less edges to form either
more parts or to form bipartite graph with another capacities of parts. It remains to
apply Statement 7.1.

Let n be even and k < n2

4
+n−3, then s ≤ 3. We have two possibilities: to construct

a supergraph of Kn/2,n/2 (with connected complements) or to construct a supergraph of

Kn/2,n/2−1,1 (provided k ≥ n2

4
+ n

2
− 1). It is easy to see that the smallest value of β is

reached on the graph G obtained from inserting [k′/2] (where k′ = k − n2/4) edges in
one part of Kn/2,n/2 and inserting k′ − [k′/2] edges in the another. Actually, it is (80) for
n1 = n/2 and the same value k′.

Now we consider the case when k is enough big to form a tripartite graph with parts
a, a, b with a ≥ b. Let us show that there exists a graph H ′ ∈ G(n, k) with β(H ′) =
β−(n, k) and H̄ ′ has exactly three connected components. Suppose there exists a graph
H ∈ G(n, k) with the minimal β and s = 4. Denote ai = |Hi|, 1 ≤ i ≤ 4, and order the
numbers in such way that a1 ≥ a2 ≥ a3 ≥ a4. If a1 > n1, then β(H) ≥ β(G−). Indeed, if
H has more than a1−1 edges over the edges of the graph Ka1,a2,a3,a4 , then we can construct
a supergraph of Ka1−1,a2,a3,a4+1 with smaller a1. If |E(H)| − |E(Ka1,a2,a3,a4)| < a1 − 1, by
Statement 7.1, β(H) > a1 − 1 ≥ β(G−). If a1 < n1, then

k = |E(H)| = a1(a2 + a3 + a4) + a2(a3 + a4) + a3a4

> (n1 − 1)(n− n1 + 1) + (n1 − 1)(n− 2n1 + 2) = 2nn1 − 3n2
1 + 6n1 − 2n− 3,

a contradiction to (79). If a1 = n1, in a similar way we can show that a2 = n1 and the
unique case when H has the minimal value of β−(n, k) is the following: a3 = a4 = 1 and
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k′ = k−n1(2n−3n1) is odd. In this case we can move the only edge between parts a3, a4
inside of one parts of a1, a2.

For H which complement has three connected components, the minimality of β(H)
leads to form the small as possible maximal parts of H , it is exactly the condition (79).
After that, we may apply Statement 7.1.

Corollary 9.3. Let n2/4 < k < n2/3.
a) If Conjecture 9.1 holds, then the graph H ∈ G(n, k) such that β(H) = β−(n, k) is

unique up to the choice of triangle-free graphs with [k′/2] and k′ − [k′/2] vertices inside
the two largest parts. If k′ is odd, we also may form triangle-free graphs with (k′ − 1)/2
edges inside the two largest parts and draw the last edge inside the third part.

b) We have n
3

+ 1
3

√
n2 − 3k ≤ β−(n, k) < n

3
+ 1

3

√
n2 − 3k + 1.

Proof. a) It follows from the proof of Theorem 9.1.
b) The lower bound follows from Theorem 7.2, the upper one is true by the construc-

tion of the graph G−.
Remark 9.1. For the constructed graph G−, we have

c3(G−) ≈ n2
1(n− 2n1) ≈

1

27
(n +

√
n2 − 3k)2(n− 2

√
n2 − 3k)

=
9nk − 2n3 − 2(n2

√
n2 − 3k)3/2

27
,

which is equal to the lower bound from Corollary 7.6. Thus, the graph G− has asymptoti-
cally the smallest number of triangles.

Now let us consider the general case for n2/4 < k. Let
(
1 − 1

w−1

)
n2

2
< k <

(
1 − 1

w

)
n2

2

for a natural number w.
Define l =

[
n

w−1

]
, p = n− l(w − 1) and q = w − 1 − p. Suppose that k <

(
w−1
2

)
l2 +

pl(w − 1), i.e., k is not enough large to construct a supergraph of Ka,a,...,a,b (with w − 1
parts of a and a ≥ b ≥ 0). Thus, the graph H with β(H) = β−(n, k) is a supergraph of
Kl+1,l+1,...,l+1,l,...,l with p parts with l + 1 edges and q parts with l edges. Introduce

k′ = k −
((

p

2

)
(l + 1)2 +

(
q

2

)
l2 + pql(l + 1)

)
.

We construct the graph G− as follows. We draw a triangle-free graphs with [k′/p] vertices
inside all p parts with l + 1 vertices and draw remaining edges anywhere. So,

β(G−) =
l + 1

2

(
1 +

√
1 − 4[k′/p]

(l + 1)2

)
. (81)

Let k be enough large to construct a supergraph of Ka,a,...,a,b with prescribed conditions
on parts. Find a natural number n1 such that

(w − 1)n1

(
n− wn1

2

)
≤ k < (w − 1)(n1 − 1)

(
n− w(n1 − 1)

2

)
. (82)

We also have n
w
< n1 ≤ n

w−1
and the inequalities (82) are equivalent to the following ones:

|E(Kn1,...,n1,n−(w−1)n1
)| ≤ k < |E(Kn1−1,...,n1−1,n−(w−1)(n1−1))|.
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Denote k′ = k −
(
(w − 1)n1n −

(
w
2

)
n2
1

)
and 0 ≤ k′ < (w − 1)(wn1 − n − w/2). We

construct the graph G− as a supergraph of Kn1,...,n1,n−(w−1)n1 in which the [k′/(w − 1)]
edges form a triangle-free graph in each part with n1 vertices and we put remaining
k′− (w−1)[k′/(w−1)] edges anywhere. Hence, β(G−) as the largest root of the equation
x2 − n1x +

[
k′

w−1

]
= 0 equals

β(G−) =
n1

2

(
1 +

√
1 − 4k′

(w − 1)n2
1

+
4ε

(w − 1)n2
1

)
, (83)

where ε = k′/(w − 1) − [k′/(w − 1)] ∈ {0, 1}.
Theorem 9.2. Let

(
1 − 1

w−1

)
n2

2
< k <

(
1 − 1

w

)
n2

2
. If Conjecture 9.1 holds, then

β−(n, k) = β(G−) for the constructed graph G−. Thus, β−(n, k) is defined by (81), (83).
Proof. The proof is analogous to the proof of Theorem 9.1.
Corollary 9.4. Let

(
1 − 1

w−1

)
n2

2
< k ≤

(
1 − 1

w

)
n2

2
, w ≥ 2, then

n

w
+

1

w

√
n2 − 2kw

w − 1
≤ β−(n, k) <

n

w
+

1

w

√
n2 − 2kw

w − 1
+ 1. (84)

Proof. The lower bound follows from Theorem 7.2. For k =
(
1− 1

w

)
n2

2
, the inequal-

ities follow from Statement 7.1 and Statement 7.2. For k <
(
1 − 1

w

)
n2

2
, the upper bound

follows from the construction of G−. Indeed, if k ≥
(
w−1
2

)
l2 + pl(w − 1), then we have

β−(n, k) ≤ β(G−) ≤ n1 =

⌈
n

w
+

1

w

√
n2 − 2kw/(w − 1)

⌉

by (82). Otherwise, it is easy to show that l < n
w

+ 1
w

√
n2 − 2kw

w−1
and thus,

β−(n, k) ≤ β(G−) < l + 1 <
n

w
+

1

w

√
n2 − 2kw

w − 1
+ 1.

Remark 9.2. Note that the construction of G− is almost the same as the construc-
tions from the works of C. Reiher [172] and A.A. Razborov [171] devoted to the problem
of finding the minimal values of the numbers of cliques in a graph from G(n, k) (see also
the article [141] about the exact evaluation of the number of triangles).

See in Picture 8 the asymptotics of the borders of possible values of β(G)/n, the
upper bound is derived from the proof of Theorem 8.2 and the lower bound follows from
Corollary 9.4.
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10 Average value of β(G)

10.1 Average value

We are interested on the asymptotics of the expression

βev (n) =
1

2(n2)

∑

G : |V (G)|=n

β(G),

i.e., we want to find the average value of growth rate of partially commutative monoid
with n-vertex commutativity graph.

Lemma 10.1. For all p ∈ [0; 1], there exists the limit lim
n→∞

β(Gn,p)
n

.

Proof. For p = 0, the limit equals 1, for p = 1 the limit equals 0. Let p ∈ (0; 1) and
b = 1/p.

Consider the polynomials

Pt(x) =
t∑

i=0

(−1)i

i!b(
i

2)
xt−i, t ≥ 1.

Define xt as the largest positive root of Pt(x). For even t, if Pt(x) has no such roots,
define xt = 0. It is clear that xk ∈ [0; 1] and x2k < x2k+1, x2k < x2k−1 for all k ∈ N.

For polynomials

Dt(x) =
t∑

i=0

(−1)i

i!b(
i

2)
xi = xtPt(1/x), t ≥ 1, (85)

we have the following relation

D′
n+1(x) = −Dn(px). (86)

From the definition of Dt(x) and (86), we conclude that

P ′
n(x) =

1

xbn−1
Pn−1(bx) +

n

x
Pn(x). (87)

Suppose that x2k+1 is not a simple root of P2k+1(x), then by (87) we have that bx2k+1

is a root of the polynomial P2k(x), which contradicts the inequality x2k < x2k+1. Hence,
x2k+1 is a simple root of P2k+1(x).

Introduce polynomials

Rt(n, x) =
t∑

i=0

(−1)i
(
n
i

)

b(
i
2)

xt−i, t ≥ 1,

and xt(n) as the largest positive root of Rt(n, x). For even t, if Rt(n, x) has no such roots,
define xt(n) = 0.
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Let us show that x2k(n) ≤ β(Gn,p) ≤ x2k+1(n) for k ≫ 1. Indeed,

PC(Gn,p, x) = xn−2kR2k(n, x) −
((

n
2k+1

)
xn−2k−1

b(
2k+1

2 )
−
(

n
2k+2

)
xn−2k−2

b(
2k+2

2 )

)

−
((

n
2k+3

)
xn−2k−3

b(
2k+3

2 )
−
(

n
2k+4

)
xn−2k−4

b(
2k+4

2 )

)
− . . .. (88)

By Lemma 5.4a, β(Gn,p) > n(1 − p). The inequality x2k(n) ≤ β(Gn,p) follows from (88)
considered for x ≥ β(Gn,p). Analogously we prove that β(Gn,p) ≤ x2k+1(n).

Consider

Rt(n, x/n) =
t∑

i=0

(−1)i(1 − 1
n
) . . . (1 − i−1

n
)

i!b(
i

2)
xt−i, t ≥ 1.

Since P2k+1(x) is strict monotonic for x ≥ x2k+1 by (87) and R2k+1(n, x/n) as the function
on n is continuous, we have

1 − p ≤ lim
n→∞

β(Gn,p)

n
≤ lim

n→∞
x2k+1(n)

n
≤ x2k+1.

From the inequality 1 − p ≤ x2k+1 and the relation

P2k+1(x) = x2P2k−1(x) +
1

(2k)!b(
2k
2 )

(
x− 1

(2k + 1)b2k

)
,

we state that the sequence x2k+1 is monotonically decreasing starting with some k. This
sequence is bounded, thus, there exists the limit lim

k→∞
x2k+1 = x0 ≥ 1 − p.

Suppose that P2k+1(x) has another positive real roots distinct from x2k+1. Define
z2k+1 as the second largest positive real root of P2k+1(x). Then, D′

2k+1(x) has a root a in
the interval (1/x2k+1; 1/z2k+1). Note that all roots of Pt(x) and Dt(x) are in one-to-one
correspondence by the rule x ↔ 1/x. So, by (86), we have x2k ≥ 1/(ap). It implies

z2k+1 <
1

a
≤ px2k < px2k+1,

thus, z2k+1 < px2k+1. Therefore, all other real roots of P2k+1(x) could be separated from
the root x2k+1 for all k.

By Ostrowski’s Theorem applied for the polynomials P2k+1(x) and xP2k(x), we have

|x2k+1 − ξ| < 4

(
1

(2k + 1)!b(
2k+1

2 )

)1/(2k+1)

∼ 4e

(2k + 1)bk
= ε (89)

for some root ξ of xP2k(x). Let us prove that there exists a real root x′ of xP2k(x) such
that x2k+1 − x′ < 4e/bk. Indeed, suppose that ξ = ξ1 ∈ C \ R, then by (89), there exists
a non-real complex root ν1 of P2k+1(x) in a ε-neighbourhood of ξ̄1, the complex conjugate
of ξ1. So, by (89), there exists a root ξ2 in a ε-neighbourhood of ξ̄1. Since x2k+1 is a
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separated simple root of P2k+1(x), we can find the required real root x′ of xP2k(x). By
the definition of x2k and the equality x2k < x2k+1, we have that x2k+1 − x2k < 4e/bk.
Hence, the sequence x2k for k ≫ 1 also has the limit equal to x0. By (87) we can prove
that x2k is a simple root of P2k(x) for k ≫ 1. We can state that all other real roots of
P2k(x) are separated from the root x2k for k ≫ 1 (in a similar way as we did for x2k+1).
By Ostrowski’s Theorem applied for the polynomials P2k(x) and R2k(n, x), n, k ≫ 1, we
get

x2k ≤ lim
n→∞

x2k(n)

n
≤ lim

n→∞

β(Gn,p)

n
≤ lim

n→∞
β(Gn,p)

n
≤ lim

n→∞
x2k+1(n)

n
≤ x2k+1.

By the squeeze theorem, there exists the limit lim
n→∞

β(Gn,p)
n

.

Theorem 10.1. The average value of β(G) on graphs with n ≫ 1 vertices asymptoti-
cally equals

βev(n) ∼ n lim
n→∞

β(Gn,1/2)

n
= β0n ≈ 0.672008n.

Proof. The sequence xn in Lemma 10.1 was defined. For p = 1/2, we can compute
that lim

n→∞
xn = β0 ≈ 0.6720076538 [147, 195].

In [28] it was proved that with probability tending to 1, the clique number of a graph
G with n vertices equals ω(G) = 2 log2(n) +O(log2 log2(n)). Fix a natural number t and
put n > 2t. For almost all graphs with n vertices the number of cliques of size 2 ≤ i ≤ t

equals
(1+εi)(n

i)

2(
i
2)

, where εi ∈
(
− lnn

n
; lnn

n

)
[27]. Denote ε = {εi}i≥2 and define zt(n, ε) as

the largest positive real root of the polynomial

Qt(n, ε, x) =

t∑

i=0

(−1)i(1 + εi)
(
n
i

)

2(i
2)

xt−i, t ≥ 1.

If Qt(n, ε, x) has no such roots, define zt(n, ε) = 0. Below while writting Qt(n, ε, x) as
well as zt(n, ε), we assume that n > 2t.

By Corollary 7.3a, we have βev (n) ≥ n+1
2

. Analogously to (88), we get the inequal-
ities z2k(n, ε) ≤ βev (n) ≤ z2k+1(n, ε) for all sufficiently large n. Let t ≫ 1. Since the
coefficients of Qt(n, ε, x/n) tend to the corresponding coefficients of Pt(x) when n → ∞
and Pt(x) > 0 for x > xt, we have lim

n→∞
zt(n,ε)

n
≤ xt. On the other hand, xt is a simple

separated root of Pt(x), so Ostrowski’s Theorem considered for the polynomials Pt(x)

and Qt(n, ε, x/n) gives xt ≤ lim
n→∞

zt(n,ε)
n

. Hence, lim
n→∞

zt(n,ε)
n

= xt holds independently of

the choice of a tuple ε ∈
(
− lnn

n
; lnn

n

)t−1
and we have lim

n→∞
βev (n)

n
= β0.

Corollary 10.1. The average value of e(G) for graphs with n ≫ 1 vertices asymptoti-

cally equals 4(1−β0)
n

≈ 1.312
n

.
Remark 10.1. The constant β0 = 0.6720076538 . . . firstly appeared in the article of

R. Stanley [183] in 1973. In [183], the number of all acyclic orientations of a digraph was

counted as A · n!2(n
2)βn

0 for A ≈ 1.741. The number 1/β0 was obtained in [183] as the

unique root of the function F (x) =
∞∑
n=0

xn

n!2(n
2)

which modulus is not greater than 2.
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Statement 10.1. For almost all graphs with n vertices, β(G) lies in a neighbourhood
of β0n and is the unique root PC(G, x) which modulus is greater than n/2.

Proof. The first part of the statement follows from Theorem 9.1. Let us prove the
second one. Denote p = 1/2, b = 2. Consider a polynomial Dt(x), t ≥ 3, defined by (85),
and H(x) = 1 − x + x2

4
− x3

48
. It is easy to show that in the circle x = 2eiϕ, we have

min
|x|=2

{|H(x)|} ≥
(cosϕ

6

)2
+

(
sinϕ

2

)2

≥ 1

36
>

1

48
= 2 · 24

4!26
> max

|x|=2
{|Dt(x) −H(x)|}.

By Rouché’s theorem, the polynomial Dt(x), t ≥ 3, has a unique root in a circle |x| = 2.
We can apply Rouché’s theorem in the same way for the polynomials H(x) and

Q̃t(n, ε, x) =

t∑

i=0

(−1)i(1 + εi)
(
n
i

)

2(i
2)

xi

for n, t ≫ 1, where ε is chosen as we did in the proof of Theorem 10.1. We are done.
Remark 10.2. Statement 10.1 implies that that Theorem 2.1 for almost all graphs

could be derived from Rouché’s theorem.
Define the number βev (n, k) as the average value of β(G) for the set G(n, k) of all

graphs with n vertices and k edges:

βev (n, k) =
1
((n

2)
k

)
∑

G∈G(n,k)

β(G).

Statement 10.2. Let k(n) be such integer-valued function that 0 ≤ k(n) ≤ n(n−1)
2

and there exists lim
n→∞

2k(n)
n2 = k0 < 1. Then βev (n, k) ∼ n lim

n→∞
β(Gn,k0

)

n
.

Proof. In the random graph model Gn,k, (initial Erdős—Rényi model, slightly diffe-
rent from Gn,p) a graph is chosen uniformly at random from the G(n, k). In Gn,k, the
expected value of cliques of size t equals

(
n
t

)((n
2)−(t

2)
k−(t

2)

)

((n

2)
k

) =

(
n

t

)
k(
n
2

) · k − 1(
n
2

)
− 1

· . . . · k −
(
t
2

)
+ 1(

n
2

)
−
(
t
2

)
+ 1

=

(
n

t

)
p(t

2)θ(n, k, t)

for k ≥
(
t
2

)
and 0, otherwise. Here θ(n, k, t) → 1 when t is fixed and n → ∞. The

condition k0 < 1 and Theorem 7.1 imply that βev (n,k)
n

> 1−k0
2

> 0. The rest of proof is
analogous to the proof of Theorem 10.1. The correctness of transfer from one random
graph model to another one see in [27, 91].

Remark 10.3. If k0 = 1, Statement 10.2 is not true. For example, for k(n) =
(
n
2

)
we

have βev (n, k) = 1, for k(n) =
(
n
2

)
−1 we have βev (n, k) = 2. For k(n) ≪

(
n
2

)
−n we have

βev (n, k) ≥ 3, since p = 1
n

is a threshold for Gn,p to contain at least one triangle [79].
Thus, the complement graph Ḡ to G ∈ G(n, k) contains a triangle and β(G) ≥ 3 by
Statement 3.2a.
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10.2 Roots of PC-polynomial of random graph

Let p > 0 and βr = βr(Gn,p) denote the r-th largest root of PC(Gn,p, x).

Statement 10.3. For any p ∈ (0; 1], we have (1−p)
2

p(n− 1) ≤ β2(Gn,p) ≤ p(n− 1).
Proof. By (40), we have the upper bound on β2 = β2(Gn,p):

β2 ≤ pn− β1 ≤ n− 1 − (n− 1)(1 − p) = p(n− 1).

By Theorem 5.1b, we can bound β2 as follows:

n− β1 = (β1 + . . . + βn) − β1 ≤ β2

(
1 +

1

b
+ . . . +

1

bn−2

)
≤ β2

1 − p
.

By the upper bound on β1, we have

β2 ≥ (1 − p)(n− 1)(1 −
√

1 − p) =
p(1 − p)(n− 1)

1 +
√

1 − p
≥ p(1 − p)(n− 1)

2
. (90)

Lemma 10.2. For all p ∈ (0; 1], there exists the limit lim
n→∞

β2(Gn,p)
n

.

Proof. For p = 1, the limit equals 0. Let p ∈ (0; 1) and b = 1/p. The idea of the
proof is the same as of the proof of Lemma 10.1. For t ≫ 1, define yt as the second
largest real root of Pt(x). For k ≫ 1, the y2k is well-defined as the largest positive real
root of the polynomial P2k(x)/(x− x2k). If y2k+1 is not defined, put y2k+1 = 0.

It is easy to show that y2k > y2k−1 and y2k > y2k+1 for all k. Suppose that y2k
is not a simple root of P2k(x). Then by (87), we have by2k = x2k−1 as by2k is a real
root of P2k−1(x) larger than y2k−1. Let us find the root a of D2k−1(x) in the interval
(1/x2k; 1/y2k). By (86), 1/(pa) is a root of P2k−1(x) which has to coincide with x2k−1.
Thus, x2k−1 = y2k

p
< 1

pa
, a contradiction. So, y2k is a simple root of P2k(x).

Define yt(n) as the second largest positive real root of the polynomial Rt(n, x). We

apply the lower bound (1−p)
2

p(n − 1) ≤ β2(Gn,p) and the inequality P2k(x) < 0 for x ∈
(y2k, x2k) to prove that y2k+1(n) ≤ β2(Gn,p) ≤ y2k(n) for k ≫ 1. From the relation

P2k+2(x) = x2P2k(x) − 1

(2k + 1)!b(
2k+1

2 )

(
x− 1

(2k + 2)b2k+1

)
,

we state that the sequence y2k is monotonically decreasing starting with some k. This
bounded sequence has the limit lim

k→∞
y2k = y0 ≥ p(1 − p)/2.

Introduce z2k as the third largest real root of P2k(x). So, D′
2k(x) has a root a in

(1/y2k; 1/z2k). By (86), D2k−1(pa) = 0. Hence, 1/(pa) ≤ y2k−1 < y2k. We conclude that
z2k < 1

a
< py2k and all other real roots of P2k(x) are separated from y2k. The rest of the

proof is the same as of Lemma 10.1.
Theorem 10.2. For all p ∈ (0; 1] and r ≥ 1, there exists the limit lim

n→∞
βr(Gn,p)

n
.

Proof. For p = 1, the limit equals 0. Let p ∈ (0; 1) and b = 1/p. Prove the
statement by induction on r. For r = 1, 2 it follows from Lemmas 10.1 and 10.2. Let
r > 2. We define the r-th largest positive real roots wr of Pt(x) and wr(n) of Rt(n, x)
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respectively. For odd r we repeat the proof of Lemma 10.1, for even r we apply the proof
of Lemma 10.2.

For completeness, we should show only one thing: the lower bound qrn < βr(Gn,p)
for n ≫ 1 with a positive constant qr. For r = 1, 2, we had q1 = 1 − p, q2 = p(1 − p)/3.
To the contrary, suppose that βr(Gn,p) = o(n). By Theorem 5.1b and Vieta’s formula,

(
n

r

)
p(r

2) =
∑

1≤i1<...<ir≤n

βi1 . . . βir <

r−1∑

j=1

(β1 + . . . + βr−1)
j(βr + . . . + βn)r−j

<
r−1∑

j=1

nj

(
βr

1 − p

)r−j

= o(nr), (91)

a contradiction. Theorem is proved.
Corollary 10.2. Let r > 0. For almost all graphs with n ≫ 1 vertices, the real roots

of PC-polynomial which moduli is not less than n/r lie in neighbourhoods of the roots
of PC(Gn,1/2, x).

Proof. The proof is analogous to the proof of Theorem 10.1.
With the help of engines [195, 147], one can approximately compute six largest roots

of PC(Gn,1/2, x):

0.672008n, 0.204871n, 0.073744n, 0.028756n, 0.011768n, 0.004975n.

Let us show how all coefficients of the series expansion of lim
n→∞

βr(Gn,p)
n

on p could be

calculated. With the help of expressions of power sums in terms of elementary symmetric
polynomials and Vieta’s formulas we have

β5
1 + β5

2 + . . . + β5
n

= n5 − 5n3

(
n

2

)
p + 5n

((
n

2

)
p

)2

+ 5n2

(
n

3

)
p3 − 5

(
n

2

)(
n

3

)
p4 − 5n

(
n

4

)
p6 + 5

(
n

5

)
p10

∼ n5

(
1 − 5p

2
+

5p2

4
+

5p3

6
− 5p4

12
− 5p6

24
+

p10

24

)
. (92)

At first, β5
1 is less than the RHS of (92). At second, by Theorem 5.1b, β5

1 is greater than
the RHS of (92) multiplied by 1 − p5. So, we can find the first five coefficients of the
series expansion of β1 on p: β1(Gn,p) ∼ n(1 − p/2 − p2/4 − p3/12 − p4/16). Continuing
on, we get the following expression

β1(Gn,p)

n
∼ 1 − p

2
− p2

4
− p3

12
− p4

16
− p5

48
− 7p6

288
− p7

96
− 7p8

768

− 49p9

6912
− 113p10

23040
− 17p11

4608
− 293p12

92160
− 737p13

276480
− 3107p14

1658880
+ O(p15). (93)

For p = 1/2, the equality (93) gives the average value β0 with mistake less than 3 · 10−8.
In Picture 7 the plots of the RHS of (93) and asymptotic bounds on β1(Gn,p)/n from

Corollary 5.4 are drawn.
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In terms of q = p/2, we get

β1(Gn,p)

n
∼ 1 − q − q2 − 2q3

3
− q4 − 2q5

3
− 14q6

9
− 4q7

3
− 7q8

3

− 98q9

27
− 226q10

45
− 68q11

9
− 586q12

45
− 2948q13

135
− 12428q14

405
+ O(q15). (94)

Figure 7: The plots of the RHS of (93) (blue), 1−p (red) and
√

1 − p (green) for p ∈ (0, 1).

To calculate β2(Gn,p), we may consider the inequalities

((
β7
1 + β7

2 + . . . + β7
n

)
− β7

1

)
(1 − p7) < β7

2 <
(
β7
1 + β7

2 + . . . + β7
n

)
− β7

1 ,

which imply
β7
2 =

((
β7
1 + β7

2 + . . . + β7
n

)
− β7

1

)
(1 + O(p7)). (95)

Inserting in (95) the RHS of the 7th power analogue of (92) and the series (93), we find

β2(Gn,p)

n
∼ p

2

(
1 − p

6
− 5p2

18
− 29p3

216
− 85p4

648
− 163p5

3888
− 1387p6

19440

)
+ O(p8), (96)

which in terms of q = p/6 gives

β2/n ∼ 3q(1 − q − 10q2 − 29q3 − 170q4 − 326q5 − 16644q6/5) + O(q8).

Note that the lower bound from Statement 10.3 is closer to β2(Gn,p) than the upper one.
Further, we calculate

β3(Gn,p)

n
∼ p2

3

(
1 − p

12
− 25p2

144
+ O(p3)

)
,

β4(Gn,p)

n
∼ p3

4
(1 + O(p)).

Thus, by such algorithm we can compute all coefficients of the series expansion of
lim
n→∞

βr(Gn,p)

n
on p for any r. Note that with the help of Statement 5.1b, we automatically

get the expressions for the smallest roots of PC(Gn,p, x).
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By the expressions of four largest roots of PC(Gn,p) and in light of Statement 5.1b,
we formulate

Conjecture 10.1. For any r ≥ 1, we have

lim
n→∞

βr(Gn,p)

n
=

pr−1

r

(
1 − p

r(r + 1)
+ O(p2)

)
.

Now let us consider the following symmetric polynomial on roots of PC(Gn,p):

(1 + β1)(1 + β2) . . . (1 + βn) =

n∑

k=0

(
n

k

)
p(k

2) = C(Gn,p, 1).

Since βi = O(npi−1) by Theorem 5.1b and npi−1 = O(1) already for i = lnn
ln(1/p)

, we may

assume that lnC(Gn,p, 1) = O( ln2 n
ln(1/p)

). In [41], it was proven that lnC(Gn,p, 1) ∼ ln2 n
2 ln(1/p)

.

In 2014, W. Gawronski and T. Neuschel stated the following result: (see also [163])
Theorem 10.3 [97]. For a fixed p ∈ (0; 1), as n → ∞, we have

C(Gn,p, 1) =
1√
r(n)

(
θ3

(
πr(n)

ln(1/p)
, e−2π2/ln(1/p)

)
+ o(1)

)
exp

(
r(n)2 + 2r(n)

2 ln(1/p)

)
,

where θ3(z, q) is the Jacobi’s third Theta function, r(n) is defined as the positive solution

t of the equation t
(
et +

√
1/p
)

= n
√

1/p ln(1/p).

In 2012–13 [41, 43], J. Brown, K. Dilcher and V. Manna initiated to study the poly-

nomials fn(z) =
n∑

k=0

(
n
k

)
z(k

2) for complex variable z. For real z ∈ [0; 1], fn(z) = C(Gn,z, 1).

Statement 10.4 [43]. a) For each n ≥ 0, f2n+1(z) is divisible by zn + 1.
b) For each n ≥ 3 the roots of fn(z) lie inside a circle of radius 1 + 3 lnn

n
.

c) For each n ≥ 3 the roots of fn(z) lie outside a circle of radius 2/n.

d) For each n ≥ 4 there is a negative real root of fn(z) in the interval −2+ 2
n

n
< z < − 2

n
.

Proof. a) It follows from Statement 5.1b, as the proof works for any (not necessary
real) p.

b), c), d) See in [43].
In [43], there were formulated a lot of conjectures about the distributions of roots,

irreducibility of fn(z) etc.
Remark 10.5. We may suppose that just for complex variable p, we may have

fn(z) =

n∏

i=1

(1 + βi(Gn,z)), (97)

where βi(Gn,z) are defined by the described above series expansions. But we should be
very careful. Indeed, if we try to insert the expression (96) in (97) to find a root of fn(z),
we will make a mistake. From the equality 1 + zn

2

(
1 − z

6
+ O(z2)

)
= 0, we find the root

z = −2− 2
3n

n
+ O

(
1
n3

)
, a contradiction to Statement 10.4c. The reason of the mistake is

the following: β2(n, z) = zn
2

(
1− z

6
+O(z2)

)
+ o(n), where we do not control the tail o(n).
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If our assumption about the correctness of the decomposition (97) is true, we conclude
that the tail o(n) is at least 1/(3n).

Let us finish the section with Picture 8 on which the borders of the possible values of
β(G)/n are drawn (asymptotically), compare it with Fig. 3 from [87]. Define

f1(x) =

√
x

W (
√
x

1−√
x
)
,

f2(x) =
1

⌈ 1
1−x

⌉

(
1 +

√

1 −
⌈ 1
1−x

⌉x
⌈ 1
1−x

⌉ − 1

)
,

f3(x) = 1 − x

2
− x2

4
− x3

12
− x4

16
− x5

48
− 7x6

288
− x7

96
− 7x8

768

− 49x9

6912
− 113x10

23040
− 17x11

4608
− 293x12

92160
− 737x13

276480
− 3107x14

1658880
.

Let n = |V (G)| ≫ 1 and x = 2k
n2 ∈ (0, 1). The function f1(x) is asymptotically equal

to the upper bound of β(G)/n arising from the proof of Theorem 8.2, the function f2(x)
asymptotically equals to the lower bound of β(G)/n from Corollary 9.4. And f3(x) is the
approximation of the asymptotics of the average value of β(G)/n (93).

To compare f1(x) with f3(x), we have

f1(x) = 1 − x

2
+

x3/2

6
− 7x2

24
+

31x5/2

120
+ O(x3).

Note that the maximum value of the difference f1(x) − f3(x) is attained in a point x
close to 1, the maximum of the difference f3(x) − f2(x) is attained either in x = 1/2 or
in x = 2/3.

Figure 8: The plots of f1(x) (green), f2(x) (red) and f3(x) (blue) for x ∈ (0, 1).
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11 Weighted case. Lovász local lemma

Let G be a simple graph and Cl(G) denote the set of all cliques of G. Let us define
the weighted dependence polynomial of G as

Dw(G, x) =
∑

B∈Cl(G)

(−1)|B|w(B), w(B) =
∏

v∈B
αvx

dv , αv, dv ∈ R+.

If αv = dv = 1 for all v ∈ V (G), then the weighted dependence polynomial of G coincides
with the dependence polynomial D(G, x).

Define the weighted PC-polynomial of G as PCw(G, x) = xw0Dw(G, 1/x) for w0 =
deg(Dw(G, x)).

S. Lavallée and C. Reutenauer in 2009 and S. Lavallée in 2010 proved the following
results which we gathered in one statement.

Theorem 11.1. a) [131] The set of all weighted dependence polynomials with αv, dv ∈
N>0 coincide with the set of all polynomials of the form det(E−xM), where M is a square
matrix with natural entries.

b) [132] The set of all weighted dependence polynomials with dv ∈ N>0 coincide with
the set of all polynomials of the form det(E − xM), where M is a square matrix with
nonnegative entries.

Proof. Prove both parts of the statement simultaneously. When the difference of
the conditions is important, we will consider both cases.

Let f(x) = det(E−xM), where M is a square matrix of an order n with nonnegative
entries. Consider a weighted directed graph D (maybe, with loops) such that M = (muv)
is its adjacency matrix; every edge (u, v) ∈ E(D) has a weight muv. Construct a simple
graph G as follows. The vertices of G are simple (no repeated edges) oriented cycles of D
(including loops). We put that u, v ∈ V (G) are connected if their corresponding cycles in
D have no common vertices. Let c = (x1, x2, . . . , xk) be a simple cycle in D and v = vc ∈
V (G) be a corresponding vertex. We define the αv to equal mx1x2mx2x3 . . .mxk−1xk

mxkx1

and the dv to equal k, a length of the cycle. For more details, see Example 8 from [132].
By expanding the determinant det(E − xM) in terms of permutations, and then

decomposing the latter into not intersecting cycles, we get

det(E − xM) =
∑

k≥0

(−1)k
∑

(c1,...,ck)∈Sn(k)

m(c1, . . . , ck)x|c1|+...+|ck|,

where Sn(k) denotes the set of all k mutually disjoint cycles from the symmetric group

Sn, |ci| is a length of a cycle ci and m(c1, . . . , ck) is equal to the product
k∏

i=1

αvci
by the

construction. Thus, f(x) = Dw(G, x).
Let g(x) = Dw(G, x). At first, prove that for any graph G such that Ḡ is connected

and a set of natural numbers dv, v ∈ V (G), is coprime, there exists a square matrix M
such that g(x) = det(E − xM), and the entries of M satisfy the conditions of Theorem.
To state this we will apply the Boyle—Handelman Theorem, but before this we need more
definitions and results.
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Given X = V (G) with a total order <, a word w = w1 . . . wt ∈ Mt(X,G), define the
two functions d(w) = dw1 + . . . + dwt

, α(w) = αw1αw2 . . . αwt
and the numbers

mt(X,G) =
∑

w∈M(X,G), d(w)=t

α(w), t ∈ N. (98)

Given a clique B = {b1, . . . , bk} in G, define d(B) = d(b1b2 . . . bk), α(B) = α(b1b2 . . . bk).
One can prove the analogue of Theorem 1.1 for the numbers mt(X,G):

mt =
∑

B∈Cl(G)

(−1)|B|+1α(B)mt−d(B).

Also, it is easy to state the analogues of Lemmas 2.1–2.3 for weighted PC-polynomials
(dependence polynomials). Denote by βw(G) the largest real root of PCw(G, x). In
weighted case, the direct analogue of Theorem 2.1 is not true. Thus, we need some
additional restrictions on a graph G and weights.

Lemma 11.1. Let G be a graph such that Ḡ is connected. Let Dw(G, x) be a
weighted dependence polynomial such that the set {dv | v ∈ V (G)} is coprime. Then
the number 1/βw(G) is the only complex root of Dw(G, x) with modulus less or equal to
1/βw(G).

Proof. Let u be a vertex of G. Since Ḡ is connected, there exists a vertex v ∈ V (G)
such that (v, u) 6∈ E(G). By the same reason, G[N(v)] is a proper induced subgraph of
G \ v. Consider the function

h(x) =
Dw(G \ v, x)

Dw(G, x)
=

1

1 − αvxdv Dw(G[N(v)],x)
Dw(G\v,x)

, f(x) = αvx
dv
Dw(G[N(v)], x)

Dw(G \ v, x)
.

By the weighted analogue of Lemma 2.3 , the convergence radius of the series expan-
sion of f(x) is greater or equal to 1/βw(G \ v) > 1/βw(G). By the weighted analogue
of Lemma 2.1, any complex root of Dw(G, x) has a modulus not less than 1/βw(G). Let
ρ be a complex non-real root of Dw(G, x) with modulus 1/βw(G). By the analogue of
Lemma 2.3b, ρ is a pole of h(x). Hence, f(ρ) = 1 and |f(ρ)| = f(ρ). By Daffodil Lemma,
ρ = β−1

w (G)e2πir/p, where p > 1 is a span of f(x). At the same time, by the weighted
analogue of Lemma 2.2, all monomials xk of the series expansion of f(x) with du|k have
nonzero coefficients. Thus, p|du. Since the vertex u was chosen arbitrarily, p is a common
divisor of the set {dr | r ∈ V (G)}. We arrive at a contradiction. Lemma is proved.

Let G be a graph with connected complement and the set {dv | v ∈ V (G)} is coprime.
Now check the conditions of Boyle—Handelman Theorem for the polynomial Dw(G, x).
The condition (1) holds by the construction, (2) — by Lemma 10.1, (3) — by the weighted
analogue of Theorem 4.1 for partially commutative Lie algebra graded by the weight d(w).
By the Möbius inversion formula, s(Λ, n) =

∑
k|n

t(Λ, k), so the condition (3′) is fulfilled

and we proved the statement with these restrictions.
At second, consider the general case of G and weights dv. Let Ḡ consist of the

connected components H̄1, . . . , H̄s, then

Dw(G, x) =

s∏

i=1

Dw(Hi, x) =

s∏

i=1

det(E − xMi).
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For a block diagonal matrix M formed by the blocks Mi, i = 1, . . . , s, we have Dw(G, x) =
det(E − xM).

So, we may assume that Ḡ is connected. Let p be the greatest common divisor of
the set {dv | v ∈ V (G)} and suppose that p > 1. Consider the weighted dependence
polynomial Dw′(G, x) such that α′

v = αv, d
′
v = dv/p for all v ∈ V (G). We have already

proved that Dw′(G, x) = det(1 − xM ′) for a square matrix M ′ with required entries.
Moreover, Dw(G, x) = det(1 − xpM ′). Let r be an order of the matrix M ′. Construct
a weighted directed graph G as follows. The set V (G) will include a set of r vertices
(say 1, 2 . . . , r) which index the rows and the columns of M ′. For any nonzero entry
aijx

p of xpM ′, we construct p simple paths from the vertex i to j with the lengths
l = 1, . . . , p adding to V (G) all required intermediate vertices. To the first edge of any of
the constructed paths from i to j we assign a weight aij , to all other edges we assign 1.
Denote by M the adjacency matrix of the directed graph G. It is not hard to verify [32]
that det(1 − xpM ′) = det(1 − xM) and all other conditions on entries of M are also
fulfilled.

Remark 11.1. Note that Theorem 2.1 and its weighted analogue Lemma 11.1 are
equivalent to the Perron—Frobenius theorem for nonnegative square matrices via Boyle—
Handelman Theorem, if-part. Indeed, in [132] the second part of the proof Theorem 11.1
was derived from the Perron—Frobenius theorem. On the other hand, the first part of
the proof of Theorem 11.1 and Lemma 11.1 provide the proof of the Perron—Frobenius
theorem.

Corollary 11.1. a) [132] The set of all weighted PC-polynomials with dv ∈ N>0

multiplied by xk, k ∈ N, coincide with the set of all characteristic polynomials of square
matrices with nonnegative entries.

b) [131] The set of all weighted PC-polynomials with αv, dv ∈ N>0 multiplied by xk,
k ∈ N, coincide with the set of all characteristic polynomials of square matrices with
natural entries.

In 2015, C. McMullen considered [153] weighted dependence polynomial Dw(G, x)
with αv = 1 for all v ∈ V (G). Let us list some results from [153] in this case.

The growth rate of (G,w) is defined by λ(G,w) = lim
t→∞

n
1/t
t , where nt =

t∑
i=1

mi and

numbers mi are defined by (98). If dv = 1 for all v ∈ V (G), then λ(G,w) = β(G).
Theorem 11.2 [153]. The largest positive root of PCw(G, x) equals λ(G,w), and

the function h(w) = lnλ(G,w) is convex. Provided Ḡ is connected and |V (G)| > 1, the
function h(w) is strictly convex, real-analytic, and h(w) → ∞ at the boundary of the
cone of positive weights.

A weight w is called admissible if d(K) ≤ 1 for all cliques K of G. The number
λ(G) = inf{λ(G,w) | w is admissible} is called the minimal growth rate of G. An
admissible weight w is called optimal if λ(G) = λ(G,w). An admissible weight w is
symmetric if it is invariant under Aut(G) and maximal if there is no other admissible
weight w′ with dv ≤ d′v for all v.

For any induced subgraph H of G, we have λ(G,w) ≥ λ(H,w|H) (analogue of
Lemma 2.3a) and hence λ(G) ≥ λ(H) [153].

Statement 11.1 [153]. Given M > 0, there are only finitely many graphs G with
connected complement and λ(G) ≤ M .
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Proof. It suffices to show that λ(G) is large whenever |V (G)| is large. By Ramsey
theory, if |V (G)| ≥

(
2n−2
n−1

)
, either G or Ḡ contains a clique K of size n. If K is a clique

of Ḡ then G contains an empty induced subgraph K̄ with n vertices and λ(G) ≥ n (see
Statement 3.2a).

Suppose that K is a clique of G. The optimal weight w for G satisfies d(K) ≤ 1, so
du ≤ 1/n for some u ∈ K. Since Ḡ is connected, there is a vertex v ∈ V (G) such that
(u, v) 6∈ E(G) and dv ≤ 1. Let H be an induced subgraph of G with V (H) = {u, v}. Then
λ(G) = λ(G,w) ≥ λ(H,w|H) ≥ λn, where t = 1/λn is the smallest root of 1 − t1/n − t.
It is easy to show that λn = O(n/ lnn) and we are done.

Statement 11.2 [153]. If Ḡ has no isolated vertices, then G carries a unique optimal
weight. This weight is maximal and symmetric.

Proof. Suppose that Ḡ is connected and |V (G)| > 1. By Theorem 11.2, the function
h(w) = lnλ(G,w) is strictly convex and tends to infinity at the boundary of the cone of
positive weights. The admissibility conditions are convex and bound h(w) from below,
so there is a unique optimal weight.

In general, G is a supergraph of complete multipartite graph with components H1,
. . . , Hk such that H̄i is connected for all i. We have λ(G,w) = max

i=1,...,k
λ(Hi, w|Hi

). Since

Ḡ has no isolated vertices, |V (Hi)| > 1 for all i = 1, . . . , k. So each Hi has a unique
optimal weight wi. Then the optimal weight for G is the unique convex combination

w =
k∑

i=1

αiwi such that λ(Hi, w|Hi
) = λ(Hi)

1/αi = λ(Hj)
1/αj , i, j = 1, . . . , k. By convexity

and uniqueness, the optimal weight w must be maximal and symmetric.
Statement 11.3 [153]. For any graph G, the growth rate λ(G) is algebraic over Q.
Example 11.1 [153]. a) We have λ(K2 ∪K2) = 6 + 4

√
2. By symmetry the optimal

weights are all 1/2. Thus Dw(t) = 1 − 4t1/2 + 2t.
b) We have λ(Kn ∪ K1) = 2n. The optimal weights are 1/n on the vertices of Kn

and 1 on the remaining vertex. Thus, Dw(t) = (1 − t1/n)n − t and its smallest real root
is 1/2n.

c) We have λ(P4) = 8 for the path graph with 4 vertices. In this case by symmetry
and maximality there is an a ∈ (0; 1) such that the optimal weights on the consecutive
vertices of P4 are (a, 1 − a, 1 − a, a). Hence, Dw(t) = 1 − 2ta − 2t1−a + t2−2a + 2t. To

determine the value of a, we observe that both Dw and
dDw

da
must vanish at (a, 1/λ);

hence a = 2/3 and 1/λ = 1/8.
d) For G = P3 ∪ K1 we have λ = λ(G) = 3 + 2

√
2. By symmetry and maximality,

there is an a ∈ (0; 1) such that w takes the values (a, 1−a, a) along the vertices of P3 and
w(v) = 1 at the remaining vertex of G. Thus, Dw(t) = 1 − 2ta − t1−a + t. By optimality

we must have
dDw

da
= 0 at t = 1/λ. This gives a second relation 2(1/λ)a = (1/λ)1−a;

when combined with Dw(1/λ) = 0, it implies λ = 3 + 2
√

2 and a = ln(2λ)/ ln(λ2).
C. McMullen used the stated results to apply for spectral radius of called reciprocal

positive matrices. A square matrix A = (aij) is called reciprocal if aij = 1/aji for all i, j.
Theorem 11.3 [153]. The minimum value of the spectral radius ρ(A) over all recipro-

cal matrices A ∈ M2g(N), g ≥ 2, is given by the largest root of the polynomial t2g−tg(1+
t + t−1) + 1. Consequently ρ(A)g ≥ (3 +

√
5)/2 for all such A.
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In 2005, A. Scott and A. Sokal found [177] the deep connection between weighted
(in)dependence polynomials and Lovász local lemma. Below we stated the particular
case of their results.

For a graph G, we define the weighted independence polynomial Iw(G, x) as Dw(Ḡ, x)3.
Theorem 11.4 [57, 177]. Assume that given a graph G and there is an event

Ai assigned to each vertex i. Assume that Ai is totally independent of the events
{Ak | (i, k) 6∈ E(G)}. Set P (Ai) = pi and define the weighted independence polyno-
mial Iw(G, x) with αi = pi and di = 1 for all i = 1, . . . , n.

a) Assume that Iw(G, t) > 0 for t ∈ [0; 1], then P
( n⋂
i=1

Ai

)
≥ Iw(G, 1) > 0.

b) Assume that Iw(G, t) = 0 for some t ∈ [0; 1]. Then there exist a probability space
and a family of events Bi, i = 1, . . . , n, with P (Bi) ≤ pi and with dependency graph G

such that P
( n⋂
i=1

Bi

)
= 0.

Proof. a) Let us define the events Bi, i = 1, . . . , n, on a new probability space as
follows

P

(⋂

i∈S
Bi

)
=






∏
i∈S

pi, S is independent in G,

0, otherwise.

The expression P ((
⋂
i∈S

Bi)∩(
⋂
i 6∈S

Bi)) equals zero if S is not an independent set. So assume

that S is an independent set, then

P

((⋂

i∈S
Bi

)
∩
(⋂

i 6∈S
Bi

))
=
∑

S⊆I

(−1)|I|−|S|P

(⋂

i∈I
Bi

)

=
∑

S⊆I, I∈I
(−1)|I|−|S|

∏

i∈I
pi =

(∏

i∈S
pi

)
Iw(G \N [S], 1), (99)

where I is the set of all independent sets of G and N [S] denotes the set S together with
all their neighbors. Let β = βw(Ḡ). By the conditions, β < 1. By the weighted analogue
of Lemma 2.3 [57], we have βw(G \N [S]) ≤ β < 1. This means that the RHS of (99) is
nonnegative for all S ⊆ {1, . . . , n}. Hence, we have defined a probability measure on the
generated σ-algebra σ(Bi | i = 1, . . . , n).

Let us state that (Bi)
n
i=1 minimizes the expression P

( n⋂
i=1

Bi

)
among the families of

events with dependency graph G. For S ⊆ {1, . . . , n}, we set PS = P
( ⋂
i∈S

Ai

)
and

QS = P
( ⋂
i∈S

Bi

)
. Prove by induction on |S| that PS/QS is monotonically increasing in

S. For QS , we have

QS =
∑

I⊆S

(−1)|I|P

(⋂

i∈I
Bi

)
=

∑

I⊆S, I∈I
(−1)|I|

∏

i∈I
pi = Iw(G[S], 1) > 0;

QS∪{j} = Iw(G[S ∪ {j}], 1) = Iw(G[S], 1) − pjIw((G[S \N [j]], 1) = QS − pjQS\N [j],

3It is the only place where we use the definition of I(G, x) as D(Ḡ, x) instead of C(Ḡ, x).
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where j 6∈ S. On the other hand,

PS∪{j} = PS − P

(
Aj ∩

(⋂

i∈S
Ai

))
≥ PS − P

(
Aj ∩

( ⋂

i∈S\N [j]

Ai

))
≥ PS − pjPS\N [j].

Now show that PS∪{j}/QS∪{j} ≥ PS/QS for all j 6∈ S. By the induction hypothesis,
we compute

PS∪{j}QS −QS∪{j}PS ≥ (PS − pjPS\N [j])QS − (QS − pjQS\N [j])PS

= pj(PSQS\N [j] −QSPS\N [j]) ≥ 0.

Since PS/QS is monotonically increasing in S, we have PV (G)/QV (G) ≥ P∅/Q∅ = 1.
We have proved a).

b) Let us use the construction of the events Bi with probability β−1pi, i = 1, . . . , n.
Then this will define a probability measure again the same way (as in a). So, we have

P
( n⋂
i=1

Bi

)
= Iw(G, 1/β) = 0.

Corollary 11.2 [57, 177]. Let Ai, i = 1, . . . , n, be events with dependence graph G

such that P (Ai) ≤ t for all i = 1, . . . , n. Then P
( n⋂
i=1

Ai

)
> 0 if and only if t ≤ 1/β(Ḡ).

Corollary 11.3. a) [177] For any graph G, β(G) ≤ dd

(d−1)d−1 < ed, where d = ∆(Ḡ)≥2.

For d = 1, we have β(G) = 2.
b) Let G be a (n− d− 1)-regular graph, then 1 + d ≤ β(G) < ed.
Proof. a) The statement follows from the Lovász local lemma in the Shearer’s

version [181], Corollary 11.2 and Lemma 2.6b.
b) The upper bound follows from a), the lower bound follows from Theorem 7.1:

β(G) ≥ 1 + 2k̄
n

= 1 + d.
Remark 11.2. About more precise bounds on β(G) in terms of the maximal degree

of a graph see in [21, 165].
Corollary 11.4. Let G be a graph with n ≫ 1 vertices and k edges, Ai, i = 1, . . . , n,

are events with dependence graph G. Then P
( n⋂
i=1

Ai

)
> 0, if

a) k ≤ 0.24326n2 and P (Ai) ≤ 4/(3n), i = 1, . . . , n, or
b) k ≤ n2/4 and P (Ai) ≤ 1.3316/n, i = 1, . . . , n.
Proof. It follows from Corollary 8.4 and Corollary 11.2.
Note that in analogous way one can produce another global versions of Lovász local

lemma in case k ≤ αn2. It is an open question: Wether such version of Lovász local
lemma like in Corollary 11.4 is useful?
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12 Claw-free graphs. Matching polynomial

12.1 Chudnovsky—Seymour theorem

A graph G is called claw-free if G contains no induced subgraphs isomorphic to K1,3.
Remind that the independence polynomial I(G, x) is defined as follows: I(G, x) =

1 +
α(G)∑
k=1

sk(G)xk, where α(G) is the size of maximal coclique in G and sk denotes the

number of all cocliques of size k in G. By Lemma 1.5, we get immediately the formulas

I(G, x) = I(G \ v, x) + xI(G \ [N(v)], x), v ∈ V (G); (100)

I ′(G, x) =
∑

v∈V (G)

I(G \ [N(v)], x); (101)

I(G1 ∪G2, x) = I(G1, x)I(G2, x). (102)

As earlier, given a subset H ⊂ V (G), we denote the set
( ⋃
v∈H

N [v]
)
∪ H by N [H ].

The analogues of the Christoffel—Darboux identities were successfully applied in [114]
for matching polynomial. Let us state them in more general case.

Lemma 12.1 [18]. Let G be a graph, v ∈ V (G), Bv be the set of induced connected,
bipartite subgraphs of G containing the vertex v. For H ∈ Bv, let A(H) be a part
containing v and B(H) be another one. Let a(H) = |A(H)|, b(H) = |B(H)|, then

I(G, x)I(G \ v, y) − I(G \ v, x)I(G, y)

=
∑

H∈Bv

(xa(H)yb(H) − xb(H)ya(H))I(G \N [H ], x)I(G \N [H ], y). (103)

Proof. Denote by I = I(G) the set of all independent sets in G, I1 = I(G)×I(G\v),
I2 = I(G \ v) × I(G). The LHS of (103) equals

∑

(A,B)∈I1

x|A|y|B| −
∑

(A,B)∈I2

x|A|y|B| =
∑

(A,B)∈I0

x|A|y|B| −
∑

(A,B)∈I0

x|B|y|A|, (104)

where I0 = I1 \ (I(G \ v) × I(G \ v)).
Note that for any pair (A,B) ∈ I0 we have v ∈ A, v 6∈ B. Let P (A,B) be the

connected component of the induced subgraph G[A ∪ B] which contains v, A′ = A ∩
V (P (A,B)), B′ = B ∩ V (P (A,B)). Since A and B are independent, we get A′ ∩B′ = ∅,
and P (A,B) is a connected bipartite subgraph containing v. Hence,

∑

(A,B)∈I0

x|A|y|B| =
∑

(A,B)∈I0

xa(P (A,B))yb(P (A,B))x|A|−a(P (A,B))y|B|−b(P (A,B))

=
∑

H∈Bv

xa(H)yb(H)
∑

K,L∈I(G\N [H])

x|K|y|L|

=
∑

H∈Bv

xa(H)yb(H)I(G \N [H ], x)I(G \N [H ], y).
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Analogously, we express

∑

(A,B)∈I0

x|B|y|A| =
∑

H∈Bv

xb(H)ya(H)I(G \N [H ], x)I(G \N [H ], y).

It remains to insert the obtained relations in (104).
Lemma 12.2 [18]. Let G be a graph, B be the set of induced connected, bipartite

subgraphs of G. For any H ∈ B, let P (H) denote one part of H and R(H) denote the
other. Let p(H) = |P (H)|, r(H) = |R(H)|, then

yI(G, x)I ′(G, y) − xI ′(G, x)I(G, y)

=
∑

H∈B
(p(H) − r(H))(xp(H)yr(H) − xr(H)yp(H))I(G \N [H ], x)I(G \N [H ], y). (105)

Proof. Let n = |V (G)|. From the formulas (100), (101), we deduce

∑

v∈V (G)

I(G \ v, x) = nI(G, x) − xI ′(G, x). (106)

Let us sum the identity (103) for all v ∈ V (G) and apply (106):

∑

v∈V (G)

(I(G, x)I(G \ v, y) − I(G \ v, x)I(G, y))

= I(G, x)
∑

v∈V (G)

I(G \ v, y) − I(G, y)
∑

v∈V (G)

I(G \ v, x)

= I(G, x)(nI(G, y) − yI ′(G, y)) − I(G, y)(nI(G, x) − xI ′(G, x))

= xI ′(G, x)I(G, y) − yI(G, x)I ′(G, y)

=
∑

v∈V (G)

∑

H∈Bv

(xa(H)yb(H) − ya(H)xb(H))I(G \N [H ], x)I(G \N [H ], y)

=
∑

H∈B
(p(H) − r(H))(xp(H)yr(H) − yp(H)xr(H))I(G \N [H ], x)I(G \N [H ], y).

Y. Hamidoune in 1990 [111] and R. Stanley in 1998 [184] conjectured and M. Chudnov-
sky and P. Seymour in 2004 proved that

Theorem 12.1 [18, 51]. If G is a claw-free graph then all roots of I(G, x) are real.
Proof. Note that every induced connected bipartite subgraph H of a claw-free graph

G is a path or a cycle. Indeed, claw-freeness implies that degree of every vertex of H is
at most 2, and connectedness of H implies that it is a path or a cycle. Let H be an even
path or a cycle, then p(H) − r(H) = 0. Suppose that H is an odd path, then choose
P (H) and R(H) such that p(H)− r(H) = 1. Denote by P the set of all odd paths in G,
then by (105) we have

yI(G, x)I ′(G, y) − xI ′(G, x)I(G, y)

x− y
=
∑

H∈P
xr(H)yr(H)I(G\N [H ], x)I(G\N [H ], y). (107)
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Suppose that G is a counterexample with the smallest number of vertices and z is a
complex non-real root of I(G, x). By (102), G is connected. Putting in (107) the values
x = z, y = z̄, we get 0 on the LHS and a positive number on the RHS, since G \ N [H ]
is an induced subgraph without claws and with less vertices than G. Let us show that
the set P is not empty. Indeed, if G has no paths of length 3, then G is a complete
graph [50, 145]. But I(Kn, x) = 1 + nx has only one real root.

Corollary 12.1. If Ḡ is a claw-free graph then all roots of PC(G, x) are real.
Corollary 12.2. Let G be a graph with n vertices and k edges.
a) If Ḡ is claw-free then n− 2k

n
≤ β(G) ≤ n− k

n
and 1

n
≤ e(G) ≤ 2

n
.

b) If β(G) > n− k
n

then Ḡ has a claw.

c) Let G, Ḡ be claw-free [169], then β(G) + β(Ḡ) ≤ 3n+1
2

, β(G)β(Ḡ) ≤
(
3n+1
4

)2
.

Proof. a) The lower bound for β(G) was stated in Theorem 7.1, the upper one
follows from Theorem 11.1 and Statement 8.1.

b), c) It follows fom a).

12.2 Matching polynomial

For a graph G, mk denotes the number of matchings with k edges in G (m0 = 1,

m1 = |E(G)|). Define the matching polynomial of G as µ(G, x) =
ν(G)∑
k=0

(−1)kmkx
n−2k,

where n = |V (G)| and ν(G) is the maximum of sizes of matchings in G. A perfect
matching exists if and only if ν(G) = n/2.

Another very close polynomial, so called matching-generating polynomial, was de-

fined: M(G, x) =
ν(G)∑
k=0

mkx
k. Both polynomials are connected in the following way:

µ(G, x) = xnM(G,−x−2), M(G, x) = I(L(G), x), (108)

where L(G) denotes the line graph of G: V (L(G)) = E(G), and two vertices in L(G) are
connected if and only if corresponding edges have a common vertex in G.

Let Tn, Un be the Chebyshev functions of the first and second kind, let Hen, Hn be
the two standard forms of the Hermité polynomials, let Ln be the Laguerre polynomial.

Example 12.1 [114, 107]. a) µ(Kn, x) = Hen(x) = 2−n/2Hn(x/
√

2),
b) µ(Kn,n, x) = (−1)nLn(x2),
c) µ(Cn, x) = 2Tn(x/2), where Cn is a cycle of length n,
d) µ(Pn, x) = 2√

4−x2Un+1(x/2), where Pn is a path of length n.

From Theorem 12.1 follows the result of O. Heilmann and E. Lieb (1972):
Corollary 12.3 [114]. All roots of µ(G, x) and M(G, x) are real.
Proof. By the construction, the line graph L(G) is a claw-free graph. Hence, by

Theorem 12.1, the polynomial M(G, x) = I(L(G), x) has only real (negative) roots. By
the formula (108), all roots of µ(G, x) are real. Corollary is proved.

Denote the largest root of µ(G, x) as t(G). By the definition, t2(G) = β(L(G)). The
next bound for t(G) was stated by D.C. Fisher and J. Ryan in 1992:

Statement 12.1 [88]. For a graph G with n vertices and k edges, t2(G) ≥ 4k
n
− 1.
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Proof. By (108), t2(G) = β(L(G)). Applying Corollary 7.5, the lower bound on
the spectral radius [53] of the form ρ(G) ≥ 2|E(G)|/|V (G)| and the inequality between
means, we get

t2(G) ≥ 1 + ρ(L(G)) ≥ 1 +
2

k

( ∑

v∈V (G)

d(v)(d(v) − 1)

2

)

= 1 +
2

k

( ∑

v∈V (G)

d2(v) − k

)
=

1

k

∑

v∈V (G)

d2(v) − 1 ≥ 4k

n
− 1,

where d(v) denotes the degree of a vertex v ∈ V (G). Statement is proved.
In the famous article of O. Heilmann and E. Lieb written in 1972 [114], the bounds

on t(G) in terms of the maximal degree were obtained.
Statement 12.2 [88, 114]. Let ∆ > 1 denote the maximal degree of graph G, then

the following inequalities hold
√

∆ ≤ t(G) ≤ 2
√

∆ − 1.
Proof. For any (not necessary induced) subgraph H of G, the induced subgraph

L(H) of L(G) corresponds. By Lemma 2.3a, we have t(H) ≤ t(G) for any subgraph H
of G. Consider the subgraph H consisting on the vertex of the maximal degree ∆ and
all its outgoing edges. Thus, we have the lower bound.

The detailed proof of the upper bound t(G) ≤ 2
√

∆ − 1 see in [144], it contained three
steps: a) matching polynomial of a forest coincides with its characteristic polynomial, b)
matching polynomial of any connected graph G is a factor of the matching polynomial
of the path-tree associated with G, c) ρ(G) ≤ 2

√
∆ − 1 for a forest G with the maximal

degree ∆.
We will clarify only the part a). Let A denote the adjacency matrix of a forest T and

E denote the unit matrix. Expanding the determinant |λE−A| in terms of permutations,
we get a nonzero summand only if the corresponding permutation consists of s cycles
of length 2 and of n − 2s cycles of length 1, 0 ≤ s ≤

[
n
2

]
. Cycles of length 1 give the

factor λn−2s and cycles of length 2 correspond to a matching of size s. This observation
implies a).

Remark 12.1. By Corollary 11.3a, we immediately get the upper bound t(G) ≤√
2e(∆ − 1), since the degree of all vertices of L(G) is not greater than 2(∆ − 1).
In a similar to the proof of Statement 12.2 way, with exchange of associated path-tree

on simplicial clique, J. Leake and N. Ryder in 2016 stated the bounds for β(G) in a
claw-free case:

Statement 12.3 [133]. If Ḡ is a claw-free graph then α(G) ≤ β(G) ≤ 4 max{α(G)−
1,∆(G)}.

The lower bound of Statement 12.3 follows from Statement 3.2a. We leave the proof
of the upper bound.

Let us list another interesting results about roots of matching polynomial.
Statement 12.4 [114]. If a graph G contains a Hamiltonian path, then all roots of

µ(G, x) are simple.
Statement 12.5 [100]. The maximum multiplicity of a root of µ(G, x) is at most

equal to the number of vertex-disjoint paths required to cover G. The number of distinct
roots of µ(G, x) is at least equal to the length of the longest path in G.
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In 2014, D. Bevan interpreted the number t2(G) as the growth rate of a class of
geometric grids corresponding to G [22].

Let us briefly state some results about matchings which are very close to the results
from §3 about the bounds on the number of all (co)cliques in a graph. Denote by m(G)
the number of matchings in a graph G and by pm(G) = m|V (G)|/2(G) the number of
perfect matchings.

Statement 12.6 [67]. For all d-regular graphs G on n vertices (where 2d divides n),
mk(G) ≤ 2

√
n · mk(Hd,n), where Hd,n denotes the d-regular, n-vertex graph that is the

disjoint union of n/(2d) copies of Kd,d.

By the edge occupancy fraction [67] we mean αM(G, x) =
xM ′(G, x)

|E(G)|M(G, x)
.

Statement 12.7 [67]. For any d-regular graph G, the following inequalities hold
a) αM(G, x) ≤ αM(Kd,d, x),
b) M(G, x) ≤ M(Kd,d, x)n/(2d).
Moreover, the maximum is achieved only by unions of copies of Kd,d.
Corollary 12.4 [67]. For any d-regular graph G, m(G) ≤ m(Kd,d)

n/(2d).
Proof. It is enough to consider Statement 12.6 with x = 1.
Corollary 12.5 [34, 67]. For any d-regular graph G, pm(G) ≤ (d!)n/(2d).
Proof. For x → ∞, the inequality αM(G, x) ≤ αM(Kd,d, x) implies the inequality

between leading terms pm(G) ≤ pm(Kd,d)
n/(2d) = (d!)n/(2d).

Theorem 12.2 [61]. Let G be a d-regular bipartite graph on 2n vertices, let p = k
n
,

and pµ be the probability that a random variable with distribution Binomial(n, p) takes
its mean value µ = k. Then

mk(G) ≥ pµ

(
n

k

)2(
d− p

d

)n(d−p)

(dp)np.

Corollary 12.6 [61, 175]. Let G be a d–regular bipartite graph on 2n vertices, then

pm(G) ≥
(

(d−1)d−1

dd−2

)n
.

In 2008, L. Gurvits [106] proved the general result from which both van der Waer-
den conjecture about the permanents of double stochastic matrices [77, 193] and Corol-
lary 12.6 follow (see exposition [130]).
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13 Survey. Open problems

Below we consider only some (not all) questions concerned with clique-type polynomi-
als. Note the recent works devoted to independence and matching polynomials defined
for hypergraphs [14, 104, 149, 189, 192].

13.1 Real-rootedness of PC-polynomial

Let us once again note the nice Theorem 11.1 stating that all roots of PC-polynomial
of complement to a claw-free graph are real. This result was proved by M. Chudnovsky
and P. Seymour in 2004 (published in 2007). After that, a lot of other proofs of Theo-
rem 11.1 appear [18, 128, 133].

In 2014 [10], P. Bahls, E. Bailey, and M. Olsen showed that given a graph G with some
constraints there exists a construction to get a graph G′ which PC-polynomial has only
real roots. In 2017 [19], F. Bencs stated real-rootedness of PC-polynomials complement
to some families of trees.

In the paper of J. Brown and R. Nowakowski of 2005 [39], it was stated that for almost
all graphs PC-polynomial has a complex non-real root. It was claimed that the Sturm
sequence (starting with PC(G, x) and PC ′(G, x)) has less sign changes in (−∞,+∞)
than it should be for a real-rooted polynomial. For this claim, the clique numbers ck(G)

lie in some neighbourhoods of
(
n
k

)
2−(k

2), the expected values of the numbers of cliques of
size k. Unfortunately, it looks like the proof is not complete right. The problem is the
following: the coefficients of PC(Gn,p), the PC-polynomial of random graph Gn,p, lie in
these neighbourhoods. But all roots of PC(Gn,p) are real (Theorem 5.1a).

By this reason, we state
Problem 13.1. To state if for almost all graphs PC-polynomial has a non-real root.
Maybe, there exists the constant a ∈ (0, 1] such that the part of real roots of PC-

polynomial of almost all graphs equals a. If yes, then Problem 13.1 could be reformulated
as follows: Is it true that a = 1?

The results about part of non-real roots of PC-polynomials of all graphs with n verti-
ces for 1 ≤ n ≤ 6 are gathered below.

Table: Part of non-real roots of PC-polynomials of small graphs

n part of PC-polynomials with non-real roots part of non-real roots

1 0/20 = 0% 0/1 = 0%

2 0/21 = 0% 0/3 = 0%

3 0/23 = 0% 0/16 = 0%

4 4/26 ≈ 6.25% 8/151 ≈ 5.3%

5 135/210 ≈ 13.18% 270/2750 ≈ 9.81%

6 4666/215 ≈ 14.24% 9344/97839 ≈ 9.55%
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13.2 Unimodality and log-concavity of clique polynomial

A polynomial F (x) =
n∑

i=0

aix
i, ai ∈ R, is called

• unimodal if a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an for some k ∈ {0, 1, . . . , n},

• logarithmically concave (log-concave) if a2i ≥ ai−1ai+1 for all i = 1, . . . , n− 1,

• symmetric if ai = an−i for all i = 0, 1, . . . , n.

Theorem 13.1 [30]. a) If a polynomial F (x) with positive coefficients has only real
roots, then F (x) is log-concave.

b) Any log-concave polynomial is unimodal.
Thus, the condition of log-concativity of polynomial C(G, x) or especially condition

of unimodality are weaker than the real-rootedness. For example, for the graph G =
K7,7,7 ∪K43 the clique polynomial C(G, x) = 1 + 64x + 147x2 + 343x3 [134] is unimodal
but not log-concave.

By Theorem 13.1 and Corollary 12.3, the matching-generating polynomial M(G, x)
is log-concave and unimodal [114]. If Ḡ is a claw-free graph, then polynomial C(G, x) is
log-concave and unimodal [111] by Theorem 12.1.

In 1987, Y. Alavi, J. Malde, A. Schwenk, P. Erdős proved that
Theorem 13.2 [2]. For every permutation π ∈ Sn there exists a graph G with

ω(G) = n such that cπ(1) < cπ(2) < . . . < cπ(n).
Conjecture 13.1 [2]. Let Ḡ be a tree. Then C(G, x) is unimodal.
In 2013, A. Bhattacharyya and J. Kahn [25] found the example of the bipartite graph

G such that C(G, x) is no unimodal.
A graph G is said to be well-covered if every maximal independent set of G is also a

maximum independent set. In 2003, T. Michael and W. Traves stated that
Theorem 13.3 [154]. Let Ḡ be a well-covered graph and ω(G) = 3. Then C(G, x) is

unimodal.
Theorem 13.4 [154]. Let Ḡ be a well-covered graph and w = ω(G). Then c1(G) ≤

c2(G) ≤ . . . ≤ c⌈w/2⌉(G).
In 2014, J. Cutler and L. Pebody proved an analogue of Theorem 13.2 for well-covered

graphs.
Theorem 13.5 [65]. For every permutation π of the set {⌈w/2⌉, ⌈w/2⌉ + 1, . . . , w}

there exists a well-covered graph G such that cπ(⌈w/2⌉)(G) < cπ(⌈w/2⌉+1)(G)< . . . < cπ(w)(G)
and w = ω(G).

Corollary 13.1 [65, 135]. Let k ≥ 4. There exists a well-covered graph Ḡ with
ω(G) = k such that C(G, x) is not unimodal.

A well-covered graph G is called a very well-covered graph [83], if G contains no
isolated vertices and |V (G)| = 2α(G).

In 2006, V. Levit and E. Mandrescu stated the following theorem.
Theorem 13.6 [136]. Let Ḡ be a very well-covered graph, |V (G)| ≥ 2, w = ω(G).

Then a) c1(G) ≤ c2(G) ≤ . . . ≤ c⌈w/2⌉(G) and c⌈(2w−1)/3⌉(G) ≥ . . . ≥ cw−1(G) ≥ cw(G);
b) C(G, x) is unimodal for w ≤ 9 and log-concave for w ≤ 5.
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Given graphs G and H , a corona G ◦H [92] of them is defined as the graph obtained
by taking |V (G)| copies of H and for each i inserting edges between the ith vertex of G
and each vertex of the ith copy of H .

In 2016, V. Levit and E. Mandrescu proved that
Theorem 13.7 [139]. Let H = Kr \ e, r ≥ 2. Then the polynomial C(G ◦H, x) is

unimodal and symmetric for any graph G.
Corollary 13.2 [186, 150]. The polynomial C(G ◦ 2K1, x) is unimodal and symmetric

for any graph G.
Let us note the works of B.-X. Zhu [200], B.-X. Zhu, Q. Lu [201], D. Galvin [94], D.

Galvin, J. Hilyard [95] and P. Bahls, B. Ethridge, L. Szabo [9].

13.3 Recognizability by PC-polynomial

If two graphs G and H are isomorphic, then PC(G, x) = PC(H, x). A class of graphs
K is called PC-recognizable if for any two graphs G,H ∈ K the equality PC(G, x) =
PC(H, x) implies G ∼= H . In 1994, C. Hoede and X. Li formulated [116] the question:
Which classes of graphs are PC-recognizable?

It is easy to show [72] that classes of trees and complements to trees are not PC-
recognizable. However, D. Stevanovic in 1997 proved that

Theorem 13.8 [185]. The class of threshold graphs is PC-recognizable.
Remark 13.1. Maybe, the second case of the last paragraph of the proof of Corol-

lary 9.1 could be derived from Theorem 13.8.
In 2017, J.A. Makowsky and V. Rakita stated that for almost all graphs there exists

a non-isomorphic graph with the same PC-polynomial [148]. Later J.A. Makowsky and
R.X. Zhang extended this result for independence polynomial of hypergraphs.

A spider [113] is a tree having at most one vertex of degree greater than 3. In 2008,
V. Levit and E. Mandrescu stated

Theorem 13.9 [137]. Let G ◦K1 be connected, PC(G ◦K1, x) = PC(T̄ , x) and T̄
is well-covered spider. Then G ◦K1 is isomorphic to T .

Conjecture 13.2 [137]. Let Ḡ be a connected graph, T̄ be a well-covered tree. If
PC(Ḡ, x) = PC(T̄ , x), then Ḡ is a well-covered tree.

About another results on the problem see in the survey [134].

13.4 Bounds on roots of PC-polynomial

Given a graph G, by the Eneström—Kakeya theorem (§0), modulus of any root of

PC(G, x) is not less than (w−1)!
nw−1 , where n = |V (G| and w = ω(G). J. Brown and

R. Nowakowski in 2001 stated the asymptotically best lower bound.
Theorem 13.10 [38]. For any graph G with n vertices and clique number w ≥ 2,

modulus of any root of PC(G, x) is not less than
(
w−1
n

)w−1
+ O(n−w). This bound is

tight.
Corollary 13.3. For almost all graphs, moduli of all roots of PC-polynomial are

greater than the smallest root α(Gn,1/2, x) = βn(Gn,1/2) of PC(Gn,1/2, x).
Proof. In [28], it was proven that with probability tending to 1, the clique number of

a n-vertex graph equals ω(G) = 2 log2(n) + O(log2 log2(n)). Hence, modulus of any root
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of PC-polynomial of almost all graphs is not less than n−2(1+o(1)) log2(n). By Corollary 5.5,
we have α(Gn,1/2, x) < 21−n. Calculating logarithms of both expressions, we prove the
statement.

In 2000, J. Brown, K. Dilcher and R. Nowakowski stated that
Theorem 13.11 [40]. Given a well-covered graph G, modulus of any root of PC(G, x)

is not less than 1/ω(G).
In 2018, J. Brown and B. Cameron studied stability of independence polynomial.
Theorem 13.12 [37]. a) All roots of PC(Kn∪ . . .∪Kn, x) lie in the right half-plane.
b) Not all roots of PC(K1 ∪K2 ∪ . . . ∪Kn, x) lie in the right half-plane for n ≥ 15.
Let us formulate some problems close to considered ones in §9.
Problem 13.2. To find the average value β(n, k, w) over all graphs with n vertices,

k edges and clique number not greater than w.
Problem 13.3. To find the average value of the maximal root t(G) of matching

polynomial over all graphs with n vertices.
To confirm Conjecture 10.1, it is enough to solve the following problem.
Problem 13.4. To find the series expansion for lim

n→∞
βk(n,p)

n
for any k.

Problem 13.5. Let r ≫ 1. Is it true that for almost all graphs with n vertices, the
roots of PC-polynomial which moduli is not less than n/r lie in neighbourhoods of the
roots of PC(Gn,1/2, x)?

It is interesting to mention the figures 1 and 2 from the recent work [37] of J. Brown
and B. Cameron.

We can suggest the following approach to solve Problem 13.4. At first, we should
clarify the maximum natural number k such that 1/r < lim

n→∞
βk(n,1/2)

n
. Further, we need

some intermediate number q between
βk+1(n,1/2)

n
and βk(n,1/2)

n
. Finally, we can prove Prob-

lem 13.5 in affirmative way applying the Rouché’s theorem in the circle of the radius 1/q
for appropriate polynomials Dt(x) and H(x) (see the proof of Statement 11.1).

Is it true that βr(n, p1) > βr(n, p2) provided that 1 ≥ p1 > p2 ≥ 0?

13.5 Adjoint polynomial

In 1987, R.-Y. Liu defined [142] for a graph G with n vertices the adjoint polynomial

h(G, x) =
n∑

k=1

(−1)n−kak(G)xk, where ak(G) denotes the number of ways one can cover

all vertices of G by exactly k disjoint cliques of G.
The chromatic polynomial of a graph G is connected with adjoint polynomial of G in

the following was follows ch(Ḡ, x) =
n∑

k=1

ak(G)x(x − 1) . . . (x − k + 1). It implies that a

graph G is recognizable by its chromatic polynomial if and only if G is recognizable by
its adjoint polynomial. Thie remark was used by R.-Y. Liu and L.-C. Zhao in 1997 [143]
to construct new families of graphs recognizable by chromatic polynomial.

In 2017, F. Bencs stated the following result.
Theorem 13.13 [20]. For any graph G there exists a graph Ĝ such that h(G, x) =

xnI(Ĝ, 1/x) = xn−wPC(Ĝ, x), where n = |V (G)| and w = ω(G).
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Let V (G) = {u1, . . . , un}. The graph Ĝ satisfying the conclusion of Theorem 12.12,
could be constructed as follows. Put V (Ĝ) = {(ui, uj) ∈ E(G) | 1 ≤ i < j ≤ n}. Let

(ui, uj) and (uk, ul) be two distinct vertices of Ĝ. Assume that j ≥ l. Define that they

are connected in Ĝ if k ∈ {i, j} or j = l and (ui, uk) 6∈ E(G). It is clear that Ĝ is a
spanning subgraph of the lie graph of G.

Corollary 13.4 [20, 58, 197]. For any graph G, there exists a positive real root γ(G)
of h(G, x) such that γ(G) is larger than moduli of all other roots of h(G, x).

For γ(G), we can prove the analogues of Lemmas 2.3–2.5 in the similar way [20, 58,
197]. Since Ĝ is a spanning subgraph of L(G), from Lemma 2.4 we deduce

Corollary 13.5 [20, 58]. For any graph G, γ(G) ≤ t2(G), where t(G) is the largest
root of the matching polynomial of G.

By Corollary 13.5 and Statement 12.2, we can derive bounds on γ(G).
Although Ĝ is a spanning subgraph of L(G) and by Theorem 11.1 all roots of

PC(L(G), x) are real, we may not conclude that the adjoint polynomial is real-rooted.
For triangle-free graphs and comparability graphs, all roots of adjoint polynomial are
indeed real [35, 36].

13.6 The value of independence polynomial in x = −1

The sum I(G,−1) = 1 − s1(G) + s2(G)− . . .+ (−1)α(G)sα(G)(G) was called in [33] as
the alternating number of independent sets.

Given a graph G, the decycling number ϕ(G) [17] is the minimum number of vertices
that need to be removed in order to eliminate all cycles in G.

The following result was initially proved by A. Engström in 2009, V. Levit and E. Man-
drescu found the elementary proof of it in 2011.

Theorem 13.13 [78, 138]. For any graph G, |I(G,−1)| ≤ 2ϕ(G).
Proof. Let us prove the statement by induction on ϕ(G).
If ϕ(G) = 0, then G is a forest. Let us state the inequality |I(G,−1)| ≤ 1 in this case

by induction on n = |V (G)|. For n = 1, I(G, x) = 1+x and thus |I(G,−1)| = 0 ≤ 1. Let
G be a forest with n ≥ 2. If G has no leaves, then I(G, x) = (1 + x)n and I(G,−1) = 0.
Otherwise, let v be a leaf of G, (v, u) ∈ E(G). By (100), we have

I(G, x) = I(G \ u, x) + xI(G \ [N(u)], x) = (1 + x)I(G \ {u, v}, x) + xI(G \ [N(u)], x),

which implies |I(G,−1)| = |I(G \ [N(u)],−1)| ≤ 1 by the induction hypothesis.
Suppose that the statement is proven for all graphs satisfying ϕ(G) ≤ k. Let G be

a graph with ϕ(G) = k + 1. It is clear that there exists a vertex v ∈ V (G) such that
ϕ(G \ v) < ϕ(G). So, the statement follows from (100) applying for G and v and the
induction hypothesis.

J. Cutler and N. Kahl in 2016 proved that
Theorem 13.14 [64]. Given a positive integer k and an integer q with |q| ≤ 2k, there

is a connected graph G with ϕ(G) = k and I(G,−1) = q.
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13.7 Extremal values of β±(n, k)

Let is list some works devoted to the problems close to the one about the values
β±(n, k). In [140], unicyclic n-vertex graphs were studied which independence polynomi-
als have minimal coefficients. The analogue of the problem of β+(n, k) for the spectral
radius of a graph was solved by P. Rowlinson in 1988 [173]. See the monograph [188]
of D. Stevanovic about the extremal values of the spectral radius of a graph with fixed
number of vertices and fixed graph invariants (including clique number, independence
number, matching number etc). In 2014, J. Cutler and A.J. Radcliffe formulated a prob-
lem to find a graph with minimum number of cliques among graphs from G(n, k). They
solved it for k̄ ≤ n. For this, they used some graph transformations which are similar to
the transformations from §8 and §9.

The problem of finding the values β±(n, k) could be formulated for graphs which are
embedded into different surfaces (not necessary in plane as it was studied in §6). For the
graph G embeddable in torus with maximal number of cliques [75], we have

PC(G, x) = x7 − nx6 + 3nx5 − (3n + 14)x4 + (n + 28)x3 − 21x2 + 7x− 1

= (x− 1)3(x4 − (n− 3)x3 + 6x2 − 4x + 1),

since c8 = 0 for any graph embeddable in torus.
For the graph H embeddable in the projective plane with maximal number of cli-

ques [75], we have

PC(H, x) = x6 − nx5 + 3(n− 1)x4 − (3n + 2)x3 + (n + 9)x2 − 6x + 1

= (x− 1)3(x3 − (n− 3)x2 + 3x− 1),

since c7 = 0 for any graph embeddable in the projective plane. We suppose that the
graphs G and H are analogues of the graphs G+ (see Pic. 3). So, to construct the graph
for the value β+(n, k) in the class of all graph embeddable into torus (the projective
plane), we should start with the clique K7 (K6) and then repeat so called splitting of
triangles [75].

Let us formulate the following problem.
Clique game. There are two players: Min and Max. Before the start, the numbers

of vertices (n) and edges (k) of the future graph are fixed, and we have initially empty
graph. Each player takes turn adding one edge. The goal of Min (Max) to min(max)imize
β(G) of the final graph G ∈ G(n, k). Fix that Min makes the first turn.

Problem 13.6. a) What strategies should the players follow?
b) What is the final value β(G) ∈ G(n, k) if both players follow the best strategies?
The clique game could be considered in some class of graphs, for example for planar

graphs. Then we have an additional rule: the graph should be planar after each turn.
Finally, let us list the problems which were considered in this paper but not solved.
Problem 13.7. To prove Conjecture 9.1 to confirm the results about β−(n, k) for

k > n2/4.
By Corollary 9.2 we know that a graph G ∈ G(n, k) with minimal β has to be

connected graph of diameter 2. It seems that some kind of Zykov’s symmetrization could
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be helpful to solve this Problem. Let us introduce the Zykov’s EP (edge-preserving)-
transformation as follows. Let u, v be two disconnected vertices of a graph G. Suppose
that |NG(u)\NG(v)| ≥ |NG(v)\NG(u)|, then the graph G′ is obtained from G by removing
edges (v, w) for w ∈ |NG(v) \NG(u)| and adding the edges (u, w), w ∈ |NG(v) \NG(u)|.
By some conditions, the Zykov’s EP-transformation does not increase β(G).

Another possible strategy is to prove that if G ∈ G(n, k) with β(G) = β−(n, k), then
there exists a graph H ∈ G(n, k + 1) such that β(H) = β−(n, k + 1) and G = H \ e for
some edge e. Hence, Conjecture 9.1 could be derived from Statement 7.2.

The third idea is following. Let us introduce the graph invariants for a graph G

t1 = 1, t2 = 2n, t3 = 3n2 − 2k,

t4 = 4n3 − 6nk + c3, t5 = 5n4 − 12n2k + 3k2 + 3nc3 − c4, . . . ,

where n = |V (G)|, k = |E(G)|, ck = ck(G).
They appeared as the coefficients for the numbers mi(G) expressed by the linear

recurrence (1) via n, k, c3, c4, . . .:

m3 = nm2 − km1 + c3 = (n3 − 2nk) + t1c3,

m4 = nm3 − km2 + c3m1 − c4 = (n4 − 3kn2 + k2) + t2c3 − t1c4, . . . ,

m7 = (n7 − 6kn5 + 10k2n3 − 4k3n) + t5c3 − t4c4 + t3c5 − t2c6 + t1c7, . . . ,

ms = fs(n, k) +

s−2∑

i=1

ts−i−1ci+2

for some homogeneous polynomials fs(n, k) on two variables n, k of the degree s (we
prescribe to k a degree 2). Something close was done in [16] for matching polynomial.

Suppose that we transform G to a new graph G′ ∈ G(n, k) (by a Kelmans or another
transformation), then we want to clarify if mi(G) ≥ mi(G

′) holds for all i. For this, it
can be useful to know the properties of the coefficients ti.

Problem 13.7. To find the exact upper bounds for the expressions β(G) +β(Ḡ) and
β(G)β(Ḡ).

We conjecture that the upper bounds obtained in Example 8.2 are asymptotically the
best ones.

Acknowledgments

I would like to express my sincere gratitude to Mikhail Novikov, in 2016 a pupil of
Novosibirsk’s lyceum 9 (now a student of Saint-Petersburg State University), with whom
we began to study the growth rate of partially commutative Lie algebras. The work
would not have been appeared without this initial common interest. The author is very
grateful to Elena Konstantinova and Peter Csikvári for the help of various kinds.
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[91] A. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University
Press, Cambridge, 2016.

[92] R. Frucht, F. Harary. On the corona of two graphs. Aequationes Math. 4 (1970),
322–324.

[93] D. Galvin. An upper bound for the number of independent sets in regular graphs.
Discrete Math. 309 (2009), 6635–6640.

[94] D. Galvin. Two problems on independent sets in graphs. Discrete Math. (20) 311
(2011), 2105–2112.

[95] D. Galvin, J. Hilyard. The independent set sequence of some families of trees. Aus-
tralas. J. Combin. (2) 70 (2018), 236–252.

[96] D. Galvin and P. Tetali. On weighted graph homomorphisms, Graphs, morphisms
and statistical physics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 63,
AMS, Providence, RI, 2004, pp. 97–104.

[97] W. Gawronski and T. Neuschel. On a conjecture on sparse binomial-type polynomials
by Brown, Dilcher and Manna. Anal. Appl. (5) 12 (2014), 511–522.

[98] M. Gerstenhaber. On the Deformation of Rings and Algebras. Ann. Math. 79 (1964),
59–103.
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[147] http://magma.maths.usyd.edu.au

114



[148] J.A. Makowsky and V. Rakita. On weakly distinguishing graph polynomials. Ab-
stract presented at 5ICC, Melbourne, December 2017, 3 p.

[149] J.A. Makowsky, R.X. Zhang. On P-unique hypergraphs,
arXiv:1712.07357 [math.CO], 10 p.

[150] E. Mandrescu. Unimodality of some independence polynomials via their palin-
dromicity. Australas. J. Combin. 53 (2012), 76–82.

[151] A. Margolis. Quasi-isometry classification of RAAGs that split over cyclic sub-
groups. arXiv:1803.05493 [math.GR], 51 p.

[152] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. Aarhus Univ. 78 (1977), 1–45.

[153] C.T. McMullen. Entropy and the clique polynomial. J. Topol. (1) 8 (2015), 184–212.

[154] T.S. Michael, W.N. Traves. Independence sequences of well-covered graphs: non-
unimodality and the Roller-Coaster conjecture. Graphs Combin. 19 (2003), 403–411.
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