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Abstract

We discuss properties of integers in base 3/2. We also introduce many new sequences
related to base 3/2. Some sequences discuss patterns related to integers in base 3/2.
Other sequence are analogues of famous base-10 sequences: we discuss powers of 3
and 2, Look-and-say, and sorted and reverse sorted Fibonaccis. The eventual behavior
of sorted and reverse sorted Fibs leads to special Pinocchio and Oihcconip sequences
respectively.

1 Introduction

What is base 3/2? How does one even think about a fractional base anyway? Our readers
will be familiar of course with base 10, or decimal, but there are many uses for other bases,
such as base 2, 12, and 60. Base 2, or binary, is useful because there are only two states
for each place value, meaning that it can be represented easily by a series of transistors that
are either on or off, and forms the basis for machine language. Base 12 and 60 are useful
because they have a large number of factors and hence can be divided nicely into smaller
increments. We use these bases to partition time.

1

ar
X

iv
:1

80
8.

04
30

4v
1 

 [
m

at
h.

N
T

] 
 1

3 
A

ug
 2

01
8

mailto: primes.step@gmail.com
mailto: tanyakh@yahoo.com


One way of thinking about how integer bases such as these work, invented by James
Tanton, is the idea of exploding dots [4]. This idea allows a natural extension into fractional
bases.

Our main base is base 3/2. We explain exploding dots and base 3/2 in detail in Section 2.
We start by observing how integers are represented in base 3/2. The integers use 0, 1,

and 2 as digits. The beginnings of integers are very restricted, but the endings are not. We
discuss this in Sections 3.

Even integers can be naturally placed into vertices of a tree with alternating branches.
The base 3/2 representation of an even integer can be read from the tree as explained in
Section 3.1. We devote some time to studying properties of the largest and smallest integers
with a given number of digits in base 3/2. We also discuss the connection of base 3/2
to a greedy partition of non-negative integers into subsequences not containing a 3-term
arithmetic progression.

In Section 4 we briefly talk about divisibility properties. We show that divisibility by 5
in base 3/2 is similar to divisibility by 11 in base 10.

By using exploding dots to define base 3/2, we can now begin to examine how sequences
behave in new, less studied environments. Our goal in this paper is to briefly explore the
behavior of various sequences in base 3/2. We study in particular sequences which depend
on their positional representation, so that a different base causes them to behave in new
ways, as we discuss in Section 5.

We notice that powers of 2 and 3 exhibit awesome properties in base 3/2. Integer 3n in
base 3/2 is 2n followed by n zeros.

The Look-and-say sequence in base 3/2 begins similarly to base 10, but differs after the
first five terms.

Fibonacci numbers are incredibly beautiful, but because they are not dependent on base,
their base 3/2 expression might not be particularly interesting. By tweaking the Fibonacci
sequence using sorting of the digits as one of the steps, we are able to create sequences
related to base representations that are inspired by the Fibonacci sequence. We study the
eventual behavior of such sequences.

2 Exploding dots and base 3/2

Essentially, exploding dots is a machine made up of boxes with rules to describe what happens
when you have a certain number of dots in a box [4]. In base 10, whenever there is a group
of 10 dots in one box, they explode into 1 dot in the next box up. Similarly, we could use
this to describe binary by having 2 dots explode into 1, and so on for any base.

For example, to write 11 in base 3, we would first have 11 dots in the rightmost box as
in Figure 1.

Then each group of 3 dots in the rightmost box would explode, and one dot per group
will appear in the box to the left as in Figure 2.
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Figure 1: 11 base 3: step 1.

Figure 2: 11 base 3: step 2.

Finally, the three dots in the second box would explode into 1 dot to its left, as shown
in Figure 3.

Figure 3: 11 base 3: step 3.

By reading the number of dots from left to right, 11 in base 3 is 102.
But the interesting thing here is that there is no reason this model should be exclusive

to integer bases [4]. Suppose, instead, our rule is that 3 dots explode into 2 dots in the next
box. To represent 11 in this base, we use a similar process, shown in Figure 4.

Each group of three explodes into two in the next box. Using this system, 11 is 2102.
This representation behaves quite a bit like base 3/2. The rightmost box represents (3

2
)0,

the next (3
2
)1, then (3

2
)2, and so on. Number 2 · (3

2
)3 + 1 · (3

2
)2 + 0 · (3

2
)1 + 2 · (3

2
)0 is indeed

equal to 11. We can use this just like any other base to represent numbers.

3 Patterns in integers written in base 3/2.

The first few non-negative integers are expressed in base 3/2 as:

0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120, . . . .

This is sequence A024629 in the database. We start by studying the patterns at the
beginning of the integers.
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Figure 4: 11 base 3/2.

3.1 Beginning digits

Here are several properties of integers written in base 3/2 that are easy to observe [1]:

1. From 2 onwards all integers start with 2.

2. From 6, or 210 in base 3/2, onwards all integers start with 21.

3. The only integer with more than one digit that has all of the same digit is 5, which is
22 in base 3/2.

4. From 8 onward, the third digit changes between 0 and 2.

5. No integer other than 7 starts with 211.

These properties are easy to prove. For example, the first property is true because each
carry adds 2 [4]. The second and the fourth properties can be proven with a similar argument.
The third/fifth property follows from the second/fourth property, respectively.

Notice that a prefix of any integer written in base 3/2 is an even integer. For example,
integer 32 in base 3/2 is 212022. After removing the last digit we get 21202, which is 20 in
base 3/2.

Lemma 1. Removing the last digit of integer n in base 3/2 produces integer 2 · bn
3
c.

Proof. Exactly 2 · bn
3
c dots move to the left after all explosions in the units digit.
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In the example above 2 · b32
3
c = 20.

This observation that, in base 3/2 a proper prefix of an integer is an even integer allows
us to arrange even integers in a tree.

At each vertex we have a digit and an even integer value as a subscript. The tree is
pictured in Figure 3.1. Even integers are written from top to bottom left to right. If a vertex
is marked with integer x, then we concatenate the digits on the path from the root to x to
get the representation of x in base 3/2.

The tree is built recursively starting with integer 2, which is 2 in base 3/2. The recursive
rule is: If the integer at the vertex x divided by 2 is odd, then exactly one edge goes out,
and the resulting node is labeled 1. The corresponding integer is 3x/2 + 1. Otherwise, if the
half is even, then we draw two edges and add 0 for 3x/2 and add 2 for 3x/2 + 2 to them.
Note that the nodes branch alternatively corresponding to their integer values.

22

14

06

110

116

024

036 238

226

140

28

012

018

128

042 244

220

030

146

232

048 250

214

122

134

152

Figure 5: The tree of even integers

Note that the tree is mentioned in A005428 in a different context. The sequence A005428
is described as the number of nodes at level n of a planted binary tree with alternating
branching and non-branching nodes. As we saw above our tree branches out when the
corresponding even number is divisible by 4. As even numbers divisible by 4 alternate with
even numbers that are not divisible by 4, our tree is the same tree as in the sequence. James
Propp and Glen Whitney directed us to the tree [3, 5].

Each vertex on level k of the tree, counting from top to bottom, corresponds to an integer
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that has k digits in its base 3/2 representation. See sequence A246435 that represents the
number of digits of integers in base 3/2.

The number of nodes at distance k−1 from the root is the number of even numbers with
k digits. The corresponding sequence is:

1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, . . . .

This is sequence A005428: a(n) = d1 + sum of preceding terms/2e. It is also a shifted
sequence A073941.

The number of all integers and the number of even integers of a given length in base 3/2
are related in the following manner.

Lemma 2. Given a prefix p, thrice the number of even integers of length k with prefix p is
the number of all integers of length k + 1 with prefix p.

Proof. Any integer can be written as an even integer with one of the digits 0, 1, and 2
attached at the end.

It follows that the number of integers with k + 1 digits in base 3/2 is thrice the number
of even integers with k digits. The following sequence, A081848, describes the total number
of integers of length k in base 3/2:

A081848(n) = 3, 3, 3, 6, 9, 12, 18, 27, 42, 63, 93, 141, 210, . . . .

Lemma 3. A081848(n) = 3dsum of preceding terms/2e − sum of preceding terms.

Proof. Denote the sum of the preceding terms S, that is, S is the total number of non-
negative integers with less than k digits in base 3/2. Also S is the smallest integer with k
digits (remember that we are counting 0). The smallest integer with k + 1 digits is 3dS/2e.
The total number of k-digit base 3/2 integers is the difference: 3dS/2e − S.

3.2 Ending digits

The beginning strings of integers are relatively sparse. What about the ending strings?
The last k digits are repeated in a cycle which length is a multiple of 3. This is because for

every three numbers only the last digit changes. The cycle repeats after the first occurrence
of a number with k zeros at the end.

Lemma 4. The last k digits of integers in base 3/2 cycle with period 3k.

Proof. The number 3k has k zeros at the end. That means integers x and x + 3k have the
same k digits at the end. Now we need to show that there are no smaller cycles. Suppose
two integers x < y end with the same k digits. Then y−x ends with k zeros. It follows that
y − x is divisible by 3k. This means the cycle must be a multiple of 3k.

Interestingly, the endings of integers behave differently from the beginnings: at the end,
any combination of the last several digits is possible.
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3.3 The largest and smallest integers with a given number of digits

We look at the largest and smallest integers with a given number of digits expressed in base
3/2.

The smallest number Sk with k > 0 digits in base 3/2:

0, 20, 210, 2100, 21010, 210110, 2101100, 21011000, 210110000, . . . .

This is now sequence A304023.
The values of these integers in base-10 form sequence A070885:

1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 420, 630, 945, . . . .

The recursive formula for this sequence is: a(n + 1) = 3a(n)/2, if a(n) is even, and
a(n+ 1) = 3a(n+ 1)/2 if a(n) is odd [4].

Correspondingly, the largest number Lk with k > 0 digits in base 3/2 is now sequence
A304024:

2, 22, 212, 2122, 21222, 212212, 2122112, 21221112, . . . .

Writing Lk in base-10, we get a new sequence A304025:

2, 5, 8, 14, 23, 35, 53, 80, . . . .

These sequences are connected. The smallest number with k + 1 digits is the largest
number with k digits plus 1: Sk+1 = Lk + 1. In base 3/2, the largest number does not have
zeros, and the smallest does not have twos except as the first digit. We prove the following
necessary and sufficient condition.

Lemma 5. An integer is the largest integer with a given number of digits in base 3/2 if
and only if it is represented without zeros and the last digit is 2. Similarly, an integer is the
smallest integer with a given number of digits in base 3/2 if and only if it ends in zero and
is represented without twos except for the first digit.

Proof. If an integer is expressed without 0s and the last digit is 2, when we add 1 to the
number, we will always be carrying over 2 to the next place. Then, we will keep on carrying
all the way to the first digit and then carry over to have one more digit. On the other hand,
if the last digit is not 2, we can always add 1 without changing the number of digits. If the
last digit is 2 and the number has a zero in the middle, then the carry will stop at the first
encountered zero and the number of digits will not increase.

If an integer does not end in 0 or has an extra 2 that is not at the beginning, we can
always subtract one from it to get to a smaller integer with the same number of digits. If it
ends with 0 and does not have 2s other than the first digit, then subtracting 1 will decrease
the number of digits.
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We can get Ln directly from Sn+1 written in base 3/2: replace 21 at the beginning with 2
and 0 at the end with 2, then shift the rest of the digits up by 1. For example, 210110000 is
divided into three groups: 21-011000-0. Replacing the first and the last group and shifting
the middle, we get: 2-122111-2. The final result is 21221112.

If we remove the last digit from a k-digit smallest/largest integer, we get the small-
est/largest even integer with k − 1 digits. Thus, it is important to also look at even small-
est/largest integers.

3.4 The largest and smallest even integers with a given number
of digits

In this section we only consider even integers. Consider sequences sn and ln of the smallest
and largest even positive integers with n digits in base 3/2, where n > 0: ln + 2 = sn+1.
Sequence sn expressed in base 3/2 is now A303500 in the database and it starts as:

2, 21, 210, 2101, 21011, 210110, 2101100, 21011000, 210110001, . . . .

Similarly, ln in base 3/2 is now A304272:

2, 21, 212, 2122, 21221, 212211, 2122111, 21221112, 212211122, . . . .

Lemma 6. In base 3/2, if we remove the last digit from integers sn and ln, we get sn−1 and
ln−1 correspondingly.

Proof. The smallest/largest integers form the leftmost/rightmost paths of the tree.

Even integers are connected to all integers: either sn = Sn or sn = Sn + 1. Similarly,
either ln = Ln or ln = Ln − 1. In any case, the following corollary follows from Lemma 5.

Corollary 7. The integers ln do not contain zeros when written in base 3/2. The integers
sn do not contain twos except as the first digit when written in base 3/2.

Given that the smallest/largest even integer when written in base 3/2 with a given number
of digits is a substring of the next one, we can create an infinite string representing all of
the smallest/largest integers. We call this infinite string

2101100011010011010100110100101000 . . . .

corresponding to the smallest integers the ultimate smallest even integer. Its digits are now
sequence A304273. We call this sequence of digits the evenberry sequence.

Similarly, the evenmelon sequence is the sequence of digits of the ultimate largest even
integer

212211122121122121211221211212112 . . .

and is now sequence A304274:
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We can get the ultimate smallest even integer from the ultimate largest even integer by
adding 2. That means, by replacing the first 2 with 21 and shifting all other digits down by
1.

The integer value of sequence sn in base-10 is now sequence A305498:

2, 4, 6, 10, 16, 24, 36, 54, 82, . . . .

The integer 3
2
sn is written in base 3/2 as sn in base 3/2 with zero at the end. Therefore,

3
2
sn is the smallest integer with n + 1 digits: 3

2
sn = Sn+1. The latter might not be even.

Therefore, we can say that sn+1 = 3
2
sn, if sn is divisible by 4, and that sn+1 = 3

2
sn + 1

otherwise. Combining this together we get:

sn+1 = 2

⌈
3

4
sn

⌉
.

Sequence sn is twice sequence A061419 in OEIS which is defined as: a(n) = da(n − 1)3/2e
with a(1) = 1.

Similarly, we can generate a recursive formula for the value of largest even number with
n digits in base 3/2, which is now sequence A305497:

2, 4, 8, 14, 22, 34, 52, 80, . . . .

The number 3/2 · ln is an integer, and it is written in base 3/2 as ln with a zero at the end.
That means the largest integer with n+1 digits is 3/2·ln+2. This number might not be even.
If it is odd, we need to subtract 1. Therefore, the largest even number is 2 · b(3/2 · ln + 2)/2c.
In other words:

ln+1 = 2

⌊
3

4
ln

⌋
+ 2.

Sequence ln is twice sequence A006999 as we prove later. The description of sequence
A006999 is the following: Partitioning integers to avoid arithmetic progressions of length 3.
Given this does not provide enough detail, we provide a more detailed description following
[2]. Keep in mind that definition of A006999 has nothing to do with base 3/2.

Consider a greedy partition of non-negative integers into subsequences not containing a
3-term arithmetic progression.

For example, the starting sequence T0 is sequence A005836: 0, 1, 3, 4, 9, 10, 12, and so
on. This is the lexicographically earliest increasing sequence of nonnegative integers that
contains no arithmetic progression of length 3. It is also the sequence of integers whose base
3 representation contains no 2.

We take the leftover numbers and build out of them the lexicographically earliest increas-
ing sequence T1 of nonnegative integers that contains no arithmetic progression of length 3:
2, 5, 6, 11, 14, 15, and so on. We take the leftover numbers and continue building T2: 7, 8,
16, 17, 19, 20, and so on.
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We define the characteristic sequence a(n), so that a(n) = k when n ∈ Tk. That is:

a(n) = 0, 0, 1, 0, 0, 1, 1, 2, 2, 0, 0, . . . .

The latter is sequence A006997. The database provides a formula for A006997: a(3n +
k) = [(3a(n) + k)/2], where 0 ≤ k ≤ 2.

Sequence A006999 is defined through sequence A006997: A006999(n) = A006997(3n−1).
It is known that A006999(n) is the largest of the first 3n terms of a(n) [2]. That means
A006999(n) counts the number of sequences that appear in the greedy partition up to when
integer 3n is reached.

Lemma 8. Sequence ln is twice sequence A006999.

Proof. The database provides a formula for A006997: a(3n+k) = b(3a(n)+k)/2c, where 0 ≤
k ≤ 2. We can use this formula to make a recursive formula for A006999(n) = A006997(3n−
1). First, we rewrite A006997(3n − 1) = A006997(3n − 3 + 2) = A006997(3(3n−1 − 1) + 2).
Next, by the formula, A006997(3n − 1) = b(3A006997(3n−1 − 1) + 2)/2c. Therefore,

A006999(n) = b(3A006999(n− 1) + 2)/2c = b3 · 2A006999(n− 1)/4c+ 1.

If we denote 2A006999(n) as b(n), we get

b(n) = 2b3 · b(n− 1)/4c+ 2,

which is the same recursion as the one for sequence ln. After checking the initial term, we
confirm that ln = 2A006999(n).

4 Divisibility

We start with divisibility by powers of 3, see also [4].

Lemma 9. An integer in base 3/2 has k zeros at the end if and only if it is divisible by 3k.

Proof. Suppose 3-adic value of an integer n is k. If we put n dots in the units place, then,
after exploding, we get 0 dots in the units place and 2n/3 dots in the next place to the left.
Continuing, we get exactly k zeros at the end of the number n in base 3/2.

There is also a simple rule for divisibility by 5. It is similar to divisibility by 11 in base
10.

Lemma 10. The alternating sum of the digits of an integer in base 3/2, read from right to
left, has the same remainder modulo 5 as the integer itself.

Proof. 3/2 ≡ −1 (mod 5).
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5 Sequences

Here we discuss some sequences that we studied.

5.1 Powers

We start with powers of 3 written in base 3/2, which is now sequence A305658:

1, 20, 2100, 212000, 210110000, 21202200000, 21200101000000, . . . .

It follows from Lemma 9 that a(n) = 3n in the above sequence of powers of 3 has n zeros
at the end.

The following is the sequence of powers of 2. Notice how it is similar to powers of 3:

1, 2, 21, 212, 21011, 212022, 21200101, 2101100202, 21202202121, . . . .

This is now sequence A305659.

Lemma 11. An integer 3n expressed in base 3
2

is equal to 2n in the same base with n zeros
appended at the end.

Proof. In order to change a number from 2n to 3n in any base, we would need to multiply
2n by 3n

2n
= 3

2

n
, which, because we are using base 3

2
, means that n zeros would just be added

to the end of the number.

5.2 Look-and-say

The base-10 look-and-say sequence, sequence A005150 in the OEIS, is the sequence of integers
beginning as follows:

Look-and-say: 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, . . . .

It is a recursive sequence where the term a(n + 1) is defined by reading off the digits of
a(n), counting the number of digits in groups of the same digit. For example, 1211 is read
off as “one 1, one 2, then two 1s” or 111221.

We study this sequence in base 3/2. The first five terms are the same as in the sequence
base 10. For the next term, however, we need to read out three 1s, which in base 3/2 is 20
1s. Therefore, the sequence continues:

Look-and-say3/2 : 1, 11, 21, 1211, 111221, 2012211, 1210112221, . . . .

This is now sequence A305660.

Lemma 12. Each term in the Look-and-say sequence in base 3/2 has not more than 1 zero,
3 ones and 3 twos in a row.
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Proof. Each string in this sequence can be divided into pairs of numbers: the first number
counts how many of the second number are in the sequence. We call the first number the
counting number and the second number the what-number. The neighboring what-numbers
have to be different.

We proceed by induction. Observing several initial terms of the sequence, the base of
induction holds. After that, by our induction hypothesis, the counting numbers can be only
1, 2, and 20.

Let us look at zeros. If the new term contains a zero as a what-number, it has to have 1
as a counting number in front and it has to have a counting number that does not start with
zero after it. Therefore, the what-number that is zero must be isolated. Suppose we have 0
as a part of a counting number, then it has 2 before it. Also, by the induction hypothesis,
it has to have 1 or 2 after it.

Suppose the new term has at least 4 ones. Then one of these ones has to be a what-
number. If there is a 1 after it, then it has to be followed by 0 or 2. If there is a 1 before it,
this 1 is a counting number for our what-number 1. Before that 1 there only could be 0 or
2. Therefore, we cannot have more than 3 ones in a row.

Suppose the new term has at least 4 twos. Then one of these twos has to be a what-
number. If there is a 2 after it as part of the counting number, then the counting number
has to be either 2 or 20. In either case, the next digit must be not 2. If there is a 2 before
the what-number 2, then the counting number is 2, and the digit before it has to be different
from 2. Therefore, we cannot have more than 3 twos in a row.

5.3 Sorted Fibonacci

John H. Conway likes tweaking the Fibonacci rule to invent new sequences. He usually calls
such sequences fibs. We are following this tradition to emphasize that this is not a Fibonacci
sequence.

The sorted Fibs sequence is defined as follows. To calculate the next term we add two
previous terms and sort the digits in increasing order. In base-10 this sequence is A069638:

0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, . . . .

It is known that this sequence is periodic with the maximum value of 667.
We study analogues of this sequence in base 3/2. We start with the sorted Fibs sequence

fn that have two initial values the same as in the Fibonacci sequence: f0 = 0 and f1 = 1.
To calculate fn+1 we add fn−1 and fn in base 3/2 and sort the digits in increasing order. It
follows that numbers in the sequence are represented with several ones followed by several
twos.

Unlike base-10, the sequence is not periodic and grows indefinitely:

0, 1, 1, 2, 2, 12, 12, 112, 112, 1112, 1112, 11112, . . . .

This sequence plays a special role in base 3/2 sorted Fibs. We call this sequence the Pinocchio
sequence. It is now sequence A305753.
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From now on we use the notation δk to denote a string of k digits δ in a row. If there is
only one digit we drop the index. The following lemma proves the pattern that can be seen
in the Pinocchio sequence.

Lemma 13. In the Pinocchio sequence, we have f2k = f2k−1 = 1k−12, where k > 1.

Proof. We prove this by induction. The base case holds.
To calculate f2k+1 we need to add f2k−1 and f2k, that is two numbers 1k−12. The result

is equal to 2k−14 before the carries. Adding 2 and 2 means writing one and carrying two. As
we continue carrying two to the beginning of the number we end up with 21k. After sorting
we get the desired result.

To calculate f2k+2 we need to add f2k and f2k+1. By the induction hypothesis f2k+1 =
f2k + 10k = f2k−1 + 10k. Using the previous calculation, f2k + f2k+1 = 21k + 10k = 201k.
After sorting we get the desired result.

The next interesting question is how the behavior of this sequence depends on the starting
numbers. After the second number all terms of the sequence are sorted. From now on, we
assume that we start with sorted numbers. Here are examples of two starting numbers when
we end in the same pattern as above: (1,1), (2,112), or (1,12).

However, not all starting numbers end in the Pinocchio sequence. Starting with 2 and
22 we get 2, 22, 112, 122, 1122, 122, 122, 112, 1122, 1122, 112, 1122, and so on. It becomes
periodic with a period-3 cycle: 112, 1122, 1122.

Our goal is to show that for any starting terms the sequence eventually turns either into
the Pinocchio sequence or into the 3-cycle above.

When we add two sorted numbers, we can represent the result as the sum 1a2b3c4d before
we do the carries. The following lemma describes the result after the carries and sorting.

Lemma 14. Given the string 1a2b3c4d, after performing the carries and sorting, the resulting
string is the following:

1. a > 0 and d > 1: 1c+12d.

2. a = 0 and d > 1: 1c+22d−1.

3. d = 1: 1b+12c+1.

4. c > 0 and d = 0: 1b2c.

5. c = 0 and d = 0: 1a2b.

Proof. We start by assuming a > 0 and d > 1. After the carries we get: 20a−120b1c2d−201.
Then after sorting we get: 1c+12d.

If a = 0 and d > 1, after the carries we get 210b1c2d−201. Then after sorting we get
1c+22d−1.

If d = 1, after the carries we get 20a1b2c1. When sorted, we get 1b+12c+1.
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If d = 0 and c > 0 after carries we get 20a1b2c−10. After sorting we get 1b2c.
Finally, if c = 0 and d = 0. There are no carries and after sorting the result is the same:

1a2b.

Numbers a, b, c, and d play a big role in the coming proofs. For this reason, we want
to associate them with every term of the sequence. That is, an, bn, cn, and dn correspond
to the sum of fn−2 and fn−1 before carry. In our assumption, all terms of the sequence are
sorted. Let zn be the number of 2s in the nth entry, and let yn be the number of 1s in the
nth entry.

Integers an, bn, cn, and dn give us some information about fn−2 and fn−1. For example,
we know the minimum of the number of twos:

min{zn−2, zn−1} = d.

For the maximum there are two possibilities:

max{zn−2, zn−1} = c+ d or max{zn−2, zn−1} = b+ c+ d.

The second situation happens when one of the numbers is 1c2d and the other is 1a2b+c+d.
We can also estimate the total number of digits:

c+ d ≤ min{yn−2 + zn−2, yn−1 + zn−1} ≤ b+ c+ d

and
max{yn−2 + zn−2, yn−1 + zn−1} = a+ b+ c+ d.

Every term in the sorted Fibs sequence, except for the first few terms, has at least one 1
and one 2 as the following corollary explains.

Corollary 15. For a sorted Fibs sequence that starts with sorted strings, if n ≥ 2, then
zn > 0. Also, if n ≥ 4, then yn > 0.

Proof. The only case in the list in Lemma 14 when the resulting number of 2s is zero is the
last one when b = c = d = 0. This case is impossible as we are summing up two non-zero
numbers, and the last digit before carry must be greater than 1. When there is at least one 2
in each number, then the last digit of the next number in the sequence will be 2 + 2 =⇒ 1,
so there must be a 1 in the number.

We can bound sequence zn of the number of twos.

Lemma 16. If n ≥ 4, then zn ≤ max{zn−1, zn−2}.

Proof. If n ≥ 4, then both fn−1 and fn−2 have twos. That means dn > 0. Therefore, from
Lemma 14, we have zn is one of: dn, dn − 1, or cn + 1. In either case, zn ≤ cn + dn. On the
other hand, one of the previous numbers has at least cn + dn twos.
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Let us denote the maximum number of twos in two consecutive terms fn and fn+1 as mn:
mn = max{zn, zn+1}. From the previous lemma it follows that mn+1 ≤ mn, for n ≥ 5. As
our sequence is infinite, it follows that mn stabilizes. As we are interested at the eventual
behavior of sorted Fibs, we proceed by studying sequences where mn is fixed and equal to
M . We call such sequences M-stable.

Let us assume that sequence fn is M-stable. One example, is the Pinocchio sequence,
starting from index 3, where zn = 1.

Lemma 17 (Fluctuation Lemma). An M-stable sequence for n > 0 is either a subsequence
of the Pinocchio sequence, or, for that sequence, zn can have only two values: M and 1.

Proof. We consider cases depending on the behavior of the number of twos:

1. zn = M > 1 for any n;

2. zn = M = 1 for any n;

3. zn varies.

Case 1. Suppose the number of twos does not change and is more than 1: zn = M > 1.
Given that zn−2 = zn−1 = M , we get cn = 0 and dn = M . From the fact that zn = M > 1, it
follows that this could only be case 1 from Lemma 14 and fn = 12d. Similarly, fn+1 = 12d.
Summing them up, we get fn+2 = 1112d−1: the number of twos is reduced, which is a
contradiction.

Case 2. Suppose the number of twos does not change and is 1: zn = M = 1. The
sequence of the number of ones can start as:

• yn−2 = a+ b, yn−1 = b, where a > 0. Then yn = b+ 1.

• yn−2 = b, yn−1 = b+ 1.

• yn−2 = b, yn−1 = a+ b, where a > 1. Then it continues as yn = b+ 1, yn+1 = b+ 2.

In all cases we get into the Pinocchio sequence.
Case 3. Suppose zn−2 = M > zn−1. Then cn > 0 and dn = zn−1. Then zn = M to

guarantee M-stability. Therefore, zn ≥ cn +dn. On the other hand, from Lemma 14, zn must
be either d, d− 1, or c+ 1. The only possibility is that dn = cn + dn and dn = 1. Therefore,
zn−1 = 1. Thus we showed that if zn 6= M , then zn = 1.

Next we want to show that if an M-stable sequence has a varying number of twos and
M > 2, then the number of twos strictly alternates between M and 1. We already know
that such a sequence zn cannot have two ones in a row. What is left to show that it does
not have two Ms in a row. We show that if it does have two Ms in a row, then M does not
vary.
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Lemma 18. In an M-stable sorted Fibs sequence, suppose that zn = zn+1 = M > 2. Then
zk = M , for k > n+ 1.

Proof. The sum of the nth and (n+1)th entry is of the form 1a2b4M , as the terms fn and fn+1

have the same number of twos. If M > 1, then zn+2 = M or zn+2 = M − 1. But M − 1 6= 1,
so this case is impossible. Therefore, zn+2 = M . Similarly, zk = M , for all consecutive k.

We showed that if M > 2 and varies, then the sequence zn alternates: . . ., M , 1, M , 1,
. . .. Now we show that sequence zn cannot have subsequence 1, M > 1, 1.

Lemma 19. The case zn−2 = zn = 1 and zn−1 > 1 is impossible.

Proof. If zn−2 = 1 and zn−1 > 1, then dn = 1, and cn > 0. That means we are in the third
case in Lemma 14, and zn = cn + 1, contradiction.

This excludes the alternating case for M > 2. It also means, that if M = 2, then we still
cannot have 1, 2, 1 in the sequence zn.

Now we are ready for our classification theorem.

Theorem 20. Any sorted Fibs sequence eventually turns into either the Pinocchio sequence
or the 3-cycle 112, 1122, 1122.

Proof. We already know that the sequence either turns into the Pinocchio sequence or,
starting from some n, mn = 2 and zn sequence varies and does not contain a subsequence
1, 2, 1. Therefore, we can find integer N , such that zN−2 = zN−1 = 2 and zN = 1. That
means numbers aN , bN , cN , dN should correspond to the second case in Lemma 14. That
is, aN = 0. Therefore yN−2 = yN−1. Also cN = 0, thus aN = 112. For the next step we
get bN+1 = cN+1 = dN+1 = 1. Therefore, the next number is 1122. And we got into our
cycle.

5.4 Reverse sorted Fibs

The reverse sorted Fibs sequence rn in base 3/2 is defined as follows: To calculate rn+1,
we add rn−1 and rn in base 3/2 and sort the digits in decreasing order, ignoring zeros. It
follows that numbers in the sequence are represented with several twos followed by several
ones. The base-10 analog without discarding zeros exists in the OEIS database: A237575
Fibonacci-like numbers with nonincreasing positive digits.

We call the sequence that starts similar to Fibonacci sequence with r0 = 0 and r1 = 1,
the proper reverse sorted Fibs. Here are several terms of the proper reverse sorted Fibs: 0, 1,
1, 2, 2, 21, 21, 221, 2211, 221, 221, 2211, 221, 221, 2211, . . .. This sequence becomes cyclic,
starting from r7.

As in the previous section, we use the notation δk to denote a string of k digits δ in a
row. If there is only one digit we drop the index.
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We want to study the eventual behavior of the reverse sorted Fibs depending on the
starting terms. By computational experiments, we found a series of 3-cycles that such a
sequence can turn into:

2k1, 2k1, 2k12,

where k > 1.
We also found a sequence growing indefinitely:

2k12, 2k12, 2k+112, 2k+112, 2k+212, 2k+212,

and so on, where k > 1. We were surprised by the fact that the sorted Fibs and the reverse
sorted Fibs were so similar. They both have exactly one sequence that grows indefinitely.
To emphasize this analogy, we reversed the word Pinocchio to call this growing reverse Fibs
sequence the Oihcconip sequence.

Our goal is to prove that the eventual behavior of a reverse sorted Fibs sequence must
be one of the 3-cycles or the tail of the Oihcconip sequence.

Let us compute a sum of two sorted numbers before carry. It could be of the form
2a1b3c2d, or it could be of the form 2a4b3c2d, where some of the indices might be zero. The
first case happens when the number of ones of one of the numbers is greater or equal to the
number of digits of the other number. Alternatively, we can say that the cases depend on
whether the positions of twos overlap or not.

For the first case, we have 2a1b3c2d = 2a1b−132c−102d = 2a30b−12c−102d = 21a00b−12c−102d,
which sorts to 2c+d1a, assuming b, c ≥ 1. If c = 0, then there is no carry, and the result is
2a+d1b. When b = 0 and c > 0 we get 2a3c2d = 2a−142c−102d = 21a2c−102d, which sorts to
2c+d1a. We summarize this into Table 1.

case before carry after carry
c > 0 2a1b3c2d 2c+d1a

c = 0 2a1b2d 2a+d1b

Table 1: Case 1.

For the second case, we have 2a4b3c2d = 2a4b−162c−102d = 2a82b−202c−102d = 210a22b−202c−102d,
which sorts to 2b+c+d−11, assuming b ≥ 2 and c ≥ 1.

For this case, we do not need to check b = 0, as it is a subcase of the first case. We do
need to check the cases c = 0 and/or b = 1. The summary is in Table 2.

Combining two cases together and adding a column for previous terms we get Table 3.
We start with discussing the number of twos.

Lemma 21. Starting from n > 1, each element of a reverse sorted Fibs sequence contains
2.

Proof. If the sum of two terms has a carry, the result has to have a two. If it does not, the
last digits of the previous terms have to be ones, and the result has to have a two.
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case before carry after carry
b > 1 c > 0 2a4b3c2d 2b+c+d−11
b > 1 c = 0 2a4b2d 2b+d−112

b = 1 c > 0 2a43c2d 2c+d1
b = 1 c = 0 2a42d 2d+11a+1

Table 2: Case 2.

case before carry after carry previous numbers
Case 1. c > 0 2a1b3c2d 2c+d1a 2a1b+c+d and 2c1d

Case 1. c = 0 2a1b2d 2a+d1b 2a1b+d and 1d

Case 2. b > 0 c > 0 2a4b3c2d 2b+c+d−11 2a+b1c+d and 2b+c1d; 2a+b+c1d and 1c+d;
Case 2. b > 1 c = 0 2a4b2d 2b+d−112 2a+b1d and 2b1d

Case 2. b = 1 c = 0 2a42d 2d+11a+1 2a+11d and 21d

Table 3: Two cases together

line case before carry after carry previous numbers
L1 a > 0 c > 0 2a1b3c2d 2c+d1a 2a1b+c+d and 2c1d

L2 c > 0 b > 0 2a4b3c2d 2b+c+d−11 2a+b1c+d and 2b+c1d

L3 b > 1 c = 0 2a4b2d 2b+d−112 2a+b1d and 2b1d

L4 b = 1 c = 0 2a42d 2d+11a+1 2a+11d and 21d

Table 4: Leftover cases

That means we can remove some cases from Table 3 to generate the new Table 4.
We can see that now the result contains at least one one. Therefore, we can assume that

d > 0. Now we are ready to study the eventual behavior of reverse sorted Fibs sequences.
We consider each line in Table 4 separately starting from Line 2.

Lemma 22. If we start in Line 2, then we end up in a cycle sequence.

Proof. Recall that b, c, d > 0. The sum of r0 and r1 before carry is 2a4b3c2d forcing r2 =
2b+c+d−11.

We consider two cases based on the order of the previous terms.
Case 1. r0 = 2a+b1c+d and r1 = 2b+c1d.
If r1 = r2, that is d = 1, we are in a cycle sequence. If not, then r3 = 2b+c+d−11 = r2,

and we get into a cycle sequence anyway.
Case 2. r0 = 2b+c1d and r1 = 2a+b1c+d.
As c + d > 1, for the next number we are in Line 2 again, and r3 = 2b+c+d−11. We end

up in a cycle sequence again.
In any case r2 is in a cycle.
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Now we go to Line 3.

Lemma 23. If we start in Line 3, then we end up in a cycle if d 6= 2. We also end in a
cycle if r0 = 212 and r1 = 2a+112. Otherwise, we end in the Oihcconip sequence.

Proof. Recall that b, d > 0. The sum of r0 and r1 before carry is 2a4b2d.
We consider two cases based on the order of the previous terms.
Case 1. Suppose r0 = 2a+b1d and r1 = 2b1d.
Then r2 = 2b+d−112. We consider cases.

• If b = d = 1, then r1 = 21, r2 = 212, r3 = 221, and r4 = 221. We are in a cycle sequence
starting from r3.

• If d 6= 2 and b+ d > 2, then r1 and r2 correspond to Line 2 and the next term, r3 must
be in a cycle sequence.

• If d = 2 and b > 1, then r1 = 2b12 and r2 = 2b+112 and we are in the Oihcconip
sequence starting from r1.

• If d = 2 and b = 1, then r1 = 2112, r2 = 2212, and r3 = 2312. We are in the Oihcconip
sequence starting from r2.

Case 2. Suppose r0 = 2b1d and r1 = 2a+b1d. We can assume that a > 0, otherwise we
are covered by the previous case.

Then r2 = 2b+d−112. We consider cases.

• If d 6= 2, then r1 and r2 correspond to Line 2 and the next term, r3, must be in a cycle
sequence.

• If d = 2 and b ≥ 1, we have r1 = 2a+b12 and r2 = 2b+112. As b > 1, we are now in Line
3, and r3 = 2b+212. Therefore, we are in the Oihcconip sequence starting from r2.

Now we go to Line 1.

Lemma 24. If we start in Line 1, then we end up in the Oihcconip sequence or a cycle.

Proof. The two previous terms are 2a1b+c+d and 2c1d. Also, a, c, d > 0. We already know
that we must eventually enter a cycle or the Oihcconip sequence if we get to Line 2 or 3.

We consider two cases based on the order of the previous terms.
Case 1. Suppose r0 = 2a1b+c+d, r1 = 2c1d, and r2 = 2c+d1a. Now we see which line

corresponds to r1 and r2.

• If a < d we are on Line 2.
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• If a = d, and c > 1, we are on Line 3.

• If a = d, and c = 1, we have r2 = 2d+11d and we get r3 = 2d+11d+1 putting us on Line
2.

• If d < a < c+ d, we are on Line 3.

• If a ≥ c + d, we get r3 = 2c+d1c+d. For the next step we have subcases. a) If
c + d ≤ a < 2c + 2d, we are on Line 2. b) If a ≥ 2c + 2d, then we are on Line 1 and
r4 = 22c+2d1c+d. After that we get to Line 3 again.

Case 2. Suppose r0 = 2c1d and r1 = 2a1b+c+d, and r2 = 2c+d1a.

• If a > b+ c+ d, we are on Line 2.

• If a = b+ c+ d, we are on Line 3.

• If b < a < b+ c+ d, we are on Line 2.

• If a ≤ b, then we are on Line 1 and r3 = 2c+d+a1a. For the next step we are on Line 3.

Finally we go to Line 4.

Lemma 25. If we start in Line 4, then we end up in the tail of the Oihcconip sequence or
a cycle.

Proof. The two previous terms are 2a+11d and 21d. Also d > 1. We already know that we
must eventually enter a cycle or the Oihcconip sequence if we get to Line 1, 2 or 3.

We consider two cases based on the order of the previous terms. Now we see which line
corresponds to r1 and r2.

Case 1. Suppose r0 = 2a+11d, r1 = 21d, then r2 = 2d+11a+1.

• If a ≥ d, we are on Line 1.

• If a = d− 1, then r2 = 2d+11d and r3 = 2d+11d+1. Now we get on Line 3.

• If a < d− 1, we are on Line 3.

Case 2. Suppose r0 = 21d and r1 = 2a+11d, and r2 = 2d+11a+1.

• If a+ 1 6= d, we are on Line 2.

• If a+ 1 = d 6= 1, then we are on Line 3.

• If a+ 1 = d = 1, then r1 = 21 and r2 = 221. Then r3 = 2212 and we get into a cycle.

We can summarize the results into the following theorem.

Theorem 26. We always end in a cycle or the tail of the Oihcconip sequence.
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