
ar
X

iv
:1

80
8.

04
19

9v
1 

 [
m

at
h.

C
O

] 
 1

3 
A

ug
 2

01
8

Passing through a stack k times with reversals

Toufik Mansour
Department of Mathematics

University of Haifa

3498838 Haifa, Israel

Howard Skogman
Department of Mathematics

SUNY Brockport

Brockport, New York

Rebecca Smith
Department of Mathematics

SUNY Brockport

Brockport, New York

We consider a stack sorting algorithm where only the appropriate output

values are popped from the stack and then any remaining entries in the

stack are run through the stack in reverse order. We identify the basis for

the 2-reverse pass sortable permutations and give computational results for

some classes with larger maximal rev-tier. We also show all classes of (t+1)-

reverse pass sortable permutations are finitely based. Additionally, a new

Entringer family consisting of maximal rev-tier permutations of length n was

discovered along with a bijection between this family and the collection of

alternating permutations of length n−1. We calculate generating functions

for the number permutations of length n and exact rev-tier t.

1. Introduction

We begin with the notion of permutation (or pattern) containment.

Definition 1.1. A permutation π = π1π2 . . . πn ∈ Sn is said to contain a permutation σ = σ1σ2 . . . σk
if there exist indices 1 ≤ α1 < α2 < . . . < αk ≤ n such that παi

< παj
if and only if σi < σj . Otherwise,

we say π avoids σ.

Key words and phrases. data structure, permutation pattern, covincular pattern, sorting, stack, stacks in series, Euler
number, Entringer number, generating function
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Example 1.2. The permutation π = 4127356 contains 231 since the 4, 7, 3 appear in the same relative
order as 2, 3, 1. However, π avoids 321 since there is no decreasing subsequence of length three in π.

A stack is a last-in first-out sorting device that utilizes push and pop operations. In Volume 1 of The Art
of Computer Programming [22], Knuth showed the permutation π can be sorted (that is, by applying
push and pop operations to the sequence π1, . . . , πn one can output the identity 1, . . . , n) if and only
if π avoids the permutation 231. Subsequently Tarjan [41], Even and Itai [19], Pratt [32], and Knuth
himself in Volume 3 [23] studied sorting machines made up of multiple stacks in series or in parallel.

Classifying the permutations that are sortable by such a machine is one of the key areas of interest in
this field. To better do so, we will use the following definitions.

Definition 1.3. A permutation class is a downset of permutations under the containment order. Every
permutation class can be specified by the set of minimal permutations which are not in the class called
its basis. For a set B of permutations, we denote by Av(B) the class of permutations which do not
contain any element of B.

For example, Knuth’s result says that the stack-sortable permutations are precisely Av(231), that is
the basis for the stack sortable permutations is {231}. Given most naturally defined sorting machines,
the set of sortable permutations forms a class. This is because often a subpermutation of a sortable
permutation can be sorted by ignoring the operations corresponding to absent entries.1

Given that the permutations sortable by a single stack are precisely Av(231), one could reasonably
expect the class of sortable permutations for a network made up of multiple stacks would also be finitely
based. However, this is not the case for machines made up of k ≥ 2 stacks in series or in parallel, shown
by Murphy [28] and Tarjan [41], respectively. Moreover, the exact enumeration question is unknown;
see Albert, Atkinson, and Linton [1] for the best known bounds. For a general overview of stack sorting,
we refer the reader to the survey by Bóna [9].

In part because of the difficulties noted above, numerous researchers have considered weaker machines.
Atkinson, Murphy, and Ruškuc [3] considered sorting with two increasing stacks in series, i.e., two
stacks whose entries must be in increasing order when read from top to bottom.2 They characterized
the permutations this machine can sort with an infinite list of forbidden patterns, and also found
the enumeration of these permutations. Interestingly, these permutations are in bijection with the
1342-avoiding permutations previously counted by Bóna [8]. The third author [37] studied a similarly
restricted machine where the first stack must have entries in decreasing order when read from top to
bottom. This permutation class of sortable permutations was shown to be Av(3241, 3142) which was
proven to be enumerated by the Schröder numbers by Kremer [24, 25].

A different version, sorting with a stack of depth 2 followed by a standard stack (of infinite depth),
was studied by Elder [16]. He characterized the sortable permutations as a class with a finite basis of
forbidden patterns. Later, Elder and Goh [17] showed a machine with first stack of finite depth d ≥ 3
followed by an infinite depth stack produces a sortable class of permutations with an infinite basis. Yet
another restriction on two stacks in series was studied by the third author and Vatter [38] by combining
a pop stack with a regular stack in series. If a pop stack is followed directly by a stack, the sortable

1An exception is West’s notion of 2-stack-sortability [42], which is due to restrictions on how the machine can use its
two stacks. Namely this machine prioritizes keeping large entries from being placed above small entries. Because of this
limitation, this machine can sort 35241, but not its subpermutation 3241. This restriction was extended to pop stacks by
Pudwell and the third author [33] where again the sortable permutations do not form a class.

2Even without this restriction, the final stack must be increasing if the sorting is to be successful.
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permutations are classified by a finite basis. If there is a queue separating the two, the cardinality of
the basis for the sortable permutations is unknown, but conjectured to be finite.

In [27], the authors apply a sorting algorithm on a stack whereby the entries the permutation are pushed
into the stack in the usual way. An entry is popped from the stack only if it is the next needed entry
for the output (the next entry of the identity permutation). That is, allow larger entries to be placed
above smaller entries, but do not allow entries to be pushed to the output prematurely. In particular,
this means that if a permutation contains the pattern 231, then there will be entries left in the stack
after all legal moves have been made. In this case, the algorithm is repeated on the remaining entries
which are returned to the input to be read in their original order.

In this paper, we begin our sorting algorithm the same way as in [27] above. That is, prioritize outputting
appropriate entries even if this restriction causes larger entries to be placed above smaller entries in the
stack. As before, if a permutation contains the pattern 231, there will be entries left in the stack after
all legal moves have been made. However, the new algorithm returns the remaining entries in the stack
to the input in the reverse of their prior order.

Definition 1.4. The rev-tier of a permutation is the number of times the entries in the stack must be
returned to the input. Denote the rev-tier of the permutation σ by trev(σ).

Each repetition of the stack sorting algorithm will be referred to as a reverse pass.

When sorting a permutation π with rev-tier t, this machine can be considered to be a network of t+ 1
stacks in series with a special output condition. Namely, entries of π may only exit a stack to traverse
directly to the output or if there are no more entries left to enter the stack. This restriction has a
similar flavor to the pushall stacks studied by Pierrot and Rossin [29, 30] where no entry is output until
all entries have entered the stacks.

Example 1.5. The permutation 231 has rev-tier trev(231) = 1, all other elements of S3 have rev-tier
0. Alternatively, we can say all permutations in S3 are 2-reverse-pass sortable and permutations in S3

except for 231 are 1-reverse-pass sortable.

We translate Knuth’s original stack sortable requirement to the following theorem.

Theorem 1.6. (Knuth) A permutation π has positive rev-tier, that is π cannot be sorted via single
reverse pass through the stack, if and only if π contains the pattern 231.

2. Classes of (t+ 1)-reverse stack sortable permutations

To investigate the rev-tiers of permutations more generally, we will derive an explicit condition on
permutations that describes their rev-tier.

Definition 2.1. Let σ ∈ Sn and let i ∈ {1, 2, . . . , n− 1}. Call (i, i + 1) a separated pair in σ if there
is a k > i+ 1 between i and i+ 1 in σ.

A separated pair (i, i+1) is up oriented if i precedes i+1 in σ, i.e. (i, i+1) is a coversion. Otherwise
(i, i+ 1) is down orientated.
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Equivalently one could say that (i+ 1, i) is a down separated pair in σ if i and i+ 1 occur as part of a
231 pattern where i + 1 is the middle number and i is the smallest number in the pattern. Similarly,
(i, i+ 1) is an up separated pair if i and i+ 1 occur as the 1 and 2 elements in a 132 pattern.

These types of patterns are known as covincular patterns. The formal study of these patterns was
introduced by Babson and Steingŕımsson [4]. For a thorough review of such pattern avoidance we refer
the reader to the survey [40] by Steingŕımsson and book [21] by Kitaev.

In this context, Claesson [12] proved a result equivalent to the following proposition:

Proposition 2.2. (Claesson) A permutation π contains the pattern 231 if and only if π has a down
separated pair. Similarly, π contains the pattern 132 if and only if π contains an up separated pair.

Proof. The argument for the 132 case is nearly identical to that given for the 231 case in [27]. However,
it is presented here for completeness and future use in this paper.

Suppose the permutation σ contains a 132 pattern, say a subsequence (a, b, c) with a < c < b. If
a+1 = c, then (a, c) is an up separated pair. Otherwise, consider the location of a+1. If a+1 is to the
right of b, then (a, a+ 1) is an up separated pair. If instead a+ 1 is to the left of b, then there is a 132
pattern (a+1, b, c). Iterating this process will yield an up separated pair (i, i+1) with a ≤ i ≤ c−1.

Extending this argument allows us to characterize the rev-tier of a permutation using separated pairs.

Theorem 2.3. The rev-tier of a permutation π under this sorting algorithm is exactly the maximum
number t of separated pairs (ii, i1 + 1), (i2, i2 + 1), . . . , (it, it + 1) ∈ π where i1 < i2 < i3 < . . . < it and
the orientations of the pairs alternate (in this order), beginning with a down separated pair.

Proof. Let π be a permutation. From Theorem 1.6 and Proposition 2.2, π has rev-tier 0 if and only if π
does not contain a down separated pair. If π contains at least one down separated pair, let (i1, i1 + 1)
be the smallest such pair. The sorting algorithm will output 12 . . . i1, and then the remaining entries
will be processed in the reverse of their original order. This second pass stops short of outputting the
identity and instead results in a total output of 12 . . . i2 precisely if this new sequence contains a down
separated pair (i2, i2 +1) which was an up separated pair in π. Each increase in rev-tier is caused by a
separated pair with the opposite orientation in π as the previous one. The theorem follows.

Example 2.4. The permutation π = 2413 has two alternating separated pairs, (1, 2), (2, 3) with (1, 2)
down separated and thus has rev-tier 2. We show the sorting of π using three reverse passes through a
stack in Figure 1. In Figure 2, the equivalent sorting of π is shown with three stacks in series with the
restriction of not permitting an entry πi to leave a stack until one of the following conditions are met:

1. πi is the next entry of the identity permutation for the output or

2. there are no more entries to the right of the stack.

We now argue that permutations up to a given rev-tier t form a permutation class.

Proposition 2.5. If σ and τ are two permutations and σ is contained in τ then trev(τ) ≥ trev(σ).

Proof. Suppose σ has a maximal alternating down/up sequence of separated pairs (i1, i1 + 1), (i2, i2 +
1), . . . , (it, it + 1) such that i1 < i2 < . . . < it. The permutation pattern formed by the alternating
sequence of separated pairs (i1, i1 + 1), (i2, i2 + 1), . . . , (it, it + 1) in σ must be contained in τ .
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output input

2413

First reverse pass.

output input
2

413

output input

2
4

13

output input

2
4
1

3

output input

1

2
4

3

output input

1

2
4
3 output input

1 342

Second reverse pass.

output input

1

3

42

output input

1

3
4

2

output input

1

3
4
2 output input

12

3
4

output input

12 43

Third reverse pass.

output input

12

4

3

output input

12

4
3

output input

123

4
output input

1234

Figure 1: Sorting the permutation 2413 with k = 3 reverse-passes through a stack.

Say a permutation pattern corresponding to the separated pair (ik, ik + 1) with a separator is
ταk

τβk
ταk+1

. Applying the argument given in the proof of Proposition 2.2, there exists a separated pair
(jk, jk +1) in τ (of the same orientation as that of (ik, ik + 1) in σ) where ταk

≤ jk ≤ ταk+1
− 1. Hence

τ has an alternating down/up sequence of separated pairs (j1, j1 + 1), (j2, j2 + 1), . . . , (jt, jt + 1) with
j1 < j2 < . . . < jt. Therefore trev(τ) ≥ trev(σ).

Since the permutations of rev-tier at most t are those that avoid all permutations of rev-tier t+ 1, the
following corollary is a direct consequence of Proposition 2.5.

Corollary 2.6. The (t+1)-reverse pass sortable permutations form a permutation class for any t ≥ 0.

2.1 An explicit basis for 2-reverse pass sortable permutations

Recall the basis of a permutation class is the minimal set of forbidden permutations any permutation
in the class must avoid.

Notation 2.7. Let Bt be the basis for the set of all permutations of rev-tier at most t.

Theorem 2.8. The 2-reverse pass sortable permutations are precisely Av(2413, 2431, 23154).

Proof. One can verify that each of 2413, 2431, and 23154 have rev-tier 2, and that the deletion of any
entry reduces the rev-tier of the permutation. Hence 2413, 2431, 23154 ∈ B1.

Now suppose π is a basis element and thus of minimal length. Each entry of π must appear as part of
a separated pair in the maximum length alternating down/up sequence of separated pairs in π. Thus
(1, 2) must be a down separated pair in π. Similarly, since the 3 is part of a separated pair, π must
have at least one of the following properties:

1. 3 separates (1, 2).

2. (2, 3) is an up separated pair.
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output input

2413

output input
2

413

output input

2
4
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output input

2
4
1

3

output input
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2
4

3

output input

1

2
4
3

output input

1

3 2
4

output input

1

3
4 2

output input

1

3
4
2

output input

12

3
4

output input

12

4 3
output input

12

4
3

output input

123

4
output input

1234

Figure 2: Sorting the permutation 2413 with k = 3 stacks in series with output restrictions.

3. (3, 4) is an up separated pair.

If 3 separates (1, 2) and does not appear as part of a separated pair, then (4, 5) must be an up separated
pair. Thus π contains the subsequence 465. Also, each of 4, 5, 6 must appear either before or after
the entire subsequence 231, as otherwise deleting 3 would result in a smaller permutation of rev-
tier 2. However, each such configuration results in a permutation containing one of the known basis
permutations 2413, 2431, 23154.

If instead (2, 3) is an up separated pair, then since (1, 2) is a down separated pair, π contains either the
subsequence 213 or the subsequence 231. Separating the first two terms of the sequence (as required)
also separates the other pair and leads to 2413 or 2431 respectively.

Finally if (3, 4) is an up separated pair, then there is a 3k4 subsequence in π where k > 4. If none of
these entries separate the subsequence 21, the π has form 2m13k4 or 3k42m1 where m, k > 4. However,
the first four terms of those permutations are subpatterns 2413 or 2431 respectively. Hence π is made
up of the subsequences 354 and 21 where at least some of the 354 subsequence separates 21. The only
such permutation of this form that does not contain 2413 or 2431 as a subpermutation is 23154.

We also were able to compute the basis for the class of 3-reverse pass sortable permutations:

B2 = {24153, 24513, 24531, 42513, 42531, 231564, 261453, 523164, 562413, 562431, 6723154}.

Further calculations show B3 has 16 elements of length 6, 24 of length 7, 11 of length 8, and one of
length 9.

2.2 Bounds on the basis elements for (t+ 1)-pass sortable permutations

We now show there is a finite basis for each class by bounding the length of potential basis elements.
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Proposition 2.9. If σ ∈ Bt, then the length of σ is at most 3(t+ 1).

Proof. If a permutation contains entries that are not part of an oriented separated pair contributing
to the rev-tier, these can be eliminated without reducing the rev-tier. A basis permutation in Bt must
have exactly t+ 1 such separated pairs and thus has length at most 3(t+ 1).

As an immediate consequence, we obtain the desired corollary.

Corollary 2.10. The class of (t+ 1)-reverse-pass sortable permutations has a finite basis.

We can also determine the length of the shortest elements in the basis by giving a construction of a
permutation of length n with maximal rev-tier.

Notation 2.11. Let ρ(n) represent the maximum rev-tier of any permutation of length n, and as before
let trev(σ) represent the rev-tier of σ.

Proposition 2.12. For any integer n ≥ 2, we have ρ(n) = n−2. Specifically, there are permutation(s)
of length n ≥ 2 and rev-tier ρ(n) = n − 2 which have (1, 2), (2, 3), . . . , (n − 2, n − 1) as its maximum
length alternating down/up sequence of separated pairs.

Proof. First note a permutation π of length n cannot have more separated pairs of any orientation
beyond (1, 2), (2, 3), . . . , (n− 2, n− 1), so ρ(n) ≤ n− 2. Further, one construction of a permutation of
length n with rev-tier n− 2 is

π =

{

(n− 2) · · · 6 4 2 n 1 3 5 · · · (n− 1) if n is even

(n− 1) · · · 6 4 2 n 1 3 5 · · · (n− 2) if n is odd.

As an immediate consequence of Proposition 2.12, we obtain the following corollary.

Corollary 2.13. For any non-negative integer t and any σ ∈ Bt, the length of σ is greater than or
equal to t+ 3 and the bound is sharp for all t.

3. Maximal rev-tier permutations are counted by the Eu-

ler numbers

3.1 Computational data for permutations of exact rev-tier t

A simple program was written in SAGE [14] to compute the rev-tier of all permutations up to length
10. The data for the number of permutations of a given length and exact rev-tier is given in Table 1. In
particular, the numbers on the top non-zero diagonal beginning at n = 3, t = 1 appear in the OEIS [36]
and are known as the Euler or Down/Up Numbers (A000111, A163747, A163982).
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8
n = 1 1
n = 2 2
n = 3 5 1
n = 4 14 8 2
n = 5 42 47 26 5
n = 6 132 248 228 96 16
n = 7 429 1249 1702 1178 421 61
n = 8 1430 6154 11704 11840 6816 2102 272
n = 9 4862 30013 76845 106567 88020 43347 11841 1385

n = 10 16796 145764 490866 896560 997056 697644 302002 74176 7936

Table 1: Number of permutations of length n and exact rev-tier t

3.2 A new Entringer family

We begin with some historical information on the discovery and refinement of the Euler numbers
including the Entringer numbers found in “A Survey of Alternating Permutations” by Stanley [39].

Euler was known to have studied the odd indexed terms of this sequence which have exponential

generating function
∑

n≥0

E2n+1
x2n+1

(2n+ 1)!
= tanx. The original combinatorial interpretation of Euler

numbers (with any integer index) was given by André [2]. In particular, En is shown to count the
down/up permutations which are alternating permutations of length n (beginning with a descent).

Note that
∑

n≥0

En

xn

n!
= tanx+ secx. In 1966, Entringer [18] published a more refined enumeration of

these alternating permutations of length n based on the initial term. However, the construction of the
triangle corresponding to this partitioning of the Euler numbers was published by Seidel [35] in 1877.

Definition 3.1. The Entringer number En,k is the number of alternating permutations of [n] beginning

with k. Thus

n
∑

k=1

En,k = En.

Theorem 3.2. (Entringer, Seidel)

The sequence {En,k} is defined recursively where E1,1 = 1, En,1 = 0 when n > 1, and

En,k = En,k−1 + En−1,n+1−k for 1 ≤ k ≤ n.

Example 3.3. Consider the alternating permutations of length five. Note E5,5 = 5 as it counts

51324, 51423, 52314, 52413, 53412.

By exchanging the 4 and 5 in the previous five permutations, we have E5,4 = 5 since it counts

41325, 41523, 42315, 42513, 43512.

Then E5,3 = 4 as it counts 31425, 31524, 32415, 32514 and finally E5,2 = 2 as it counts 21435, 21534.
Note E5,1 = 0. Collecting all of these permutations, we see E5 = 16.
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Since André’s discovery and Entringer’s refinement, other researchers have found various combinatorial
objects with the same enumeration. In one such paper, Gelineau, Shin, and Zeng [20] studied known
Entringer families and also identified new Entringer families. They created bijective proofs linking
all of the twelve of the families they considered. Others who have studied Entringer families include
Poupard [31] and Kuznetsov, Pak, and Postinikov [26].

Definition 3.4. Let Rn be number of permutations of length n ≥ 3 with rev-tier n− 2.

Define Rn,k to be the number of permutations of length n with rev-tier n−2 where 1 is in position k+1.

Finally, let Rn,k be the set of permutations of length n with rev-tier n− 2 where 1 is in position k + 1.

Remark 3.5. We note that Rn,n = Rn,1 = Rn,0 = 0 for all n ≥ 3. Thus Rn =

n−1
∑

k=2

Rn,k.

Example 3.6. Consider the permutations of length six with rev-tier four. Note R6,5 = 5 as it counts
246351, 246531, 426351, 426531, 462531.

Move the 1 one position to the left to obtain R6,4 = 5 counting 246315, 246513, 426315, 426513, 462513.

Then R6,3 = 4, counting 246135, 246153, 426135, 426153,

and finally R6,2 = 2 as it counts 241635, 241653. Thus R6 = 16.

We introduce notation for counting the number of inversions an entry of a permutation is involved in
specifically as the left (larger) entry or specifically as the right (smaller) entry.

Definition 3.7. The pair (πi, πj) is said to be an inversion in π if i < j and πi > πj. Further, let

invL(πi) = the number of inversions of π where πi is the first/left entry of the inversion and

invR(i) = the number of inversions of σ where i is the second/right entry of the inversion.

The sequence invL(π1) . . . invL(πn) is called the inversion sequence of π. For more information on these
sequences, see work by Corteel, Martinez, Savage, and Weselcouch [13].

Example 3.8. The permutation π = 3142, is such that invL(π1) = 2, invL(π2) = 0, invL(π3) = 1, and
invL(π4) = 0. Further, invR(1) = 1, invR(2) = 2, invR(3) = 0, and invR(4) = 0.

Theorem 3.9. The permutations of length n ≥ 3 with rev-tier n − 2 form an Entringer family.
Specifically, Rn,k = En−1,k for 1 ≤ k ≤ n− 1 and so Rn = En−1 when n ≥ 3.

Proof. Let En,k be the set of alternating permutations of length n beginning with k.

We construct a bijection f : En−1,k → Rn,k defining f(π) by beginning at π1 and proceeding left to
right as follows:

1. Place each odd entry 2i+ 1 in position invL(π2i+1) + 2 of the remaining positions.

2. Place each even entry 2i in position invL(π2i) + 1 of the remaining positions.

3. The entry n is placed in the remaining spot.
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Consider the entries j − 1 and j in f(π) where j − 1 ≤ n − 2. Specifically, consider their insertion in
the permutation f(π) by the above algorithm.

Suppose j − 1 is even and placed in position invL(πj−1) + 1 of the open slots, then j will be placed
in position invL(πj) + 2 of the positions that remain. Certainly invL(πj) + 2 > invL(πj−1) + 1 since
πj > πj−1. After j − 1 is placed, the new position invL(πj−1) + 1 is the next open slot to the right of
j− 1. Hence j is placed to the right of j − 1 in f(π) with at least one open position between them that
must then be filled by a larger entry. Therefore (j − 1, j) is an up separated pair in f(π).

Similarly if j − 1 is odd and placed in position invL(πj−1) + 2 of the remaining positions, then j will
be placed in position invL(πj) + 1 of the positions that remain. Notice invL(πj−1) > invL(πj) since
πj−1 > πj and πj is to the right of πj−1. Hence j is placed to the left of j − 1 in f(π) with at least one
open position between them. The only entries that remain to fill that open position are larger than j.
Therefore (j − 1, j) is a down separated pair in f(π).

Thus f takes alternating permutations of length n− 1 to permutations of length n with an alternating
sequence of separated pairs (1, 2), (2, 3), . . . , (n− 2, n) where (1, 2) is a down separated pair. Note that
in particular, 1 is placed in position invL(π1) + 2 = (π1 − 1) + 2 = π1 + 1 = k + 1. In other words, f
does indeed map En−1,k into Rn,k.

Further, this map is invertible. Starting with the entry 1 in a permutation σ ∈ Rn,k and proceeding in
order by the value of entries in σ from 1 to n− 1, determine the entries of π = f−1(σ) as follows:

1. Define π2i+1 to be the invR(2i+ 1)st largest entry of those that have not already been selected.

2. Define π2i to be the [invR(2i) + 1]st largest entry of those that have not already been selected.

To see that f−1 is indeed the inverse of f , consider a permutation σ of length n and rev-tier n− 2. Let
π = f−1(σ). By these definitions, π2i+1 will have invR(2i+ 1)− 1 smaller entries to its right. That is,
invL(π2i+1) = invR(2i + 1) − 1. And entry 2i + 1 of σ is in position invR(2i + 1) + 1 of the positions
occupied by entries at least as large as 2i+1. Thus σ has 2i+ 1 in position invL(π2i+1) + 2 among the
entries at least as large as 2i + 1. Similarly, π2i will have [invR(2i) + 1] − 1 = invR smaller entries to
its right. That is, invL(π2i) = invR(2i). The entry 2i of σ is in position invR(2i) + 1 of the positions
occupied entries at least as large as 2i. Thus σ has 2i in position invL(π2i) + 1 among the entries at
least as large as 2i.

Example 3.10. Consider an alternating permutation π = 21534 which is one of the permutations
counted by E5,2. Then σ = f(π) is such that:

1 is in the invL(π1) + 2 = 3rd position of the open positions in σ. σ = 1

2 is in the invL(π2) + 1 = 1st position of the open positions in σ. σ = 2 1

3 is in the invL(π3) + 2 = 4th position of the open positions in σ. σ = 2 1 3

4 is in the invL(π4) + 1 = 1st position of the open positions in σ. σ = 2 4 1 3

5 is in the invL(π5) + 2 = 2nd position of the open positions in σ. σ = 2 4 1 5 3

The position of 6 in σ is in the only open position in σ. σ = 241653 ∈ R6,2.

Example 3.11. Consider a permutation σ = 6247153 with rev-tier 5 which is one of the permutations
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counted by R7,4. Then π = f−1(σ) is such that:

π1 is the invR(1) = 4th largest value of the remaining values of π, that is π1 = 4

π2 is the invR(2) + 1 = 2nd largest value of the remaining values of π, that is π2 = 2

π3 is the invR(3) = 4th largest value of the remaining values of π, that is π3 = 6

π4 is the invR(4) + 1 = 2nd largest value of the remaining values of π, that is π4 = 3

π5 is the invR(5) = 2nd largest value of the remaining values of π, that is π5 = 5

π6 is the invR(6) + 1 = 1st largest value of the remaining values of π, that is π6 = 1

That is, the steps described give us f−1(6247153) = 426351 ∈ E6,4.

4. Generating Functions

In order to determine the generating function for the number of permutations of length n and exact
rev-tier t, we refine the sets of permutations under consideration.

Definition 4.1. A permutation α is up-oriented if any maximum length increasing sequence of al-
ternating separated pairs in α begins with an up separated pair. That is, suppose (i1, i1 + 1), (i2, i2 +
1), . . . , (ip, ip+1) is a maximum length increasing sequence of separated pairs of alternating orientations
in α. Then α is up-oriented precisely if (i1, i1 + 1) is an up separated pair. Let MU be the set of all
up-oriented permutations.

Define the corresponding notion for down-oriented permutations and let MD denote this set.

Finally, let N denote permutations with no separated pairs.

The set of all permutations is the disjoint union of N,MU , and MD. Further, N is a permutation class,
whereas MU and MD are not permutation classes. In fact, N = Av(132, 231). Let ηn be the number of
elements in N of length n, and let

FN (x) =
∑

n≥1

η(n)xn.

The statements of Theorem 4.2 and Theorem 4.3 are equivalent to the statement and proof respectively
of the last corollary of a paper by Rotem [34].

Theorem 4.2. (Rotem) With η(n) as above, η(1) = 1, η(2) = 2, and ∀n ≥ 3, η(n) = 2n−1.

Next consider the refinement of the sets under consideration by the location of the smallest element of
the permutation. Beginning with N , set

FN (x,w) =
∑

n≥1

η(n, k)xnwk−1

where η(n, k) is the number of permutations in N of length n where the 1 occurs in the kth position.

Theorem 4.3. (Rotem) With the notation as above η(n, k) =
(

n−1
k−1

)

.
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To consider the elements in MU and MD, define the operator

Θ : S = ∪nSn → Z[x, y, w], where Θ(α) = xn(α)ytrev(α)wk(α)−1,

n(α) is the length of α, trev(α) is the rev-tier of α, and k(α) is the position of the 1 in α. Note that

FN (x,w) =
∑

α∈N

Θ(α).

We similarly construct generating functions for all remaining permutations, namely those in MU and
those in MD. Abusing notation slightly let

F (x, y, w) =
∑

α∈S

Θ(α) =
∑

n,t,k

f(n, t, k)xnytwk−1,

MU (x, y, w) =
∑

α∈MU

Θ(α) =
∑

n,t,k

µU (n, t, k)x
nytwk−1,

MD(x, y, w) =
∑

α∈MD

Θ(α) =
∑

n,t,k

µD(n, t, k)xnytwk−1.

Since the set of all permutations is a disjoint union of N,MU , and MD, we have

F (x, y, w) = FN(x,w) +MU (x, y, w) +MD(x, y, w).

Permutations have a down separated pair exactly if they have rev-tier at least 1, hence

f(n, 0, k) = η(n, k) + µU (n, 0, k)

and
f(n, t, k) = µU (n, t, k) + µD(n, t, k) for t ≥ 1.

For i = 1, 2, . . . , n + 1, let ψi : Sn−1 → Sn be defined such that ψi(α) is the permutation obtained by
increasing all of the values in α by 1, and then inserting a 1 in the ith position. Each permutation
in Sn is obtained by a unique ψi applied to a unique permutation. Now consider the action of these
operators on our subsets N,MU , and MD. The rev-tier of the resulting permutation is recorded in the
following table.

α ∈ Set Condition ψi(α) ∈ Set t(ψi(α))
N i = k, or k + 1 N 0

i ≤ k − 1 MU 0
i ≥ k + 2 MD 1

MU i ≤ k + 1 MU t(α)
i ≥ k + 2 MD t(α) + 2

MD i ≤ k − 1 MU t(α)
i ≥ k MD t(α)

To explain the entries in the table above, we work through each case.

Consider α ∈ N . Then ψi(α) also has no separated pairs if and only if the resulting 1 and 2 are adjacent
in ψi(α), that is k(ψ(α)) = k(α) or k(α) + 1 (where k is the location of the 1). Further ψi(α) ∈ MU

if and only if (1, 2) is an up separated pair in ψi(α), i.e. i ≤ k − 1. Finally, ψi(α) ∈ MD if and only if
(1, 2) is a down separated pair (i.e. i ≥ k + 2) which also increases the rev-tier of ψi(α) to 1.
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If α is in MU , we can create a longer increasing sequence of alternating separated pairs (ISASP) if and
only if the (1, 2) becomes a down separated pair, i.e. i ≥ k + 2. In this case, the longest such sequence
beginning with a down separated pair increases by two, and thus the rev-tier of ψi(α) increases only in
this case. Otherwise, ψi(α) ∈MU (and no change in rev-tier from α to ψi(α)) if and only if i ≤ k + 1.

Finally if α is in MD, then we cannot create a longer ISASP beginning with a down separated pair.
Hence the rev-tier of the image ψi(α) is the same as the rev-tier of α. However, ψi(α) will be in MU if
and only in (1, 2) becomes an up separated pair, i.e. if i ≤ k − 1.

Inverting the table above gives the following recurrences.

Theorem 4.4. With all of the notation as above:

η(n+ 1, k) = η(n, k) + η(n, k − 1),

µU (n+ 1, 0, k) =
∑

i≥k+1

η(n, i) +
∑

i≥k−1

µU (n, 0, i),

and for t ≥ 1

µU (n+ 1, t, k) =
∑

i≥k+1

µD(n, t, i) +
∑

i≥k−1

µU (n, t, i),

µD(n+ 1, 1, k) =
∑

i≤k−2

η(n, i) +
∑

i≤k

µD(n, 1, i),

and for t ≥ 2

µD(n+ 1, t, k) =
∑

i≤k−2

µU (n, t− 2, i) +
∑

i≤k

µD(n, t, i).

Note µU (1, 0, k) = µD(1, 0, k) = 0 for all k, and also µD(n, 0, k) = 0 for all n and k. We compute a few
more of these coefficients directly.

Lemma 4.5. For all n ≥ 1, t ≥ 0 we have:

µU (n, t, n) = µU (n, t, n− 1) = 0,
µD(n, t, 1) = µD(n, t, 2) = 0.

Proof. To see the conditions on µU , suppose the 1 appears in the penultimate or final position of π. In
these cases, consider filling in the rest of the entries of π from smallest entry to largest. Consider the
first (if any) gap created in this process, say between an entry k and the interval of entries 1, 2, . . . , k−1.
This is the first time two consecutive entries k − 1 and k are separated by a larger entry. However, k
must appear before the gap that in turn precedes the smaller entries. That is, the smallest separated
pair of π, must be a down separated pair. Hence it is impossible for such a permutation to be in MU .

A similar argument shows that if the 1 is in the first or second position of a permutation σ, the smallest
separated pair must be up separated. Thus such a permutation cannot be in MD.

A bit more can be done using elementary methods, as shown in the following lemma.
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Lemma 4.6. For t ≥ 1, µU (n, t, n − 2) is equal to the number of permutations of length less than or
equal to n− 1, rev-tier t, and with 1 in the final position. Also µD(n, t+1, 3) is equal to the number of
permutations of length less than or equal to n− 1, rev-tier t− 1, and a 1 in the first position. That is

µU (n, t, n− 2) =

n−1
∑

m=1

f(m, t,m) =

n−1
∑

m=1

µD(m, t,m) and

µD(n, t+ 1, 3) =
n−1
∑

m=1

f(m, t− 1, 1) =
n−1
∑

m=1

µU (n, t− 1, 1).

Proof. We illustrate this for the µU case. Assume a permutation π is of the form ∗ ∗ . . . ∗ 1 ∗ ∗. The
smallest separated pair must be up-oriented since π ∈MU . If (1, 2) is the smallest separated pair, then
the 2 must occur in the nth position.

Now instead suppose (k−1, k) is the smallest separated pair where k ≥ 3. Since (1, 2) is not a separated
pair, 1 and 2 must be adjacent in π. However, if 2 is to the right of 1, we fall into the same situation as
described in Lemma 4.5 as there will not be room for both k and a separator to the right of 2. Hence
π must be of the form ∗ ∗ . . . ∗ 21 ∗ ∗.
This process continues with all entries smaller than k. Thus π must be of the form ∗∗. . .∗(k−1) . . .21∗k.
(Note this form is valid for k = 2 as well.) Now π has only one (up) separated pair involving the entries
1, 2, . . . , k and π has rev-tier t. Thus entries at least as large as k must form a rev-tier t ≥ 1 permutation
of length n− k+1, say π′ whose smallest entry is in the last position. Hence up to rescaling, and using
Lemma 4.5, π′ ∈ MD. Therefore there are µD(n − k + 1, t, n− k + 1) possibilities for arranging these
entries and thus for permutations in µU (n, t, n− 2).

Note that Lemma 4.7 in the next section will show µU (n, t, n− 2) = µD(n, t+ 1, 3).

4.1 Reversal identities

Consider the reversal map on permutations which simply reverses the order of the elements in the
permutation. That is, if α = a1a2 . . . an, then we have αrev = anan−1 . . . a2a1 for all α ∈ Sn.

Let MU (n, t, k),MD(n, t, k), and N(n, k) denote the sets of permutations of length n, rev-tier t, where
the 1 is in the kth position with a maximal ISASP beginning with an up separated pair, beginning with
a down separated pair, or having no separated pairs, respectively.

Lemma 4.7. With the notation as above we have:

N rev(n, k) = N(n, n− k + 1) and

M rev
U (n, t, k) =MD(n, t+ 1, n− k + 1) for all t ≥ 0.

The proof is simply to note that if a permutation π has an ISASP with signature UDUD . . . then the
reversal will have the same separated pairs but with reverse orientations. Hence the signature of πrev

will be DUDU . . .. The length of the longest ISASP overall does not change, however the rev-tier does
since πrev has a longer ISASP beginning with a down separated pair than π does.
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Corollary 4.8. With the same notation as defined previously, for all n, k we have

η(n, k) = η(n, n− k + 1) and

µU (n, t, k) = µD(n, t+ 1, n− k + 1).

The proof is simply to use the fact that the reversal map is a bijection.

Note that, if one uses the above reversal identities with the original recurrences for say µU (or µD), we
recover the recurrences for µD (or µU respectively) from Theorem 4.4.

We note a couple of relations between MU and MD that will be used later.

Lemma 4.9.

MU (xw, y, 1
w
) =

w

y
MD(x, y, w),

MD(xw, y, 1
w
) = wyMU (x, y, w).

Applying Corollary 4.8, the proof of Lemma 4.9 is simply computational.

Setting w = 1 we obtain the following corollary.

Corollary 4.10. MU (x, y, 1) = 1
y
MD(x, y, 1).

Since F (x, y, w) = FN (x,w) +MU (x, y, w) +MD(x, y, w), Corollary 4.10 gives us

Corollary 4.11.

F (x, y, 1) = FN (x, 1) + (1 + y)MU (x, y, 1) = FN (x, 1) +

(

1 +
1

y

)

MD(x, y, 1).

Next we give relations forMU andMD that allow one to calculate these generating functions explicitly.

4.2 µU(n, 0, k)

Since we already have η(n, k) =
(

n−1
k−1

)

, we will now use

µU (n+ 1, 0, k) =
∑

i≥k+1

η(n, i) +
∑

i≥k−1

µU (n, 0, i) for all n ≥ 2

to derive the formula for µU (n, 0, k). Multiplying each side of the recurrence by wk−1 and summing on
all values of k we have:

n+1
∑

k=1

µU (n+ 1, 0, k)wk−1 =

n
∑

i=2

η(n, i)
1− wi−1

1− w
+

n
∑

i=1

µU (n, 0, i)
1− wi+1

1− w
.
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We now evaluate the first sum on the right given our knowledge of η(n, k)

n
∑

i=2

η(n, i)
1− wi−1

1− w
=

1

1− w

(

n
∑

i=2

η(n, i)−
n
∑

i=2

η(n, i)wi−1

)

=
1

1− w

(

n
∑

i=2

(

n− 1

i− 1

)

−
n
∑

i=2

(

n− 1

i− 1

)

wi−1

)

=
1

1− w

(

2n−1 − 1− (1 + w)n−1 + 1
)

.

Let

MU
n,0(w) =

n
∑

k=1

µU (n, 0, k)w
k−1.

The above equation becomes

MU
n+1,0(w) =

1

1− w

(

2n−1 − (1 + w)n−1 +MU
n,0(1)− w2MU

n,0(w)
)

. (1)

Now let

MU
0 (x,w) =

∞
∑

n=3

MU
n,0(w)x

n

and multiply by xn, and sum the previous recurrence over all positive integers n to obtain:

1

x
MU

0 (x,w) =
1

1− w

(

x

1− 2x
− x

1− x(1 + w)
+MU

0 (x, 1)− w2MU
0 (x,w)

)

.

Solving for MU
0 (x,w) gives

(

1 +
xw2

1− w

)

MU
0 (x,w) =

x

1− w

(

x

1− 2x
− x

1− x(1 + w)
+MU

0 (x, 1)

)

.

Employing the kernel method so that the left hand side vanishes means setting

1 +
xw2

1− w
= 0 or 1− w + xw2 = 0 or w =

1±
√
1− 4x

2x
.

Let ŵ =
1−

√
1− 4x

2x
(the generating function for the Catalan numbers), then

MU
0 (x, 1) = − x

1− 2x
+

x

1− x(1 + ŵ)
= − x

1− 2x
− 1 +

1−
√
1− 4x

2x
. (2)

By using the reversal identities, we have the rev-tier 1 component of MD(x, y, 1), namely

MD
1 (x, y, 1) = yMU

0 (x, 1).
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4.3 µU(n, t, k), t ≥ 1

Notice
µU (n+ 1, t, k) =

∑

i≥k+1

µD(n, t, i) +
∑

i≥k−1

µU (n, t, i).

Hence

n+1
∑

k=1

µU (n+ 1, t, k)wk−1 =
n+1
∑

k=1

n
∑

i=k+1

µD(n, t, i)wk−1 +
n+1
∑

k=1

n
∑

i=k−1

µU (n, t, i)w
k−1

=

n
∑

i=2

i−1
∑

k=1

µD(n, t, i)wk−1 +

n
∑

i=1

i+1
∑

k=1

µU (n, t, i)w
k−1

=

n
∑

i=2

µD(n, t, i)
1− wi−1

1− w
+

n
∑

i=1

µU (n, t, i)
1− wi+1

1− w

=
1

1− w

(

n
∑

i=2

µD(n, t, i)−
n
∑

i=2

µD(n, t, i)wi−1 +

n
∑

i=1

µU (n, t, i)−
n
∑

i=1

µU (n, t, i)w
i+1

)

.

Let

MD
n,t(w) =

n
∑

k=1

µD(n, t, k)wk−1 and MU
n,t(w) =

n
∑

k=1

µU (n, t, k)w
k−1.

Then since the i = 1 terms from the µD are zero, we have

MU
n+1,t(w) =

1

1− w

(

MD
n,t(1)−MD

n,t(w) +MU
n,t(1)− w2MU

n,t(w)
)

. (3)

Now define
MU

n (y, w) =
∑

t≥0

MU
n,t(w)y

t and MD
n (y, w) =

∑

t≥0

MD
n,t(w)y

t.

Note that the constant term (in y) for MD is zero, and the constant term for MU was derived above.

Recall Equation 1 said MU
n+1,0(w) =

1
1−w

(

2n−1 − (1 + w)n−1 +MU
n,0(1)− w2MU

m,0(w)
)

. Adding this
equation to Equation 3 gives us

MU
n+1(y, w) =

1

1− w

(

MD
n (y, 1)−MD

n (y, w) +MU
n (y, 1)− w2MU

n (y, w) + 2n−1 − (1 + w)n−1
)

.

Now multiply by xn, and sum on all n ≥ 1 to get

∞
∑

n=1

MU
n+1(y, w)x

n =
1

1− w

( ∞
∑

n=1

MD
n (y, 1)xn −

∞
∑

n=1

MD
n (y, w)xn +

∞
∑

n=1

MU
n (y, 1)xn − w2

∞
∑

n=1

MU
n (y, w)xn

)

+
1

1− w

∞
∑

n=1

(2n−1 − (1 + w)n−1)xn.

Let

MU (x, y, w) =

∞
∑

n=1

MU
n (y, w)xn and MD(x, y, w) =

∞
∑

n=1

MD
n (y, w)xn.
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Then

MU (x, y, w) =
x

1− w

(

MD(x, y, 1)−MD(x, y, w) +MU (x, y, 1)− w2MU (x, y, w)
)

+
x

1− w

(

x

1− 2x
− x

1− x(1 + w)

)

.

Combining the MU (x, y, w) terms we obtain

(

1 +
xw2

1− w

)

MU (x, y, w) =
x

1− w

(

MD(x, y, 1)−MD(x, y, w) +MU (x, y, 1) +
x

1− 2x
− x

1− x(1 + w)

)

.

We may simplify a bit replacing MD(x, y, 1) with yMU (x, y, 1) to get

(

1− w

x

)(

1 +
xw2

1− w

)

MU (x, y, w) =

(

(1 + y)MU (x, y, 1)−MD(x, y, w) +
x

1− 2x
− x

1− x(1 + w)

)

.

Note that using the reversal map (or deriving it independently), the equation we get for MD is
(

1− x

1− w

)

MD(x, y, w) =
x

1− w

(

w2y2MU (x, y, w) − wy2MU (xw, y, 1)− wMD(xw, y, 1)
)

+
xy

1− w

(

w2x

1− x(1 + w)
− w2x

1− 2wx

)

.

Or

MD(x, y, w) =
x

1− w − x

(

w2y2MU (x, y, w)− wy(1 + y)MU (xw, y, 1)
)

+
xy

1− w − x

(

w2x

1− x(1 + w)
− w2x

1− 2wx

)

.

Substituting this into the expression for MU (x, y, w), we have

K(x, y, w)MU (x, y, w) =
x(1 + y)

1− w
MU (x, y, 1) +

x2y(1 + y)w

(1− w)(1 − x− w)
MU (xw, y, 1)

+
x3(2w2x2y − w2xy + 2w2x+ 2wx2 − 2wx− w − x+ 1)

(1− 2x)(1 − x− w)(1 − x− xw)(1 − 2xw)
,

(4)

where the kernel is defined by K(x, y, w) = 1+ xw2

1−w
+ x2y2w2

(1−w)(1−x−w) . We again apply the kernel method

to this functional equation. The equation K(x, y, w) = 0 can be written as

(w − 1)2 − (w + 1)(w − 1)2x+ w2(y2 − 1)x2 = 0.

Define

x0 = x0(y, w) = (1 − w)
1− w2 −

√

(1 + w2)2 − 4w2y2

2w2(y2 − 1)
= 1− w + y2w2 − y2w3 + · · · .

Clearly, K(x0, y, w) = 0. Also,

x0 =
1− w

1− y2

(

1− y2

1 + w2
C

(

w2y2

(1 + w2)2

))

,
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where C(t) = 1−
√
1−4t
2t is again the generating function for the Catalan numbers 1

n+1

(

2n
n

)

. Thus, there
exists a power series w0 = w0(x, y) around x = 0 such that x0(y, w0(x, y)) = x. That is, there exists a
power series w0 = w0(x, y) in x such that k(x, y, w0(x, y)) = 0. The first terms of w0 can be evaluated
as

w0 = 1 + y′x+ y′(1 + y′)x2 + y′(3 + 5y′ + 2y′2)
x3

2
+ y′(5 + 12y′ + 9y′2 + 2y′3)

x4

2

+ y′(35 + 112y′ + 125y′2 + 56y′3 + 8y′4)
x5

8
+ · · ·

where y′ =
√

1− y2. Note that when y = 0 we have w0(x, 0) = C(x).

Define A(x, y) =
x2(w0−1)(2w2

0x
2y−w2

0xy+2w2
0x+2w0x

2−2w0x−w0−x+1)
(1+y)(1−2x)(1−x−w0)(1−x−xw0)(1−2xw0)

, and B(x, y) = w0

1−x−w0
. Thus, Equa-

tion (4) gives

MU (x, y, 1) = A(x, y)− xyB(x, y)MU (xw0(x, y), y, 1). (5)

Define MU
j (x) = dj

dyjM
U (x, y, 1) |y=0. Then by differentiating Equation (5) at y = 0, we obtain

MU
j (x) =

dj

dyj
A(x, y) |y=0 −x

j−1
∑

i=0

(

j − 1

i

)

di

dyi
B(x, y) |y=0

dj−1−i

dyj−1−i
(MU (xw0(x, y), y, 1)) |y=0 . (6)

Note that

dm

dym
(MU (xw0(x, y), y, 1))

=
dm−1

dym−1

(

x
d

dy
w0(x, y)

d

ds1
MU (s1, y, 1) |s1=xw(x,y) +

d

ds2
MU (xw(x, y), s2, 1) |s2=y

)

.

Thus, by induction on m, the expression dm

dym (MU (xw0(x, y), y, 1)) can be written in terms of MU
j (x)

and derivatives ofMU (x, 0, 1) =MU
0 (x). Hence, Equation (6) defines a procedure for finding an explicit

formula for the generating function 1
j!M

U
j (x) which is the coefficient of yj in the generating function

MU (x, y, 1). For instance, we apply our procedure for j = 0, 1, 2.

Case MU
0 (x): When y = 0 (here w0(x, 0) = C(x)), after simplification by using the fact that C(x) =

1 + xC2(x), we see that MU
0 (x) = A(x, 0) = C(x) − 1−x

1−2x , which leads to the following result.

Corollary 4.12. We have

MU
0 (x) = C(x) − 1− x

1− 2x
= x3 + 6x4 + 26x5 + 100x6 + 365x7 + · · · .

Case MU
1 (x): By (6), and w0(x, 0) = C(x), we have

MU
1 (x) =

d

dy
A(x, y) |y=0 −xA(xC(x), 0)B(x, 0)

=
xC(x)( 1−xC(x)

1−2xC(x) − C(xC(x)))

1− x− C(x)
+

x4C6(x)(1 − x+ x(2x− 3)C(x))

(1 − 2x)(1− x− C(x))(1 − 2xC(x))
.



Permutation rev-tier in regards to stacks 20

Corollary 4.13. Let t0 = C(x), and t1 = C(xC(x)). We have

MU
1 (x) =

xt0(
1−xt0
1−2xt0

− t1)

1− x− t0
+

x4t60(x)(1 − x+ x(2x− 3)t0)

(1− 2x)(1− x− t0)(1 − 2xt0)

= 2x4 + 21x5 + 148x6 + 884x7 + 4852x8 + 25407x9 + 129480x10 + 649576x11 + · · · .

Case MU
2 (x): Similarly, we can obtain the next case.

Corollary 4.14. Let t0 = C(x), t1 = C(xC(x)), and t2 = C(xC(x)C(xC(x))). We have

MU
2 (x) =

2x2
(

t1t
2
0(2x− 1)(t0 − 2)(xt0 + x− 1)2(xt0t1 + xt0 − 1)t2 +

∑4
i=0Hi(x)x

i
)

(xt0t1 + xt0 − 1)(xt0 + t1 − 1)(t20 + xt0 − 3t0 − 2x+ 2)(xt0 + x− 1)2(2x− 1)

= 10x5 + 160x6 + 1636x7 + 13704x8 + 102876x9 + 722772x10 + 4867904x11 + · · · ,

where

H0(x) = (2− t0)(t
2
0 + 2t0t1 − 2t0 − t1 + 1),

H1(x) = −2t40t
2
1 + 3t40t1 + 6t30t

2
1 + 3t40 − 5t20t

2
1 − 12t30 − 9t20t1 + 2t0t

2
1 + 11t20 − 7t0t1 + 3t0 + 4t1 − 4,

H2(x) = 2t50t
2
1 − 6t50t1 − 2t40t

2
1 − 3t50 − 7t30t

2
1 + 12t40 + 14t30t1 + 7t20t

2
1 − 3t30 + 18t20t1 − 4t0t

2
1 − 18t20

+ 3t0t1 + 5t0 − 2t1 + 2,

H3(x) = t0
(

3t50t1 − 2t40t
2
1 + t50 + 6t40t1 + 3t30t

2
1 − 4t40 − 14t30t1 + 4t20t

2
1 − 6t30 − 15t20t1 − 3t0t

2
1 + 15t20

− 12t0t1 + 2t21 + 6t0 − 4
)

,

H4(x) = −t20(4t40t1 − 3t30t1 − 3t30 − 10t20t1 + 2t20 − t0t1 + 7t0 − 2t1 − 2).

Recall that the generating function F (x, y, w) = FN (x,w)+(1+y)MU(x, y, w), and hence for any t ≥ 1
the number of permutations of length n, and rev-tier t is the yt term of (1 + y)MU (x, y, 1). Thus

n
∑

k=1

f(n, t, k) =
MU

t (x)

t!
+
MU

t−1(x)

(t− 1)!
for all t ≥ 1.

For example, we obtain the following corollary:

Corollary 4.15. The generating function for the number of permutations of length n, and rev-tier 2 is

MU
2 (x)

2!
+MU

1 = 2x4 + 26x5 + 228x6 + 1702x7 + · · · .

5. A new unbalanced Wilf equivalence

We conclude with a summary of unbalanced Wilf equivalences. Two permutation classes are said to be
Wilf equivalent if their enumeration is the same. The terminology unbalanced Wilf equivalence refers to
two Wilf equivalent permutation classes whose bases have unequal cardinalities. The first unbalanced
Wilf equivalence was found by Atkinson, Murphy, and Ruškuc [3] when combining their result with
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t = 0 t ≤ 1 t ≤ 2 t ≤ 3 t ≤ 4 t ≤ 5 t ≤ 6 t ≤ 7 t ≤ 8
n = 1 1 1 1 1 1 1 1 1 1
n = 2 2 2 2 2 2 2 2 2 2
n = 3 5 6 6 6 6 6 6 6 6
n = 4 14 22 24 24 24 24 24 24 24
n = 5 42 89 115 120 120 120 120 120 120
n = 6 132 380 608 704 720 720 720 720 720
n = 7 429 1678 3380 4558 4979 5040 5040 5040 5040
n = 8 1430 7584 19288 31128 37946 40048 40320 40320 40320
n = 9 4862 34875 111720 218287 306307 349654 361495 362880 362880

n = 10 16796 162560 653426 1549986 2547042 3244686 3546688 3620864 3628800

Table 2: Number of permutations of length n and rev-tier at most t

that of Bóna [8] in 1997 as mentioned in Section 1. In 2016, Egge [15] conjectured there were also
unbalanced Wilf equivalences between two permutation classes whose bases are both finite. Burstein
and Pantone [10] and Bloom and Burstein [6] proved the first examples of this conjecture.

Our data (some of which is shown in the second column of Table 2), suggested the enumeration of the
class of 2-reverse pass sortable permutations is given by sequence A165543 in OEIS [36]. The sequence
was first proven by Callan [11] to enumerate the class Av(4321, 4213) with a more intuitive bijection
(as requested by Callan) later given by Bloom and Vatter [7]. A conjecture of a new unbalanced Wilf
equivalence based on this work and Theorem 2.8 was presented at Permutation Patterns 2018. Soon
after, Bean [5] proved it with the aid of a computer program he wrote.

Theorem 5.1. The permutation classes Av(4321, 4213) and Av(2413, 2431, 23154) are Wilf equivalent.
Specifically, both classes of permutations are enumerated by the generating function

1

1− xC(xC(x))

where C(x) is the generating function for the Catalan numbers, sequence A000108 in OEIS [36].

This theorem can also be proved by summing the generating functions found in Section 4 for t = 0, 1.
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