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ON THE RIEMANN ZETA FUNCTION AND THE FRACTIONAL

PART OF RATIONAL POWERS

TAL BARNEA

Abstract. Using elementary methods we find surprising connections between
the values of the Riemann Zeta Function over integers and the fractional parts
of rational powers, and a connection between the Riemann Zeta Function and
the Prime Zeta Function.

1. Introduction

Given a real number x we recall that the simple continued fraction of it is

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where all ai are integers and ai ≥ 1 for i ≥ 1. Thus, the first term a0 = ⌊x⌋ and

the second term, is a1 =
⌊

1
x−a0

⌋

.

The Riemann Zeta function is defined for real s > 1 as

ζ(s) =

∞
∑

n=1

1

ns
.

For all positive integers n ≥ 2 we have that 1 < ζ(n) < 2. Therefore, the first term
of ζ(n) in its simple continued fraction is always 1. In the OEIS sequence A013697,
Second term in continued fraction for zeta(n), it is stated by F. Adams-Watters:

”It appears that a(n) = 2n −
⌊(

4
3

)n⌋

− k, where k is usually 2, but is sometimes 1.
Up to n = 1000, the only values of n where k = 1 are 4, 5, 13, 14, and 17. That is,

⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2”. We first prove that this formula holds for all n ≥ 2.

Theorem 1. For all natural numbers n ≥ 2, we have that
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 2 except for finite exceptions where k = 1.
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We write {x} = x − ⌊x⌋ , for the fractional part of x. Given coprime integers

p > q > 1, we consider the set
{{(

p

q

)n}

| n ∈ N

}

. T. Vijayaraghavan proved

in [2] that this set has infinitely many limit points, but otherwise not much is
known about its distribution. As a corollary of Theorem 1 we obtain the following

surprising result. For real s write εx(s) = (2x)s
((

2
3

)s
+
(

1
2

)s)2
and for simplicity

we write ε(s) = ε1(s).

Corollary 2. For all natural numbers, except finite exceptions, n ≥ 2, we have

that

1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< 1 + ε(n).

Therefore, the set
{{

1
ζ(n)−1

}

| n ∈ N

}

has infinitely many limit points.

Corollary 3. If k = 2 in Theorem 1, then ζ(n) cannot be of the form 1+ 1
m

where

m is a natural number.

Conjecture 1. k = 1 only when n = 4, 5, 13, 14, 17.

Using Mathematica we checked when
{(

4
3

)n}

is less than 10−9 for n ≤ 5, 000, 000,

and no examples were found. As ε(n) < 10−9 for n ≥ 176, Corollary 2 implies that
the conjecture holds for 176 ≤ n ≤ 5, 000, 000. Since F. Adams-Watters verified
the conjecture for n ≤ 1000, we conclude the conjecture holds for n ≤ 5, 000, 000.

Theorem 4. For n large enough we have

1−

(

8

9

)n

−

(

2

3

)n

<

{

1

ζ(n) − 1

}

+

{

(

2
3

)n

ζ(n)− 1

}

<

1−

(

8

9

)n

−

(

2

3

)n

+ ε(n) + ε 2

3

(n)

except for finite exceptions where either

0 <

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n) − 1

}

< ε(n) + ε 2

3

(n)−

(

8

9

)n

−

(

2

3

)n

or

2−

(

8

9

)n

−

(

2

3

)n

<

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n) − 1

}

< 2

holds.

Let P (s) be the Prime Zeta Function, that is, P (s) =
∞
∑

m=1

1
(pm)s where pm is the

mth prime. For real s let δ(s) = 2s
((

2
3

)s
+
(

2
5

)s)2
−
(

4
5

)s
.

Theorem 5. For all real s ≥ 7 we have that

1− ε(s) <
1

P (s)
−

1

ζ(s)− 1
< 1 + δ(s)

As the dominating terms of both P (s) and ζ(s) − 1 are the same one might
expect their their reciprocals would tend to each other as s tends to infinity. Thus,
the somewhat surprising fact is that their difference is bounded away from 0.
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2. Analytic Results

Proposition 6. For all n ≥ 2 we have that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2.

Proof. We prove this by contradiction. Assume

1 ≥
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2.

We will first cancel out some terms from our inequality. Our assumption implies
that

2n −

(

4

3

)n

− 1 ≥
1

ζ(n)− 1
,

6n − 4n − 3n

3n
≥

1

ζ(n) − 1
,

3n

6n − 4n − 3n
≤ ζ(n) − 1,

3n ≤ (6n − 4n − 3n)

∞
∑

i=2

1

in
,

3n +

∞
∑

i=2

3n

in
≤

∞
∑

i=2

6n − 4n

in
,

3n +

∞
∑

i=2

3n

in
≤ 3n − 2n +

∞
∑

i=3

6n − 4n

in
,

2n +

∞
∑

i=2

3n

in
≤

∞
∑

i=3

6n − 4n

in
,

2n −
6n − 4n

3n
+

∞
∑

i=2

3n

in
≤

∞
∑

i=4

6n − 4n

in
,

4n

3n
+

∞
∑

i=2

3n

in
≤

∞
∑

i=4

6n − 4n

in
,

3n

2n
+

4n

3n
+

∞
∑

i=3

3n

in
≤

6n − 4n

4n
+

∞
∑

i=5

6n − 4n

in
,

2 +
4n

3n
+

3n

4n
+

∞
∑

i=5

3n

in
= 1 +

4n

3n
+

∞
∑

i=3

3n

in
≤

∞
∑

i=5

6n − 4n

in
,
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(1) 2 +
16n + 9n

12n
−

6n − 4n − 3n

5n
≤

∞
∑

i=6

6n − 4n − 3n

in
.

It is clear that
∞
∑

i=6

6n − 4n − 3n

in
<

∫

∞

5

6n − 4n − 3n

tn
dt

Substituting this into (1) we get

2 +
16n + 9n

12n
−

6n − 4n − 3n

5n
<

∫

∞

5

6n − 4n − 3n

tn
dt = (6n − 4n − 3n)

(

51−n

n− 1

)

,

2+
16n + 9n

12n
< (6n − 4n − 3n)

(

1

5n
+

1

5n−1(n− 1)

)

= (6n − 4n − 3n)

(

n+ 4

5n(n− 1)

)

,

(

5n

6n − 4n − 3n

)(

16n + 9n

12n
+ 2

)

<
n+ 4

n− 1
.

Let

f(x) =

(

5x

6x − 4x − 3x

)(

16x + 9x

12x
+ 2

)

−
x+ 4

x− 1
.

We deduce from our assumption that for n ≥ 2 we have that f(n) < 0.
For n = 2, 3, 4, 5, 6 it can be checked that the above statement is false and

therefore the assumption does not hold for these values. We will now prove that
f(x) > 0 for x ≥ 7. It is clear that

f(x) >

(

5x

6x

)(

16x

12x

)

−
x+ 4

x− 1
=

(

10x

9x

)

−
x+ 4

x− 1
> 0

as
(

107

97

)

− 7+4
7−1 > 0 and

(

10x

9x

)

− x+4
x−1 has a positive derivative for all x. This is a

contradiction and thus,

1 <
1

ζ(n) − 1
− 2n +

(

4

3

)n

+ 2

for all n ≥ 2. �

Proposition 7. For n ≥ 2 we have that

1

ζ(n) − 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

Proof. Consider:

1

ζ(n)− 1
=

1
1
2n + 1

3n + 1
4n + 1

5n + · · ·
<

1
1
2n + 1

3n + 1
4n

1

ζ(n)− 1
<

2n

1 + 2n

3n + 1
2n

=

2n

(

1−

(

2n

3n
+

1

2n

)

+

(

2n

3n
+

1

2n

)2

−

(

2n

3n
+

1

2n

)3

+ · · ·

)

<

2n

(

1−

(

2n

3n
+

1

2n

)

+

(

2n

3n
+

1

2n

)2
)

= 2n −

(

4

3

)n

− 1 + 2n
(

2n

3n
+

1

2n

)2

.
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We conclude that

1

ζ(n) − 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n),

for n ≥ 2. �

Proposition 8. For s > 1 we have

1

P (s)
− 2s +

(

4

3

)s

< δ(s).

Proof. Using the same argument as Proposition 7, the proof is clear. �

Proposition 9. For s ≥ 4, we have

0 <
1

P (s)
− 2s +

(

4

3

)s

.

Proof. We will use proof by contradiction. Assume

0 ≥
1

P (s)
− 2n +

(

4

3

)s

.

We will first cancel some terms of our inequality. Our assumption implies that

6s − 4s

3s
≥

1

P (s)
,

3s

6s − 4s
≤ P (s) =

∞
∑

m=1

1

(pm)s
,

3s ≤

∞
∑

m=1

6s − 4s

(pm)s
= 3s − 2s +

∞
∑

m=2

6s − 4s

(pm)s
,

2s ≤

∞
∑

m=2

6s − 4s

(pm)s
,

1 ≤

∞
∑

m=2

3s − 2s

(pm)s
= 1−

2s

3s
+

∞
∑

m=3

3s − 2s

(pm)s
,

2s

9s − 6s
≤

∞
∑

m=3

1

(pm)s
,

2s

9s − 6s
−

1

5s
≤

1

7s
+

1

11s
+

1

13s
+ · · · <

1

2

(

1

6s
+

1

7s
+

1

8s
+ · · ·

)

.

It is clear that
1

6s
+

1

7s
+

1

8s
+ · · · <

∫

∞

5

1

ts
dt.

Therefore,
2s

9s − 6s
−

1

5s
<

1

2

∫

∞

5

1

ts
dt =

1

2

(

51−s

s− 1

)

.

Hence,

0 >
2s

9s − 6s
−

1

5s
−

1

2

(

1

(s− 1)(5s−1)

)

=

2s

9s − 6s
−

1

5s
−

(

5

2s− 2

)(

1

5s

)

.
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So

0 >
10s

9s − 6s
− 1−

5

2s− 2
and

2s+ 3

2s− 2
>

10s

9s − 6s
.

However, it is easy to see this fails for all s ≥ 4. Thus

0 <
1

P (s)
− 2n +

(

4

3

)s

.

�

3. Proofs of the Results

The following lemma is obvious.

Lemma 10. If

A < x < B,

then

A− 1 < ⌊x⌋ < B.

Proposition 11. For all natural numbers n ≥ 2, we have that
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2.

Proof. From Proposition 6 and Proposition 7 we know that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

Applying Lemma 10 twice to this we obtain that

−1 <

⌊

1

ζ(n) − 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 < 1 + ε(n).

As lim
n→∞

ε(n) = 0, for n ≥ 5 we have that

−1 <

⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 < 2.

It is clear that
⌊

1
ζ(n)−1

⌋

− 2n +
⌊(

4
3

)n⌋

+ 2 is an integer for n ≥ 2. Thus,

⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 = 0 or 1.

It is easy to check that this holds also for 2 ≤ n ≤ 4. Hence,
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2 for all n ≥ 2. �

Proposition 12. For all natural numbers, where k is as in Proposition 11, n ≥ 2,
we have that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).
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Proof. From Proposition 11 we have that
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

and therefore,
⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 = 2− k.

Since the integral part plus the fractional part is the number, we have that

(2)
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 =

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

+ 2− k.

We know from Proposition 6 and Proposition 7 that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n)

Substituting (2) into this we obtain that

1 <

{

1

ζ(n) − 1

}

+

{(

4

3

)n}

+ 2− k < 1 + ε(n)

We conclude that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

�

Proposition 13. Let k be as in Proposition 11. Then k = 1 finitely many times.

Proof. We know from Proposition 12 that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

It follows from Mahler’s work, see [1], that if p > q ≥ 2 are coprime integers, and
ε < 0, then

{(

p

q

)n}

> eεn

for all integers n except for at most a finite number of excpetions.
As ε(n) = O

((

8
9

)n)

, by taking p = 4, q = 3 and ε = log( 9
10 ) we obtain that only

a finite number of n satisfy

0 <

{(

4

3

)n}

< ε(n).

Therefore, only a finite number of n satisfy

0 <

{

1

ζ(n) − 1

}

+

{(

4

3

)n}

< ε(n).

Thus, k = 1 occurs a finite number of times. �

Proof of Theorem 1. Theorem 1 follows from combining both Proposition 11 and
Proposition 13. �

Proof of Corollary 2. Corollary 2 follows from combining both Proposition 12 and
Proposition 13. �
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Proof of Corollary 3. We prove this by contradiction. Suppose ζ(n) = 1 + 1
m

for

some integer m, then 1
ζ(n)−1 = m is an integer. Thus,

{

1
ζ(n)−1

}

= 0. From

Corollary 2 we know that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

Therefore,

k − 1 <

{(

4

3

)n}

< k − 1 + ε(n).

When k = 2 we have

1 <

{(

4

3

)n}

< 1 + ε(n).

However, this implies that a fractional part is greater than 1 which by definition is
impossible. This is a contradiction therefore, if ζ(n) = 1 + 1

m
for some integer m,

then k = 1 which happens finitely many times. �

Proposition 14. For all 1
2 < x < 3

4 and n large enough,

−

(

4x

3

)n

− xn − k <

{

xn

ζ(n) − 1

}

− {(2x)
n
} < εx(n)−

(

4x

3

)n

− xn − k

where k = 0 or k = −1 and when x is rational k = 0 except for finite number of

exceptions.

Proof. From Proposition 6 and Proposition 7 we know that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

So,

0 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 1 < ε(n).

Recall that εx(n) = (2x)n
((

2
3

)n
+
(

1
2

)n)2
. It is obvious that xnεy(n) = εxy(n).

Therefore,

0 <
xn

ζ(n) − 1
− (2x)

n
+

(

4x

3

)n

+ xn < εx(n)

and

(3) −

(

4x

3

)n

− xn <
xn

ζ(n)− 1
− (2x)

n
< εx(n)−

(

4x

3

)n

− xn.

Using Lemma 10 twice and noticing that ⌊(2x)
n
⌋ appears with a negative sign we

obtain that

−1−

(

4x

3

)n

− xn <

⌊

xn

ζ(n)− 1

⌋

− ⌊(2x)
n
⌋ < 1 + εx(n)−

(

4x

3

)n

− xn.

Notice that for 1
2 < x < 3

4 both bounds of the above inequality tend to −1 and 1
respectively. Also notice that for n large enough we have that

εx(n)−

(

4x

3

)n

− xn = xn

(

ε(n)−

(

4

3

)n

− 1

)

< 0.



RIEMANN ZETA FUNCTION AND THE FRACTIONAL PART 9

As
⌊

xn

ζ(n)−1

⌋

− ⌊(2x)
n
⌋ is an integer for n large enough we have that

⌊

xn

ζ(n)− 1

⌋

− ⌊(2x)
n
⌋ = −1 or 0.

Therefore,

xn

ζ(n)− 1
− (2x)

n
= k +

{

xn

ζ(n)− 1

}

− {(2x)
n
} ,

where k = −1 or k = 0. Substituting this into (3) we get that

−

(

4x

3

)n

− xn < k +

{

xn

ζ(n)− 1

}

− {(2x)
n
} < εx(n)−

(

4x

3

)n

− xn.

Hence,

−

(

4x

3

)n

− xn − k <

{

xn

ζ(n)− 1

}

− {(2x)n} < εx(n)−

(

4x

3

)n

− xn − k.

One can use the same argument as in Proposition 13 to show that for a rational
number 1

2 < x < 3
4 we have that k = −1 happens finitely many times. �

One can apply the same methods for other values of x. For 0 < x ≤ 1
2 , both

fractional parts converge to 0, so it is not interesting. For x = 3
4 , one can achieve

the same result but with k = −2 or k = −1. For 3
4 < x, if we want the bounds

to converge, there are two possibilities. The first is that there will be more than
two fractional parts (apart for some exceptions like x = 1), and k will take more
values, that is, the number of fractional parts. The second is that there will still
be two fractional parts, and k can only take two values, but one of the fractional
parts will be of a finite sum of real numbers to natural powers rather than just one
term. For example when x = 11

10 we have that

−k <

{

(

11
10

)n

ζ(n) − 1

}

−

{(

11

5

)n}

+

{(

22

15

)n}

+

{(

11

10

)n}

< −k + ε 11

10

(n),

where k = −2 or k = −1 or k = 0 or k = 1. Or

−k <

{

(

11
10

)n

ζ(n)− 1

}

−

{(

11

5

)n

−

(

22

15

)n

−

(

11

10

)n}

< −k + ε 11

10

(n),

where k = 0 or k = 1.

Proof of Theorem 4. When x = 2
3 in Proposition 14 we have

−

(

8

9

)n

−

(

2

3

)n

− k <

{

(

2
3

)n

ζ(n)− 1

}

−

{(

4

3

)n}

<

ε 2

3

(n)−

(

8

9

)n

−

(

2

3

)n

− k,

where k = −1 or k = 0. We know from Corollary 2 that

k′ − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k′ − 1 + ε(n),
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where k′ = 1 or k′ = 2. Adding the two inequalities we get

m−

(

8

9

)n

−

(

2

3

)n

<

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n) − 1

}

<

m+ ε(n) + ε 2

3

(n)−

(

8

9

)n

−

(

2

3

)n

,

where m = 0 or m = 1 or m = 2. We can see that m = 0 or m = 2 occur finitely
many times. It is obvious that

0 <

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n) − 1

}

< 2.

Therefore, when m = 0 the lower bound can be improved to 0 and when m = 2 the
upper bound can be improved to 2. This proves the theorem. �

Proof of Theorem 5. We know from Proposition 8 and Proposition 9 that

0 <
1

P (s)
− 2s +

(

4

3

)s

< δ(s),

for all s ≥ 4. We can also see from the proof of Proposition 6 that

1 <
1

ζ(s)− 1
− 2s +

(

4

3

)s

+ 2,

for all s ≥ 7. In addition, from the proof of Proposition 7 it follows that

1

ζ(s)− 1
− 2s +

(

4

3

)s

+ 2 < 1 + ε(s),

for all s > 1. So for all s ≥ 7 we have

1 <
1

ζ(s) − 1
− 2s +

(

4

3

)s

+ 2 < 1 + ε(s).

Taking the difference between the first inequality and the last inequality, and adding
2 we obtain that

1− ε(s) <
1

P (s)
−

1

ζ(s) − 1
< 1 + δ(s),

for all s ≥ 7. �

Using similar arguments as previously more results can be derived about the
fractional part of rational powers but this time related to the Prime Zeta function.
This could also be done with other functions of infinite series of reciprocal powers,
not just the Riemann Zeta function and the Prime Zeta function.
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