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D.H. Lehmer’s Tridiagonal determinant:

An Étude in (Andrews-Inspired) Experimental Mathematics

Shalosh B. EKHAD and Doron ZEILBERGER

Dedicated to George Andrews on his 80th birthday

Lehmer’s Theorem and its Finite Form

Define, with Lehmer ([L], p. 54), M(n) = M(n)(X, q), to be the following tridiagonal n×n matrix

(we changed a to
√
X and r to q)

M(n)i,j =











1 if i− j = 0 ;√
X q(i−1)/2 if i− j = −1 ;√
X q(i−2)/2 if i− j = 1 ;

0 otherwise .

Theorem 1 (Lehmer [L])

lim
n→∞

det M(n)(X, q) =

∞
∑

a=0

(−1)aXaqa(a−1)

(1− q)(1− q2) · · · (1− qa)
.

(As noted by Lehmer, when X = −q and X = −1 one gets the sum sides of the famous Rogers-Ramanujan

identities.)

Our new result is an explicit expression for the finite form, that immediately implies Lehmer’s

theorem, by taking the limit n → ∞, and gives it a new (and shorter!) proof.

Theorem 2

det M(n)(X, q) =

⌊n/2⌋
∑

a=0

(−1)aXaqa(a−1) (1− qn−a)(1− qn−a−1) · · · (1− qn−2a+1)

(1− q)(1− q2) · · · (1− qa)
.

Proof of Theorem 2: As noted by Lehmer ([L], Eq. (3)), by expanding with respect to the last

row, we have

det M(n)(X, q) = det M(n− 1)(X, q) − X qn−2 det M(n− 2)(X, q) . (LehmerRecurrence)

Using the q-Zeilberger algorithm1 ([PWZ],[Z], see also [PR] for a nice Mathematica version), we

see that the right side of Theorem 2 also satisfies the very same recurrence. Since it holds for the

initial conditions n = 1 and n = 2 (check!), the theorem follows by induction.

1 Typing qzeil((-1)**a*X**a*q**(a*(a-1))*qbin(n-a,a),S,a,n,[]); in qEKHAD gives X qn − S + S2,X qn that is the

recurrence operator annihilating the sum (S is the forward shift operator in n) followed by the ‘certificate’ (i.e. the

proof, see [PWZ])) .
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Secrets form the Kitchen

Our paper could have ended here. We have increased human knowledge by extending a result of a

famous number theorist, and proved it rigorously. But, at least as interesting as the statement of

the theorem (and far more interesting than the proof) is the way it was discovered, and the rest of

this paper will consist in describing two ways of doing it. The first way is a direct adaptation of

George Andrews’ “reverse-engineering” approach beautifully illustrated in the last chapter of his

delightful booklet [A] (based on 10 amazing lectures, given at Arizona State University, May 1985 that we were

fortunate to attend). In that masterpiece (section 10.2) he described how he used the computer alge-

bra system SCRATCHPAD to prove a deep conjecture by three notable mathematicians: George

Lusztig, Ian Macdonald and C.T.C. Wall. In Andrews’ approach, it is assumed that the discoverer

knows about Gaussian polynomials, and knows how to spot them. In other words the ‘atoms’ are

Gaussian polynomials. In the second, more basic, approach, the only pre-requisite is the notion of

polynomials, and Gaussian polynomials pop-up naturally in the act of discovery.

We will start completely from scratch, pretending that we did not read Lehmer’s paper. In fact we

did not have to ‘pretend’. We had no clue that Lehmer’s paper existed until way after we discovered

(and proved) Theorem 2, (and hence reproved Lehmer’s Theorem 1). This is the time for a short

“commercial break”, since this paper (like so many other ones!) owes it existence to the OEIS.

[Start of commercial break.]

Serendipity and the OEIS

We learned about Lehmer’s Theorem 1 via serendipity, thanks to that amazing tool that we are so

lucky to have, the On-Line Encyclopedia of Integer Sequences [S] (OEIS).

Recall that a composition of n is an array of positive integers (p1, . . . , pk) such that p1+. . .+pk = n,

and they are very easy to count (there are 2n−1 of them). A partition of n is a composition with

the additional property that it is weakly decreasing, i.e.

pi − pi+1 ≥ 0 (1 ≤ i < k ),

(and they are much harder to count) .

My current PhD student, Mingjia Yang [Y] is investigating relaxed partitions, that she calls r-

partitions, that are compositions of n with the condition

pi − pi+1 ≥ r .

When r = 1 we get the familiar partitions into distinct parts, and when r = 2 we get one of the

actors in the Rogers Ramanujan identities. But what about negative r? In particular what about

(−1)-partitions? After generating the first twenty terms

1, 2, 4, 7, 13, 23, 41, 72, 127, 222, 388, 677, 1179, 2052, 3569, 6203, 10778, 18722, 32513, 56455 ,

2



we copied-and-pasted it to the OEIS, and sure enough, we were scooped! It is sequence A003116,

whose (former) description was ‘reciprocal of an expansion of a determinant’, that pointed to

sequenceA039924, mentioning Lehmer’s Theorem 1 (in fact the special caseX = q). As a reference

it cited ‘personal communication’ by Herman P. Robinson, a friend and disciple of Lehmer. The

OEIS entry for A039924 also referenced Lehmer’s “lecture notes on number theory” but we could

not find it either on-line or off-line.

Since Lehmer’s proof seemed to have been lost, we tried to prove it ourselves, and succeeded. Our

approach, inspired by Andrews’ [A], was to first find an explicit expression for the finite form, and

then take the limit as n goes to infinity (like Andrews did for the L-M-W conjecture). Only after

we had the proof, we searched MathSciNet for

“Lehmer AND determinant AND tridiagonal” ,

and discovered [L]. To our relief, Lehmer’s proof was longer than ours, and did not go via the

finite form, Theorem 2. As far as we know, Theorem 2 is new. Once we discovered the reference

[L] we notified Neil Sloane, and he added that reference to the relevant sequences A003116 and

A039924. So the present paper is yet another paper that owes its existence to the OEIS!

[End of commercial break.]

How the Statement of Theorem 2 would have been (easily!) discovered by George

Andrews

In Andrews’ proof of the L-M-W conjecture, he used the Gaussian polynomials (aka as q-binomial

coefficients) as building blocks. With his approach, Theorem 2 could have been found by him

fairly quickly. Let Qn(X, q) := detM(n)(X, q).

Recall that the Gaussian polynomials GP (m,n)(q) are defined by

GP (m,n)(q) :=
(1− qm+1)(1− qm+2) · · · (1− qm+n)

(1− q) · · · (1− qn)

(in spite of their look, they are polynomials!) .

The way George Andrews would have discovered Theorem 2 is as follows.

Initially, crank out the first, say, twenty terms of the sequence of polynomials Qn(X, q), either by

evaluating the determinants, or, more efficiently, via (LehmerRecurrence).

You don’t need a computer to realize that the coefficient of X0, i.e. the constant term, is always 1.

The coefficients of X = X1 in Qn(X, q) for n from 1 to 8 are

[0,−1,−1−q,−1−q−q2,−1−q−q2−q3,−1−q−q2−q3−q4,−1−q−q2−q3−q4−q5,−1−q−q2−q3−q4−q5−q6] .

A quick glance by George Andrews would have made him conjecture that it is

−GP (n − 2, 1)(q) .
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Moving right along, here are the coefficients of X2 for 1 ≤ n ≤ 10:

[0, 0, 0, q2 , q2 + q3 + q4, q2 + q3 + 2 q4 + q5 + q6, q2 + q3 + 2 q4 + 2 q5 + 2 q6 + q7 + q8,

q2+q3+2 q4+2 q5+3 q6+2 q7+2 q8+q10+q9, q2+q3+2 q4+2 q5+3 q6+3 q7+3 q8+q11+2 q10+2 q9+q12,

q2 + q3 + 2 q4 + 2 q5 + 3 q6 + 3 q7 + 4 q8 + 2 q11 + 3 q10 + 3 q9 + 2 q12 + q13 + q14] .

Dividing by q2 and checking against the Gaussian polynomials ‘data base’, suggests that the coef-

ficient of X2 is always

q2GP (n − 4, 2)(q) .

Similarly, the coefficient of X3 would have emerged as

−q6 GP (n− 6, 3)(q) .

The coefficient of X4 would have emerged as

q12 GP (n− 8, 4)(q) .

The coefficient of X5 would have emerged as

−q20 GP (n − 10, 5)(q) .

And bingo, it requires no great leap of an Andrews’ imagination to conjecture that

Qn(X, q) =

⌊n/2⌋
∑

a=0

(−1)a Xa qa(a−1) GP (n − 2a , a)(q) ,

that is identical to the statement of Theorem 2.

How the Statement of Theorem 2 could have been discovered by someone who is NOT

George Andrews?

Suppose that you have never heard of the Gaussian polynomials. You still could have conjectured

the statement of Theorem 2. Even if you have never heard of Gaussian polynomials, you probably

did hear of polynomials. So assuming the ansatz that , for each a, the coefficient of Xa is a certain

polynomial in qn, try and fit it with a ‘generic’ polynomial with undetermined coefficients.2

Setting N = qn, your computer would have guessed the following polynomial expressions (in N =

qn) for the first five coefficients of X in Qn(X).

2 You start out with a generic polynomial of degree 0, and keep raising the degree until success (or failure).
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• The coefficient of X in Qn(X, q) is
N − q

q (1− q)
.

• The coefficient of X2 in Qn(X, q) is

(

N − q2
) (

N − q3
)

q3 (1 + q) (1− q)
2 .

• The coefficient of X3 in Qn(X, q) is

−
(

N − q3
) (

N − q4
) (

N − q5
)

q6 (1 + q) (q2 + q + 1) (q − 1)
3 .

• The coefficient of X4 in Qn(X, q) is

(

N − q4
) (

N − q5
) (

N − q6
) (

N − q7
)

q10 (q2 + 1) (q − 1)
4
(1 + q)

2
(q2 + q + 1)

.

• The coefficient of X5 in Qn(X, q) is

−
(

N − q5
) (

N − q6
) (

N − q7
) (

N − q8
) (

N − q9
)

q15 (q − 1)5 (q4 + q3 + q2 + q + 1) (1 + q)2 (q2 + q + 1) (q2 + 1)
.

This immediately leads one to guess that the numerator is always

(−1)a (N − qa)(N − qa+1) · · · (N − q2a−1) .

On the other hand, the sequence of denominators, let’s them call them d(a), for 1 ≤ a ≤ 5, happens

to be

[−q (q − 1) , q3 (1 + q) (q − 1)2 ,−q6 (1 + q)
(

q2 + q + 1
)

(q − 1)3 , q10
(

q2 + 1
)

(q − 1)4 (1 + q)2
(

q2 + q + 1
)

,−q15 (q − 1)5
(

q4 + q3 + q2 + q + 1
)

(1 + q)2
(

q2 + q + 1
) (

q2 + 1
)

] .

This looks a bit complicated, but let’s form the sequence of ratios d(a)/d(a − 1) for a = 2, 3, 4, 5

and expand, getting

[q2 − q4, q3 − q6,−q8 + q4, q5 − q10] ,

that is clearly qa(1− qa). Hence the coefficient of Xa in Qn(X, q) is guessed to be

(−1)a (N − qa)(N − qa+1) · · · (N − q2a−1)

qa(a+1)/2 (1− q) · · · (1− qa)
.

By putting N = qn we get the statement of Theorem 2.

5



So with this second approach, we discovered the Gaussian polynomials ab initio, our only gamble

was that the coefficients of X in Qn(X, q) are always polynomials in qn.

Concluding words

Let us quote the last sentence of section 10.2 of [A], where Andrews described his pioneering

(experimental mathematics!) approach illustrated by his discovery process of the proof of the L-M-

W conjecture.

“From here the battle with the L-M-W conjecture is 90 percent won. Standard techniques allow

one to establish the [finite form] of the conjecture, and a simple argument leads to the original

conjecture.”

Today the 90 percent may be replaced by 99.999 percent, since the final verification can be done

automatically by using the so-called q-Zeilberger algorithm ([PWZ][Z][PR]). In the much more

difficult L-M-N case, this would have saved George Andrews a few hours, and would have made it

accessible to anyone else. In the present case, you can still use the q-Zeilberger algorithm, if you

are feeling lazy, but it is not too hard to do it purely humanly. Can you do it?
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