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Abstract

Recently, Jelínek conjectured that there exists a bijection between certain re-

stricted permutations and Fishburn matrices such that the bijection verifies the

equidistribution of several statistics. The main objective of this paper is to estab-

lish such a bijection.
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1 Introduction

Given a sequence of integers x = x1x2 · · ·xn, we say that the sequence x has an ascent
at position i if xi < xi+1. Let ASC(x) denote the set of the ascent positions of x and
let asc(x) denote the number of ascent of x. A sequence x = x1x2 · · ·xn is said to be an
ascent sequence of length n if it satisfies x1 = 0 and 0 ≤ xi ≤ asc(x1x2 · · ·xi−1) + 1 for
all 2 ≤ i ≤ n. Let An be the set of ascent sequences of length n. For example,

A3 = {000, 001, 010, 011, 012}

Ascent sequences were introduced by Bousquet-Mélou et al. [1] to unify three other
combinatorial structures: (2 + 2)-free posets, a family of permutations avoiding a cer-
tain pattern and a class of involutions introduced by Stoimenow [12]. To be specific,
Bousquet-Mélou et al. [1] constructed a bijection between ascents sequences and pat-
tern avoiding permutations, a bijection between ascent sequences and (2+2)-free posets
and a bijection between (2 + 2)-free posets and Stoimenow’s involutions. Dukes and
Parviainen [3] completed the results of [1] by constructing a bijection between ascent se-
quences and Fishburn matrices. Hence, all these combinatorial objects are enumerated
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by the Fishburn number Fn (sequence A022493 in OEIS [10] ) for memory of Fishburn’s
pioneering work on the interval orders [4, 5, 6]. More examples of Fishburn objects are
constantly being discovered. Levande [7] introduced the notion of Fishburn diagrams
and proved that Fishburn diagrams are counted by Fishburn numbers, confirming a
conjecture posed by Claesson and Linusson [2]. Jelínek [8] showed that some Fishburn
triples are enumerated by Fishburn numbers.

Zagier [14] and Bousquet-Mélou et al. [1] obtained the generating function of Fn,
that is

∑

n≥0

Fnx
n =

∑

n≥0

Πn
k=1(1− (1− x)k).

Kitaev and Remmel [9] extended the work and found the generating function for (2 +
2)-free posets when four statistics are taken into account. Levande [7] and Yan [13]
independently presented a combinatorial proof of a conjecture of Kitaev and Remmel [9]
concerning the generating function for the number of (2 + 2)-free posets.

Let us recall the notions of pattern avoiding permutations and Fishburn matrices
before we state our main results. Let Sn be the symmetric group on n elements and
π = π1π2 · · ·πn be a permutation of Sn. We say that π contains the pattern if there
is a subsequence πiπi+1πj of π satisfying that πi + 1 = πj < πi+1, otherwise we say that
π avoids the pattern . For example, the permutation 42513 contains the pattern
while the permutation 52314 avoids it.

The pattern can be defined similarly. Let Sn( ) be the set of ( )-avoiding
permutations of [n] and Sn( ) be the set of ( )-avoiding permutations of [n], re-
spectively. These two sets are both enumerated by Fishburn numbers [1, 11]. In a
permutation π, we say πi is a left-to-right maximum (or LR-maximum) if πi is larger
than any element among π1, π2, . . . , πi−1. Let LRMAX(π) denote the set of LR-maxima
of π and let LRmax(π) denote the number of LR-maxima of π. Analogously, we can de-
fine LR-minima, RL-maxima, RL-minima of a permutation π. Denote by LRMIN(π),
RLMAX(π) and RLMIN(π) the set of LR-minima, RL-maxima and RL-minima of π,
their cardinalities being denoted by LRmin(π), RLmax(π) and RLmin(π), respectively.

Fishburn matrices were introduced by Fishburn [6] to represent interval orders. A
Fishburn matrix is an upper triangular matrix with nonnegative integers whose every
row and every column contain at least one non-zero entry. The weight of a matrix is the
sum of its entries. Similarly, the weight of a row (or a column) of a matrix is the sum
of the entries in this row (or column). Denote by Mn the set of Fishburn matrices of
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weight n. For example,

M3 = {
(

3
)

,

(

2 0
0 1

)

,

(

1 1
0 1

)

,

(

1 0
0 2

)

,





1 0 0
0 1 0
0 0 1



}.

Given a matrix A, we use the term cell (i, j) of A to refer to the the entry in the i-th
row and j-th column of A, and we let Ai,j denote its value. We assume that the rows of
a matrix are numbered from top to bottom and the columns of a matrix are numbered
from left to right in which the topmost row is numbered by 1 and the leftmost column
is numbered by 1. A cell (i, j) of a matrix A is said to be zero if Ai,j = 0. Otherwise, it
is said to be nonzero. A row ( or column) is said be zero if it contains no nonzero cells.
Otherwise, it is said to be nonzero row ( or column).

A cell (i, j) of a matrix A is a weakly north-east cell (or wNE-cell) if it is a nonzero
cell and any other cell weakly north-east form c is a zero cell. More precisely, a cell (i, j)
of a matrix A is a wNE-cell if As,t = 0 for all s ≤ i and t ≥ j.

Jelínek [8] posed the following conjecture.

Conjecture 1.1 (See [8], Conjecture 4.1) For every n, there is a bijection α between
Sn( ) and Mn satisfying that:

• LRmax(π) is the weight of the first row of α(π),

• RLmin(π) is the weight of the last column of α(π),

• RLmax(π) is the number of wNE-cells of α(π),

• LRmin(π) is the number of nonzero cells of α(π) belonging to the main diagonal,
and

• α(π−1) is obtained from α(π) by transposing along the North-East diagonal.

By using generating functions, Jelínek [8] proved the following symmetric joint dis-
tribution on Mn.

Theorem 1.1 (See [8], Theorem 3.7) For any n, the number of wNE-cells and the weight
of the first row have symmetric joint distribution on Mn.

Jelínek [8] also posed the following weaker conjecture which can be followed directly
from Theorem 1.1 and Conjecture 1.1.

Conjecture 1.2 (See [8], Conjecture 4.2) For any n, LRmax and RLmax have symmet-
ric joint distribution on Sn( ).
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The main objective of this paper is to establish a bijection between Sn( ) and Mn

which satisfies the former four items of Conjecture 1.1, thereby confirming Conjecture
1.2.

2 Bijection between permutations and ascent sequences

In this section, we shall construct a bijection θ between Sn( ) and An, and show that
the map θ proves the equidistribution of two 4-tuples of statistics.

Let π be a permutation in Sn( ) and let τ be the permutation obtained by deleting
n from π. Then we have that τ is also a permutation in Sn( ). If not, we assume
that τiτi+1τj is a pattern in τ . Since π is ( )-avoiding, we have πi+1 = n. Then
πiπi+1πj+1 forms a pattern in π, a contradiction. This property allows us to construct
the permutation of Sn( ) inductively, starting from the empty permutation and adding
a new maximal value at each step.

Let τ be a permutation in Sn−1( ). The positions where we can insert the element
n into τ to obtain a -avoiding permutation are called active sites. The site after the
maximal entry n in π is always an active site. We label the active sites in π from right
to left with 0, 1, 2 and so on.

The bijection θ between Sn( ) and An can be defined recursively. Set θ(1) = 0.
Suppose that π is a permutation in Sn( ) which is obtained from τ by inserting the
element n into the xn-th active site of τ . Then we set θ(π) = x1x2 · · ·xn−1xn, where
θ(τ) = x1x2 . . . xn−1.

Example 2.1 The permutation 85231647 corresponds to the sequence 01102103 since
it is obtained by the following insertion, where the subscripts indicate the labels of the
active sites.

110
x2=1
−−−→ 22110
x3=1
−−−→ 22 3110
x4=0
−−−→ 22 3 1140
x5=2
−−−→ 3522 3 1140
x6=1
−−−→ 35 2 3 126140
x7=0
−−−→ 35 2 3 126 4170
x8=3
−−−→ 4835 2 3 126 4170.

Lemma 2.1 Let π = π1π2 · · ·πn be a permutation in Sn( ) and θ(π) = x = x1x2 · · ·xn.
Then we have that

s(π) = 2 + asc(x) and a(π) = xn, (2.1)

4



where s(π) denotes the number of active sites of π and a(π) denotes the label of the site
located just after the entry n of π.

Proof. Suppose that π is obtained from τ by inserting the element n into the xn-th
active site of τ . Then we have θ(τ) = x′, where x′ = x1x2 · · ·xn−1. For any entry i which
is to the right of n, i is followed by an active site in π if and only if i is followed by an
active site in τ . Since the site after n in π is always active, we obtain a(π) = xn

Now let us focus on the equation s(π) = 2+asc(x). We will prove it by induction on
n. It obviously hold for n = 1. Assume that it holds for n− 1. For any entry i < n− 1,
i is followed by an active site in π if and only if i is followed by an active site in τ . The
site after n in π is always an active site. Thus, to determine s(π), the only question is
whether the site after n− 1 is active. We need consider two cases.

Case 1: If 0 ≤ xn ≤ a(τ) = xn−1, then the entry n in π is to the right of n− 1. It follows
that the site after n−1 is not an active cite in π. Since the site after n−1 is an active cite in
τ , we have that s(π) = s(τ). By the induction hypothesis, s(τ) = 2+asc(x′) = 2+asc(x).
Hence we deduce that s(π) = 2 + asc(x).

Case 2: If xn > a(τ) = xn−1, then the entry n in π is to the left of n− 1. It yields that
the site after n−1 is also an active cite in π. Hence s(π) = s(τ)+1. Since xn > xn−1, we
have that asc(x) = asc(x′) + 1. By the induction hypothesis, s(τ) = 2 + asc(x′). Thus
we have s(π) = 2 + asc(x). This completes the proof.

Theorem 2.2 The map θ is a bijection between Sn( ) and An.

Proof. We prove this conclusion by induction on n. It obviously holds for n = 1. Assume
that θ is a bijection between Sn−1( ) and An−1.

We first show that θ is a map from Sn( ) to An. Let π = π1π2 · · ·πn be a permuta-
tion in Sn( ) which is obtained from τ by inserting a maximal entry n in the active site
labeled by xn in τ . Then θ(π) = x = x1x2 · · ·xn, where θ(τ) = x′ = x1x2 · · ·xn−1. To
prove that x ∈ An, it suffices to show that xn ≤ asc(x′) + 1. Recall that the rightmost
active site is labeled 0. Hence the leftmost active site in τ is labeled s(τ) − 1. By the
recursive description of the map θ, we have that xn ≤ s(τ)− 1. From Lemma 2.1 we see
that s(τ) = 2+asc(x′). Thus we have xn ≤ asc(x′)+1. Since x encodes the construction
of π, θ is an injective map from Sn( ) to An.

It remains to show that θ is surjection. Let y = y1y2 · · · yn be an ascent sequence
and p = p1p2 · · · pn−1 = θ−1(y′), where y′ = y1y2 · · · yn−1. From the definition of ascent
sequence and Lemma 2.1, we have that yn ≤ asc(y′) + 1 = s(p) − 1. Let q be the
permutation obtained from p by inserting the maximal entry n into the active site labeled
yn in p. By the construction of the map θ, it can be easily seen that θ(q) = y. This
concludes the proof.
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Let x = x1x2 · · ·xn be an ascent sequence in An. The modified ascent sequence of x,
denoted by x̂, is defined by the following procedure:
for i ∈ ASC(x)

for j = 1, 2, . . . , i− 1
if xj ≥ xi+1 then xj := xj + 1.

For example, for x = 01012213, we have ASC(x) = {1, 3, 4, 7} and x̂ = 04012213.
Modified ascent sequence were introduced by Bousquet-Mélou et al., see more details in
[1].

For a permutation π = π1π2 · · ·πn ∈ Sn( ), let l(πi) be the largest label of the
active site to the right of πi and let LMAXL(π) be the multiset of l(πi) when πi ranges
over all LR-maxima of π. That is

LMAXL(π) = {l(πi) | πi ∈ LRMAX(π)}.

Similarly, let
RMAXL(π) = {l(πi) | πi ∈ RLMAX(π)}.

Define
δ(π, q) =

∑

i∈LMAXL(π)

qi.

For example, for π = 42178536, its active sites are labelled as 4421378253160. Then we
have RMAXL(π) = {0, 2} and LMAXL(π) = {2, 2, 3}.

For an ascent sequence x = x1x2 · · ·xn, let zero(x) denote the number of zeros in x

and let max(x) denote the number of elements xi satisfying xi = asc(x1x2 · · ·xi−1) + 1.

For a sequence x = x1x2 · · ·xn, let

RMIN(x) = {xi | xi < xj for all j > i},

RMAX(x) = {xi | xi ≥ xj for all j > i},

and

χ(x, q) =
∑

xi∈RMAX(x)

qxi.

Denote by Rmin(x) andRmax(x) the cardinalities of the setRMIN(x) andRMAX(x),
respectively.

Theorem 2.3 For any π = π1π2 · · ·πn ∈ Sn( ) and x = x1x2 · · ·xn ∈ An with θ(π) =
x, we have

(1) RLmin(π) = zero(x);
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(2) LRmin(π) = max(x);

(3) RMAXL(π) = RMIN(x);

(4) δ(π, q) = χ(x̂, q);

(5) RLmax(π) = Rmin(x);

(6) LRmax(π) = Rmax(x̂).

Proof. Point (5) follows directly from point (3). Similarly, point (6) is an immediate
consequence of the point (4) with q = 1. Now we will prove point (1)-(4) by induction
on n. It is easily checked that the statement holds for n = 1. Assume that it also holds
for some n − 1 with n ≥ 2. Let τ be the permutation which is obtained from π by
deleting the largest entry n in π. Then we have that x′ = x1x2 · · ·xn−1 = θ(τ). From the
construction of the bijection θ and the induction hypothesis, one can easily verify that

RLmin(π) =

{

RLmin(τ) + 1 = zero(x′) + 1 = zero(x) if xn = 0,
RLmin(τ) = zero(x′) = zero(x) otherwise ,

LRmin(π) =

{

LRmin(τ) = max(x′) = max(x) if xn ≤ asc(x′),
LRmin(τ) + 1 = max(x′) + 1 = max(x) if xn = asc(x′) + 1,

and
RMAXL(π) = {i | i ∈ RMAXL(τ), i < xn} ∪ {xn}

= {i | i ∈ RMIN(x′), i < xn} ∪ {xn}
= RMIN(x).

For point (4), we consider two cases. If xn ≤ xn−1, then n is to the right of n− 1 in
π. Notice that all the LR-maxima in τ are also LR-maxima in π. One can easily check
that LMAXL(π) = LMAXL(τ) ∪ {xn} and RMAX(x̂) = RMAX(x̂′) ∪ {xn}. Hence
we have

δ(π, q) = δ(τ, q) + qxn = χ(x̂′, q) + qxn = χ(x̂, q).

If xn > xn−1, then n is to the left of n− 1 in π. In this case, τi is a LR-maximum in π

if and only if τi is a LR-maximum in τ and l(τi) ≥ xn. After the inserting n into τ , l(τi)
is increased by 1 if τi is also a LR-maximum in π. Hence we have that

δ(π, q) =
∑

i∈LMAXL(τ),i≥xn

qi+1 + qxn =
∑

i∈RMAX(x̂′),i≥xn

qi+1 + qxn = χ(x̂, q),

where the last equality follows from the fact that

RMAX(x̂) = {i+ 1 | i ∈ RMAX(x̂′), i ≥ xn} ∪ {xn}.

This completes the proof.

Combining Theorems 2.2 and 2.3, we are led to the following result.
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Theorem 2.4 The map θ is a bijection between Sn( ) and An. Moreover, for any
π ∈ Sn( ) and x ∈ An with θ(π) = x, we have

(RLmin, LRmin,RLmax)π = (zero,max,Rmin)x

and LRmax(π) = Rmax(x̂).

3 Bijection between ascent sequences and Fishburn

matrices

The main objective of this section is to establish a bijection φ between An and Mn. To
this end, we will define a removal operation and an addition operation on the matrices
of Mn.

Given a matrix A in Mn, let dim(A) denote the number of rows of the matrix A and
let index(A) denote the smallest value of i such that Ai,dim(A) > 0. Denote by rsumi(A)
and csumi(A) the sum of the entries in row i and column i of A, respectively. We define
a removal operation f on a given matrix A ∈ Mn as follows.

(Rem1) If rsumindex(A)(A) > 1, then let f(A) be the matrix A with the entry Aindex(A),dim(A)

reduced by 1.

(Rem2) If rsumindex(A)(A) = 1 and index(A) = dim(A), then let f(A) be the matrix A

with row dim(A) and column dim(A) removed.

(Rem3) If rsumindex(A)(A) = 1 and index(A) < dim(A), then we construct f(A) in the
following way. Let S be the set of indices j such that j ≥ index(A) and column
j contains at least one nonzero entry above row index(A). Suppose that S =
{c1, c2, . . . , cℓ} with c1 < c2 . . . < cℓ. Clearly we have c1 = index(A). Let cℓ+1 =
dim(A). For all 1 ≤ i < index(A) and 1 ≤ j ≤ ℓ, move all the entries in the
cell (i, cj) to the cell (i, cj+1). Simultaneously delete row index(A) and column
index(A).

Example 3.1 Let A,B,C be the following three Fishburn matrices:

A =









1 2 0 0
0 2 1 0
0 0 2 1
0 0 0 2









; B =









1 0 2 0
0 3 0 0
0 0 2 0
0 0 0 1









; C =













2 4 1 3 0
0 5 2 2 0
0 0 0 0 1
0 0 0 1 3
0 0 0 0 2













.
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For Matrix A, rule (Rem1) is applied since rsumindex(A)(A) = 3 and

f(A) =









1 2 0 0
0 2 1 0
0 0 2 0
0 0 0 2









.

For Matrix B, since rsumindex(B)(B) = 1 and index(B) = dim(B), rule (Rem2) is
applied and

f(B) =





1 0 2
0 3 0
0 0 2



 .

For matrix C, since rsumindex(C)(C) = 1 and index(C) < dim(C), rule (Rem3) is
applied. It is easy to check that S = {3, 4}, and thus we have

f(C) =









2 4 1 3
0 5 2 2
0 0 1 3
0 0 0 2









.

The following lemma shows that the removal operation on a Fishburn matrix of Mn

will yield a Fishburn matrix in Mn−1.

Lemma 3.1 Let n ≥ 2 be an integer and A ∈ Mn, then we have that f(A) ∈ Mn−1.

Proof. It is easily seen that for any removal operation applied on the matrix A, the
weight of f(A) is one less than the weight of A. It is trivial to check that there exists
no zero columns or rows in f(A). Moreover, the removal operation also preserves the
property of being upper-triangular. Thus, f(A) ∈ Mn−1. This completes the proof.

Lemma 3.1 tells us that for any A ∈ Mn, after n applications of the removal operation
f to A, we will get a sequence of Fishburn matrices, say A(1), A(2), . . . , A(n), where
A(k−1) = f(A(k)) for all 1 < k ≤ n and A(n) = A. Define ψ(A) = x = x1x2 . . . xn where
xk = index(A(k)).

We now define an addition operation g on a Fishburn matrix which is shown to be
the inverse of the removal operation later. Given a matrix A ∈ Mn and i ∈ [0, dim(A)],
We construct a matrix g(A, i) in the following manner.

(Add1) If 0 ≤ i ≤ index(A) − 1, then let g(A, i) be the matrix obtained from A by
increasing the entry in the cell (i+ 1, dim(A)) by 1.

(Add2) If i = dim(A), then let g(A, i) be the matrix

(

A 0
0 1

)

.
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(Add3) If index(A) ≤ i < dim(A), then we construct g(A, i) in the following way. In
A, insert a new (empty) row between rows i and i+ 1, and insert a new (empty)
column between columns i and i+1. Let the new row be filled with all zeros except
for the rightmost cell which is filled with a 1. Denote by A′ the resulting matrix.
Let T be the set of indices j such that j ≥ i + 1 and column j contains at least
one nonzero cell above row i + 1. Suppose that T = {c1, c2, . . . , cℓ}. Clearly we
have cℓ = dim(A′). Let c0 = i + 1. For all 1 ≤ a ≤ i and 1 ≤ b ≤ ℓ, move all
the entries in the cell (a, cb) to the cell (a, cb−1), and fill all the cells which are in
column dim(A′) and above row i+ 1 with zeros.

Example 3.2 Consider the matrix

A =









2 4 0 3
0 5 0 2
0 0 1 3
0 0 0 2









.

Obviously, we have dim(A) = 4 and index(A) = 1. For i = 0, since i ≤ index(A) − 1,
rule (Add1) applies and we get

g(A, 0) =









2 4 0 4
0 5 0 2
0 0 1 3
0 0 0 2









.

For i = 4, since i = dim(A), rule (Add2) applies and we get

g(A, 4) =













2 4 0 3 0
0 5 0 2 0
0 0 1 3 0
0 0 0 2 0
0 0 0 0 1













.

For i = 1, since index(A) ≤ i < dim(A), rule (Add3) applies and we get

A′ =













2 0 4 0 3
0 0 0 0 1

0 0 5 0 2
0 0 0 1 3
0 0 0 0 2













,

where the new inserted row and column are illustrated in bold. Then we have T = {3, 5}.
Finally, we get

g(A, 1) =













2 4 3 0 0
0 0 0 0 1
0 0 5 0 2
0 0 0 1 3
0 0 0 0 2













.
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By similar arguments as in the proof of Lemma 3.1, one can easily verify that the
addition operation will also yield a Fishburn matrix.

Lemma 3.2 For any matrix A ∈ Mn−1 and i ∈ [0, dim(A)], we have that g(A, i) ∈ Mn.

We now define a map φ from An to Mn recursively as follows. Given an ascent
sequence x = x1x2 . . . , xn, we define A(1) = (1) and A(k) = g(A(k−1), xk) for all 1 < k ≤ n.
Set φ(x) = A(n).

Next we aim to show that the map φ is well defined and has the following desired
properties.

Lemma 3.3 For any x = x1x2 · · ·xn ∈ An, we have φ(x) ∈ Mn satisfying that dim(φ(x)) =
asc(x) + 1 and index(φ(x)) = xn + 1.

Proof. We will prove by induction on n. It is trivial to check that the statement holds
for n = 1. Assume that it also holds for n− 1, that is,

φ(x′) ∈ Mn−1, dim(φ(x′)) = asc(x′) + 1 and index(φ(x′)) = xn−1 + 1,

where x′ = x1x2 · · ·xn−1. Since 0 ≤ xn ≤ asc(x′) + 1 = dim(φ(x′)), from Lemma 3.2 we
see that φ(x) = g(φ(x′), xn) ∈ Mn. From the construction of the addition operation,
one can easily verify that index(φ(x)) = xn + 1 and

dim(φ(x)) =

{

dim(φ(x′)) = asc(x′) + 1 = asc(x) + 1 if xn ≤ xn−1,

dim(φ(x′)) + 1 = asc(x′) + 2 = asc(x) + 1 if xn > xn−1.

The result follows.

For a matrix A, let NE(A) = {i− 1| the cell (i, j) is a wNE-cell ofA} and let ne(A)
denote the number of wNE-cells of A. Define

λ(A, q) =

dim(A)
∑

i=1

Ai,dim(A)q
i−1.

Denote by tr(A) the number of nonzero cells belonging to the main diagonal of A.

Lemma 3.4 For any x = x1x2 · · ·xn ∈ An and A ∈ Mn with A = φ(x), we have the
following relations.

(1) zero(x) = rsum1(A);

(2) max(x) = tr(A);

(3) RMIN(x) = NE(A);
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(4) χ(x̂, q) = λ(A, q);

(5) Rmin(x) = ne(A);

(6) Rmax(x̂) = csumdim(A)(A).

Proof. Point (5) follows directly from point (3). Similarly, point (6) is an immediate
consequence of the proof of point (4) with q = 1. Now we verify points (1)-(4) by
induction on n. Clearly, the statement holds for n = 1. Assume that it also holds for any
some n− 1 with n ≥ 2. Let x′ = x1x2 · · ·xn−1 and B = φ(x′). Recall that A = g(B, xn).
From the definition of the addition operation g and the induction hypothesis, it is not
difficult to verify that

rsum1(A) =

{

rsum1(B) + 1 = zero(x′) + 1 = zero(x), if xn = 0,
rsum1(B) = zero(x′) = zero(x), otherwise ,

and

tr(A) =

{

tr(B) = max(x′) = max(x) if xn ≤ asc(x′),
tr(B) + 1 = max(x′) + 1 = max(x) if xn = asc(x′) + 1.

For point (3), from the construction of the addition operation g, we see that the cell
(xn + 1, dim(A)) is always a wNE cell. Moreover, there is a wNE-cell in row i of A if
and only if there is a wNE-cell in row i of B and i < xn + 1. This yields that

NE(A) = {i | i ∈ NE(B), i < xn} ∪ {xn}
= {i | i ∈ RMIN(x′), i < xn} ∪ {xn}
= RMIN(x).

For point (4), we have two cases.

If xn ≤ xn−1 = index(B)− 1, then rule (Add1) applies. It is trivial to check that

λ(A, q) = qxn + λ(B, q) = qxn + χ(x̂′, q) = χ(x̂, q),

where the last equality follows from the fact that RMAX(x̂) = RMAX(x̂) ∪ {xn}.

If xn > xn−1 = index(B)−1, then either rule (Add2) or rule (Add3) applies. It is not
difficult to verify that

λ(A, q) = qxn +
∑

i≥xn+1

Bi,dim(B)q
i = qxn +

∑

i∈RMAX(x̂′),i≥xn

qi+1 = χ(x̂, q),

where the last equality follows from the fact that

RMAX(x̂) = {i+ 1 | i ∈ RMAX(x̂′), i ≥ xn} ∪ {xn}.

This completes the proof.

Lemma 3.5 For any x = x1x2 . . . xn ∈ An, we have ψ(φ(x)) = x.
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Proof. Suppose that we get a sequence of matrices A(1), A(2), . . . , A(n) when we apply
the map φ to x, where A(1) = (1) and A(k) = g(A(k−1), xk) for all 1 < k ≤ n. Similarly,
suppose that when we apply the map ψ to φ(x), we get a sequence y = y1y2 . . . yn and
a sequence of matrices B(1), B(2), . . . , B(n), where B(n) = φ(x), B(k) = f(B(k+1)) for all
1 ≤ k < n, and yk = index(B(k)) − 1. Lemma 3.3 ensures that index(A(k)) = xk + 1.
In order to prove x = y, it suffices to show that A(k) = B(k) for all 1 ≤ k ≤ n. We
proceed to prove this assertion by induction on n. Clearly, we have B(n) = φ(x) = A(n).
Assume that we have A(j) = B(j) for all j ≥ k+1. In the following we aim to show that
A(k) = B(k). By the induction hypothesis, it suffices to show that f(A(k+1)) = A(k). We
have three cases.

Let us assume that 0 ≤ xi+1 < index(A(k)). Then rule (Add1) applies and A(k+1) is
simply a copy of A(k) with the entry in the cell (xi+1 + 1, dim(A(k))) increased by one.
Clearly, we have dim(A(k)) = dim(Ak+1), index(A(k+1)) = xi+1+1 and rsumxi+1+1(A

(k+1)) >
1. So rule (Rem1) applies and f(A(k+1)) is obtained from A(k+1) by decreasing the the
entry in the cell (xi+1 + 1, dim(A(k+1))) by one. Thus we have f(A(k+1)) = A(k).

Next assume that xi+1 = dim(A(k)). Then rule (Add2) applies andA(k+1) =

(

A(k) 0
0 1

)

.

In this case, we have index(A(k+1)) = xi+1+1 = dim(A(k+1)) and rsumxi+1+1(A
(k+1)) = 1.

So rule (Rem2) applies and f(A(k+1)) is obtained from A(k+1) by removing column
dim(A(k+1)) and row dim(A(k+1)). Thus we have f(A(k+1)) = A(k).

If index(A(k)) ≤ xi+1 < dim(A(k)), then rule (Add3) applies and A(k+1) is obtained
from A(k) in the following way. First we insert a new (empty) row between rows xi+1

and xi+1 + 1, and insert a new (empty) column between columns xi+1 and xi+1 + 1.
Let the new row be filled with all zeros except for the rightmost cell which is filled
with a 1. Denote by A′ the resulting matrix. Let T be the set of indices j such that
j ≥ xi+1+1 and column j contains at least one nonzero cell above row xi+1+1. Suppose
that T = {c1, c2, . . . , cℓ} with c1 < c2 < . . . < cℓ. Let c0 = xi+1 + 1. For all 1 ≤ a ≤ xi+1

and 1 ≤ b ≤ ℓ, move all the entries in the cell (a, cb) to the cell (a, cb−1), and fill all
the cells in column dim(A′) and above row xi+1 + 1 with zeros. It is easy to check that
dim(A(k+1)) = dim(A(k)) + 1, index(A(k+1)) = xi+1 + 1 and rsumxi+1+1(A

(k+1)) = 1. So
rule (Rem3) applies and f(A(k+1)) is obtained from A(k+1) by the following procedure.
Let S be the set of indices j such that j ≥ xi+1 + 1 and column j contains at least one
nonzero entry above row xi+1+1. It is not difficult to check that S = {c0, c1, c2, . . . , cℓ−1}.
Let cℓ = dim(A(k+1)). For all 1 ≤ a < xi+1 − 1 and 1 ≤ b ≤ ℓ− 1, move all the entries
in the cell (a, cb) to the cell (a, cb+1). Simultaneously delete row xi+1 + 1 and column
xi+1 + 1. These operations simply reverse the construction of A(k+1) from A(k), and
therefore f(A(k+1)) = A(k). This completes the proof.

Theorem 3.6 The map φ is a bijection between An and Mn. Moreover, for any x ∈ An

and A ∈ Mn with φ(x) = A, we have

(zero,max,Rmin)x = (rsum1, tr, ne)A
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and Rmax(x̂) = csumdim(A)(A).

Proof. By Lemma 3.4, it remains to show that the map φ is a bijection. Lemma 3.5
tells us that if φ(x) = φ(y) then we have x = y for any x, y ∈ An, and thus φ is injective.
And, by cardinality reasons, it follows that φ is bijective. This completes the proof.

Remark 3.1 Dukes and Parviainen [3] defined a bijection Γ between An and Mn, and
showed that the bijection Γ proves the equidistribution of two triples of statistics, that is,

(zero,max)x = (rsum1, tr)Γ(x)

and Rmax(x̂) = csumdim(Γ(x))Γ(x). But unlike our bijection φ, the bijection Γ does not
transform Rmin to ne.

Combining Theorems 1.1 and 3.6, we are led to the following symmetric joint distri-
bution on ascent sequences.

Corollary 3.7 For any n, the statistics zero and Rmin have symmetric joint distribu-
tion on An.

Given a matrix A ∈ Mn, the flip of A, denoted by F(A), is the matrix obtained from
A by transposing along the North-East diagonal. It is not difficult to check that for any
A ∈ Mn, we have F(A) ∈ Mn satisfying that

(rsum1, tr, ne, csumdim(A))A = (csumdim(F(A)), tr, ne, rsum1)F(A).

In view of Theorems 2.4 and 3.6, we are led to the following result, confirming the
former four items of Conjecture 1.1.

Theorem 3.8 The map α = F · φ · θ is a bijection between Sn( ) and Mn satisfying
that:

• LRmax(π) is the weight of the first row of α(π),

• RLmin(π) is the weight of the last column of α(π),

• RLmax(π) is the number of wNE-cells of α(π),

• LRmin(π) is the number of nonzero cells of α(π) belonging to the main diagonal.

Remark 3.2 It should be noted that our bijection α does not verify the last item of
Conjecture 1.1. For example, let π = 85231647. Then we have π−1 = 53472681, θ(π) =
x = 01102103 and θ(π−1) = y = 01223131. It is easy to check that asc(x) = 3 and
asc(y) = 4. By Lemma 3.3, we have dim(φ(x)) = 4 and dim(φ(y)) = 5. This implies
that the resulting matrices α(π) and α(π−1) have different dimensions, and thus α(π−1) 6=
F(α(π)).
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