
CHOOSING 1 OF N WITH AND WITHOUT LUCKY
NUMBERS

MATT BRAND

Abstract. How many fair coin tosses to choose 1 of n options with
uniform probability? Although a probability problem, the solution is
essentially number-theoretic, with special roles for Mersenne numbers,
Fermat numbers, and the haupt exponent. We propose a bit-efficient
scheme, prove optimality, derive the expected number of coin tosses
e[n], characterize its fractal structure, and develop sharp upper and
lower bounds, both discrete and continuous. A minor but noteworthy
corollary, with real-world examples, is that any lottery or simulation
with finite budget of random bits will have a predictable pattern of
lucky and unlucky numbers.

1. Introduction

How to choose fairly from 1 of n alternatives, using a minimal number of
coin tosses? The problem is of practical interest for lotteries, Monte Carlo
simulations, and splitting a collegial lunch bill.1

The 3-way case has some notoriety as a way of arbitrating disputes in
sports [2] and parenting. Popular schemes including flipping three coins and
choosing the odd man out; waiting for specific patterns of heads or tails
in a stream of coin flips; and a partition-of-unity scheme that treats the
sequence as the binary digits of a fraction. Most schemes are inefficient;
some are not correct. Indeed, the preliminary steps of our analysis reveal an
elementary error in random number generation that can be demonstrated in
many computing environments.

Formal treatments of the problem are rooted in Von Neumann’s [6] pro-
cedure for obtaining an unbiased random bit from a coin of unknown bias,
which was subsequently generalized by Dwass [3], Bernard and Letac [1] to
choose 1 of n outcomes uniformly. These “memoryless” methods wait for
specific sequences of coinflip outcomes, and are thus inefficient. Stout and

Date: 2018.04.16 printed August 27, 2018.
2000 Mathematics Subject Classification. 11A15 Elementary number theory: Power

residues, reciprocity; 11Y55 Computational number theory: Calculation of integer se-
quences; 60C05 Combinatorial probability; 60G40 Probability theory: Stopping times
and gambling theory.

1Choosing a payer at random has the virtues of being a fair policy that requires no
calculation and no memory of previous bills, payers, or participants. Furthermore, it
incentivizes participation in many varied lunch cohorts to minimize lifetime deviation
from the expected cost of one’s own eating.

1

ar
X

iv
:1

80
8.

07
99

4v
1

 [
m

at
h.

N
T

]
 2

4
A

ug
 2

01
8

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 2

Warren [5] analyzed the tree of possible toss sequences to show that O(log n)-
toss schemes exist, but did not achieve optimality. Using a similar strategy,
Kozen [4] developed an optimal procedure for simulating a q-biased coin with
a p-biased coin.

This note develops a fair and optimally toss-efficient scheme for choosing
1 of n. The scheme is easy to explain and follow, yet it has rich mathe-
matical structure: Its analysis revolves around factorizations of Mersenne
numbersMk

.
= 2k−1 and ordinary Fermat numbers Fk

.
= 2k+1, probability

recurrences, residue systems, and a fractal curve. The problem is framed in
this section; §2 analyzes some inefficient schemes and exposes a widespread
flaw in random number generation; §3 introduces a fair scheme, calculates
its efficiency, and proves optimality. The efficiency curve has a fractal struc-
ture (fig. 4.1) with irregular peaks whose locations (§4), values (§2), and
upper bounds (§5) suggest a sub-logarithmic property, which is proven in §7,
yielding a fair and efficient method for fair random orderings (equivalently,
samplings without replacement). Finally, appendix §A demonstrates how
to find (or suppress) lucky numbers in lotteries and some popular scientific
computing packages.

First, some basic facts: The lower bound on the number of fair tosses is
trivially m .

= dlog2 ne needed to distinguish at least n alternatives, and

Proposition 1. For n with odd factors, a fair scheme has no upper bound
on the number of flips.

Proof. By contradiction: Assume there exists a fair scheme that terminates
in no more than T (n) < ∞ tosses. Regardless of any early stopping condi-
tions, the scheme can be understood to assign all 2T (n) outcomes to the n
choices. But there is no equal n-way partition of 2k objects for n with odd
factors, so the scheme cannot be fair. �

It follows that a fair scheme must assign some number of outcomes to a
“no decision” condition that requires another round of tosses. Consequently
the ultimate number t of coin tosses to choose 1 of n is a random variable,
and we are interested in its expectation, e[n] .= En[t].

2. Some inefficient schemes

The expected number of coin tosses e[n] will usually be determined recur-
sively. Two popular schemes are briefy considered to motivate the analysis.
W.l.og., we need only consider odd n, since e[2n] = 1 + e[n].

2.1. Odd man out. This scheme has some fame as a tie-breaker in sports
and movies. It affords a particularly simple analysis: There are m = n
tosses in a round and 2n decision conditions wherein one toss is distinct
(odd). Thus the probability of continuing another round is p = 1− 2n/2m.
Each round is independent, so the expectation is unchanged in next round,
giving us the recursion e[n] = m + pe[n]. Putting it together, we have

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 3

e[n] = m + (2m − 2n)2−me[n] = 2n−1 expected coin flips for odd-man-out.
This is decidedly inefficient; even e[3] = 4.

2.2. Partitions of unity. This scheme is of interest because it is sometimes
mistaken for optimal and its analysis sheds light on a randomness deficiency
that is ubiquitous in deployed software. The unit interval [0, 1) ⊂ R is di-
vided into n equal partitions {[0, 1n), [

1
n ,

2
n), · · · , [

n−1
n , 1)} with (n−1) interior

boundaries at { 1n ,
2
n , · · · ,

n−1
n }. Then m ≥ dlog2 ne coin tosses select one of

2m equal intervals {[0, 1
2m), [1

2m ,
2
2m), · · · , [2m−12m , 1)}. Of these, n−1 are non-

decisive because they span the aforementioned boundaries. Landing in one
requires at least one more coin toss, which selects its decisive or nondeci-
sive half. Therefore the expected number of tosses needed for a decision is
(nonrecursively)
(2.1)

e[n] = m+
n− 1

2m−1
(1+ 1/2(1+ 1/2(1+ · · · = m+

n− 1

2m
= dlog2 ne+

n− 1

2dlog2 ne−1
.

Although more efficient and elegant2 than odd-man-out, at e[3] = 3 this
method is still suboptimal.

2.3. A sidenote on lucky numbers. Between eqn. 2.1 and prop. (1), we
have the curious implication that the two most common computer implemen-
tations random integer function, randomInteger(n) := bn·randomFloat[0, 1)c
and randomInteger(n) := randomBinary[0, 2b) mod n, are neither efficient
nor fair. More generally,

Proposition 2. For n ∈ N with at least one odd factor, any size-n lottery
that uses a finite budget of coin tosses to choose a winning number will have a
predictable sequence of lucky numbers that are up to twice as likely as unlucky
numbers.

Proof. W.l.o.g. the lottery mechanism can be split into a random phase where
b coin tosses choose one of 2b possible outcomes (sequences) and a determin-
istic phase where each possible outcome is surjectively assigned to one of
n = 2a(2k + 1) numbers for some integers a ≥ 0, k ≥ 1. Since n - 2b and
n < 2b, by the pigeonhole principle, some numbers must be assigned at least
one more outcome than the others. If n > 2b−1, the ratio must be 2:1 exactly.
Predictability follows from the determinism of the assignment. �

For n� 2b, the bias is negligible; but at lottery scale, lucky numbers are
mathematically plausible. Appendix A lists some widely used computing
platforms which currently exhibit this bias, and illustrates how the pattern
of lucky numbers can be predicted from n.

2A nice property of the n = 3 partition scheme is that boundaries have binary represen-
tation 1/3 = .01 and 2/3 = .10, therefore we have a fair decision as soon as two consecutive
tosses have the same outcome. To decode, represent each toss outcome as 0 or 1 and add
together the first and last outcomes to get 0 or 1 or 2.

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 4

3. A fair and efficient scheme

For a fair and efficient scheme, we must use every bit of randomness in
both the decision and the no-decision sequences: Starting with m = dlog2 ne
tosses, assign n of the 2m possible outcome sequences to the n choices; if
any of these occur, we are done. The remaining r = 2m − n sequences will
cue various "re-do" scenarios, with collective probability p = r/2m. E.g., if
r = 1 we start over with another round of m tosses. If n is Mersenne number
Mm

.
= 2m − 1 this is always the case, so the expected number of coin tosses

follows the simple recursive invariant e[n] = m + pe = m + 2−me[n], which
solves to e[Mm] = m2m/(2m − 1). Thus choosing 1 of 3 this way will cost
only e[3] = e[M2] = 8/3 tosses, on average.

When r ≥ 2, only m′
.
= dlog2 n/re more coin tosses are needed to have

o
.
= r2m

′
> n equiprobable outcomes in the next round. Assign those to n

choices and r′ .= r2m
′−n re-do scenarios, and continue. Since the remainder

1 < r′ < n determines the number of coin tosses in the next round, less than
n of the potentially infinite rounds are unique, which means they must cycle,
and therefore there is always be a length k < n recursive equation for the
expected number of coin tosses, of the form

(3.1) e[n] = m1+ r12
−m1(m2+ r22

−m2(m3+ r32
−m3(· · ·+ rk2−mke[n]) · · ·)

where ri = (ri−12
mi) mod n and mi = dlog2 n/ri−1e, r0 = 1. In §B, algo-

rithm (1) solves this from the inside out using strictly integer arithmetic.
Since the cycle repeats at r = 1, the number of tosses in a cycle of rounds

will be any T > 1 such that n | MT , i.e., the discrete logarithm of 1 mod
n base 2. The smallest such T is variously known as the haupt exponent, ,
Sloane sequence http://oeis.org/A002326, and the multiplicative order of
2 (mod n). We will write this as T = ordn(2).

Given T , e[n] can be expressed in terms of the residue class ci
.
= 2i mod n

as

Proposition 3. The expected number of tosses to choose 1 of n is

(3.2) e[n] =
2T

MT

T−1∑
i=0

2i mod n

2i
for T = k · ordn(2) with any k ∈ N.

Proof. Let R be the number of rounds in a cycle. The residue sequence
{ci}i=0...T−1 is exactly the concatenation of subsequences {rt20, rt21, · · · , rt2mt+1−1}t=0...R−1
with remainders rt and toss-counts mt as defined above. This contains the
same information as eqn. 3.1, but with rounds expanded into individual
tosses. Putting this into correspondence eqn. 3.1 yields expanded fixpoint

(3.3) e[n] = 1 + p1(1 + p2(1 + p3(1 + · · ·+ pT−1(1 + pT e[n]) · · ·))) .
with pi

.
= ci/(2ci−1) being the probability of continuing after the ith toss.

Solving from the inside out yields eqn. 3.2. �

Remark 4. T can be any whole multiple of ordn(2) because the fixpoint can
be rolled out to any number of whole cycles. Some examples: By Euler’s

http://oeis.org/A002326

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 5

theorem, the totient function φ(n) satisfies n | Mφ(n) for odd n, allowing
T = φ(n). Also, for the Mersenne numbers n = Mm we have T = m =
dlog2 ne. Finally, for prime n, Lagrange’s theorem states that the order of
the generator (= 2) in the cyclic group (Z/nZ)× will divide the order of the
group, allowing T = n− 1.

The e[n] recursion in eqn. 3.3 also highlights the fact that the probability
of no decision in t flips is

(3.4) Pr(d > t)
.
=

t∏
i=0

pi = ct/(c02
t) = 2−t(2t mod n)

and therefore the probability of terminating at the tth flip is

(3.5) Pr(t)
.
= Pr(d > t− 1)− Pr(d > t) = 2−t(2ct−1 − ct) .

Note that if we fairly partition the space of t-flip sequences into n groups,
there must be 2t mod n leftover sequences and Pr(d > t) is exactly their
probability mass. This is useful for proving

Proposition 5. The bit-efficient scheme is optimal.

Proof. By contradiction. Write the expectation as

e[n] =
∞∑
t=1

tPr(t) =
∞∑
t=1

t(Pr(d > t− 1)− Pr(d > t)) =
∞∑
t=0

Pr(d > t) ,

which is eqn. 3.2 with T →∞. Suppose there is an alternate fair procedure
with a lower expectation. Then for some t, it must provide a smaller Pr(d >
t). However, this cannot be achieved without assigning one or more leftover
sequences to a decision, hence the alternate procedure is unfair. �

Remark 6. A visual proof can be had by growing a binary tree of all possible
coin toss sequences. At each level where B ≥ N branches appear, we prune
(assign) all but B mod N . If there were a more efficient procedure, it would
have to prune (assign) one of those branches earlier, but that would make
the assignee twice as likely as any of the other decisions. Since this holds for
any branching factor,

Corollary 7. The bit-efficient scheme generalizes to give an efficient proce-
dure for choosing 1 of N with any K > 2 sided fair die.

4. Peak locations

Viewed as a curve (see fig. 4.1), the e[n] sequence exhibits a fractal saw-
tooth structure with m peaks in the mth epoch (2m−1 < n ≤ 2m) that
recur with additional detail in subsequent epochs. Since eqn. (3.2) is an
exponentially weighted sum of residues, the e[n] curve spikes whenever an
increment in n causes an early element of the residue sequence ci = 2i mod n
to jump in value. I.e., at n = 11, residue 5 jumps from 2 ≡ 25 (mod 10) to

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 6

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1

2

3

4

5

6

7

8

9

10

N =

e
x
p

e
c
te

d
 n

u
m

b
e

r
o

f
c
o

in
 t
o

s
s
e

s choosing 1 of N fairly by coin toss
partition scheme
upper bound
discrete l.b.+1
discrete u.b.
s=1 Mersenne peaks
bit-efficient scheme
discrete l.b.
lower bound

Figure 4.1. e[n] and bounding curves.

10 ≡ 25 (mod 11). The first m residues are constant within each epoch; the
remaining residues determine the jumps.

In this section we determine the locations of these jumps; in the next
we determine the values of the associated peaks. Before giving the general
formula, we give special attention to the first two series of peaks, which will
later yield upper bounds on the whole sequence. The first series occurs at
the beginning of the epoch:

Proposition 8 (Fermat peaks). Residue term ck makes a maximal jump at
Fermat number n = Fk, producing a peak.

Proof. With n = Fk, the residue sequence 2i mod n is {1, 2, 4, · · · , 2k−1, 2k =
n − 1, n − 2, n − 4, · · · , n − 2k−1} repeating, while the residue sequence for
2i mod (n − 1) is {1, 2, 4, · · · , 2k−1, 0, 0, 0 · · · } nonrepeating. Therefore the
jump is 2k − 0 = n− 1, the largest possible. �

The second series is associated with the second varying term in the residue
sequence. Its evolution is most conveniently tracked every other epoch:

Proposition 9 (First Mersenne peaks). In epoch m = 2k, residue term
c2k+1 makes the second largest jump at n = F2k+1/3.

Proof. We show that 2 ≡ 22k+1 (mod n − 1) and n − 1 ≡ 22k+1 (mod n).
Useful facts are A: 3 | M2k, k > 0 because M2k = MkFk = Mk(Mk + 2);
B: 1 ≡ a (mod b) and c|b =⇒ 1 ≡ a (mod b/c); C: 1 ≡ a (mod b) =⇒
2 ≡ 2a (mod 2b); D: n − 1 = (F2k+1 − 3)/3 = (2M2k − 2)/3 = 2/3M2k; E:
3 | F2k+1, k ≥ 0 because 3 |M2k and F2k+1 = 2M2k+3. First, 1 ≡ (M2k+1)

(mod M2k)
A,B
=⇒ 1 ≡ 22k (mod M2k/3)

C
=⇒ 2 ≡ 2 · 22k (mod 2M2k/3)

D
=

22k+1 (mod n − 1). Second, n − 1 ≡ 3n − 1 (mod n) =⇒ n − 1 ≡ 22k+1

(mod n) because 3n − 1 = 3(F2k+1/3) − 1
E
= 22k+1. Finally, note that the

jump n− 3 is second largest because n− 1 is the maximal residue value and
2 is the minimal value that can occur in a (repeating) residue class after the
first position. �

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 7

The remaining series of peaks are associated with smaller jumps:

Proposition 10 (All Mersenne peaks). Residue cm+s jumps n−Fs to peak
value n− 1 in epoch m = 2sk at

n = Ns[k]
.
= Fs(2k+1)/Fs

Proof. We claim that at n = Fs(2k+1)/Fs ∈ N, 2s ≡ 2s(2k+1) (mod n−1), and
n−1 ≡ 2s(2k+1) (mod n), yielding a jump of n−1−2s = n−Fs. Useful facts
are A: Fs | Fs(2k+1) because (a−b) | (aq−bq), choose a = 2s, b = −1, q = 2k+

1; B M2sk = (22sk−1) = (2sk−1)(2sk+1) =MskFsk; C: 1 ≡ a (mod b) =⇒
2s ≡ 2sa (mod 2sb); D: n − 1 = (Fs(2k+1) − Fs)/Fs = 2s(MksFks). Fact A

settles claim 1, that n ∈ N. For claim 2, 1 ≡ (M2sk + 1) (mod M2sk)
B
=⇒

1 ≡ 22sk (mod MskFsk)
C

=⇒ 2s ≡ 2s · 22sk (mod 2s ·MskFsk)
D
= 2s(2k+1)

(mod n− 1). For claim 3, n− 1 ≡ Fsn− 1 (mod n) =⇒ n− 1 ≡ 2s(2k+1)

(mod n) because Fsn− 1 = Fs(Fs(2k+1)/Fs)− 1
A
= 2s(2k+1). �

To locate the peaks in the epochs between 2sk and 2s(k + 1), it is conve-
nient to note that because the moduli n, 2n, and (2n−1) all generate similar
residue sequences for the generator 2i, each peak is echoed in subsequent
epochs. In particular, from Ns[k], the sth peak propagates up through the
epochs via s iterations of n→ 2n alternating with s iterations of n→ 2n−1.
E.g., the s = 2 peaks occur at n = 1,×2=2,×2=4,×2−1=7,×2−1=13, 26, 52, 103,205, 410, 820, · · ·
with the bolded entries being N2[k] for k = 0, 1, 2, · · · . We call these the
Mersenne peaks because the peak at n = Ns(1) in epoch s is anticipated by
a bump at Mersenne number n = Ms in epoch s − 1 under the progression
n→ 2n− 1, i.e., Ns(1) = 2Ms − 1.

5. Peak values

By unrolling the recursive fixpoint at Mersenne peaks n = Ns[k] and
solving recurrences it is possible to get a closed-form solution for selected
e[n]. Defining Js[j]

.
= sj2sj/Fsj , the kth instance of the sth peak has location

and value

(5.1)

e
[
n = Ns[k] = Fs(2k+1)/Fs

]
= Js[2k + 1]− Js[1] + 2/Fs

= s(2k+1)2s(2k+1)

Fs(2k+1)
− s2s

Fs
+ 2

Fs

= 2sk + s+2
Fs
− s(2k+1)

Fs(2k+1)

6. Bounds on e[n]

We begin by summarizing the results of this section: For m = dlog2 ne
and j = m+ 1 + (m mod 2), we have the bounds

discrete: m ≤ e[n] ≤ 2 + e[Fj/3] +m− j < m+ 1
continuous: log2 n ≤ e[n] ≤ 2 + (n−1)/n log2(n− 1) < 2 + log2 n ,

with all ≤ bounds sharp. Fig. (4.1) depicts all these relationships.

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 8

The lower bounds are trivial. We begin with the loose discrete upper
bound. Regarding eqn. (5.1), note that the first term, 2sk, is the number of
the epoch in which the peak appears. The second term attains a maximum
value of 1 at s = 1, and the third term always reduces the sum. Consequently
2sk+1 upper-bound all peaks in the epoch or, equivalently,

Proposition 11. e[n] < dlog2 ne+ 1.

6.1. Continuous upper bound. The largest spikes in the e[n] sequence
occur at the Fermat numbers n = Fm, because these are associated with
the largest jumps in the residue sequence, and these jumps occur earliest in
the exponentially decaying sum for e[n] in eqn. 3.2. Consequently we can
construct an upper bound for the whole curve from the Fermat peak values:

Proposition 12 (Fermat bound). For all n in the mth epoch, e[n] ≤ 2 +
n−1
n log2(n− 1) < 2 + log2 n with equality at n = Fm.

Proof. To obtain e[n = Fm], we unroll the recurrence in algorithm (1) and
observe that for Fermat numbers, the sequence z[m] = 2ng/(f − h) has
recurrence z[m] = 2z[m − 1] + Mm−1, z[1] = 4, whose solution z[m] =
m2m−1 + 2m + 1 implies that g/(f + h) = z[m]/(2n) = 2 + m2m/Fm =
2 + J1[m] at n = Fm. Substituting in m = log2(n − 1) gives e[n = Fm] =
2 + 1/n(n − 1) log2(n − 1). To establish the upper bound, note that any
other peak located at Ns[k] in the same epoch (satisfying m = 2sk) has the
loose upper bound e[Ns[k]] < 2sk + 1 = m + 1 = blog2(n − 1)c + 2 for any
n > Fm in the mth epoch. Thus we need to show that blog2(n − 1)c + 2 <
2+ n−1

n log2(n−1) at any non-Fermat peak. In any epoch, the lhs is constant
and rhs is increasing, so it suffices to show that it holds at the first non-
Fermat peak, which occurs at n = N1[k] = F2k+1/3, k > 1. There we have
n−1
n = 1 − 3/F2k+1; choose worst case k = 2. Then lhs is 5 and rhs is

2 + (1− 3/F5) log2(F5/3− 1) = 2 + (10/11) log2 10 > 5. �

6.2. Discrete upper bound. Since early residues have exponentially larger
weights in the expectation, peaks from the s = 1 Mersenne peaks dominate
all others. This can be expressed as a "stair-step" curve that gives a constant
(but sharp) upper bound for each epoch:

Proposition 13 (Mersenne bound). Let j = 2k + 1 for k ∈ N. Then
e[n] ≤ e[Fj/3] = j2j/Fj for all n in epoch m = j − 2 and e[n] ≤ 1 + e[Fj/3]
for all n in epoch m = j − 1.

Proof. The odd m case is simply the value e[n] at peak n = N1(k) from
eqn. 5.1, line 2. The even case follows from e[2n] = e[n] + 1 and the peak
propagation rule. To show that this also upper-bounds the Fermat peaks, we
need e[n] = 2+ n−1

n log2(n−1) < j2j/Fj at Fermat peak locations n = Fj−2.
Putting all in terms of k = (j − 1)/2 and taking rhs-lhs yields 4k(6k−5)−4

2F2k−1F2k+1
,

which is zero at k = 1 and positive for k > 1. �

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 9

7. Orderings

We close with result on fair orderings: It is more toss-efficient to determine
an ordering of k objects by choosing 1 of k!, than by sequentially choosing 1
of k, then 1 of k − 1, etc. Specifically,

Proposition 14 (Logarithmic subadditivity). ∀a,b e[ab] ≤ e[a] + e[b] .

Proof. We prove ∀a,b ≯, ∃a,b =, ∃a,b <. Claim 1: By prop. , e[n] is toss-
efficient. No toss-efficient procedure can have ∃a,b e[ab] > e[a] + e[b] because
one could then reduce e[ab] by simply choosing 1 of a and then 1 of b. Claim
2: Since e[2n] = 1 + e[n], we have equality e[ab] = e[a] + e[b] when a or b is
a power of 2. Claim 3: Consider a Fermat peak at a = Fs and a Mersenne
peak at b = Fs(2k+1)/Fs (see prop. 10). Using the peak-value formulas from
prop. 12 and eqn. 5.1 we obtain e[a] + e[b]− e[ab] = e[Fs] + e[Fs(2k+1)/Fs]−
e[Fs(2k+1)] = 2/Fs. �

We further conjecture that the inequality is strict whenever a and b both
have odd factors.

References

1. Jacques Bernard and Gérard Letac, Construction d’évenements équiprabables et coeffi-
cients multinomiaux modulo p, Illinois Journal of Math 17 (1973), 317–332.

2. H. G. Bissinger, Friday night lights: A town, a team, and a dream, Addison-Wesley,
1990.

3. Meyer Dwass, Unbiased coin tossing with discrete random variables, Annals of Mathe-
matical Statistics 43 (1972), no. 3, 860–864.

4. Dexter Kozen, Optimal coin flipping, Panangaden Festschrift (Switzerland) (F. van
Breugel et al., ed.), LNCS, vol. 8464, Springer, 2014, pp. 407–426.

5. Quentin F. Stout and Bette Warren, Tree algorithms for coin tossing with a biased coin,
Annals of Probability 12 (1984), no. 1, 212–220.

6. John von Neumann, Various techniques used in connection with random digits, Tech.
Report 12, U.S. National Bureau of Standards, 1951, To unbias a coin, wait for 2
different outcomes, keep 1st.

Appendix A. Lucky numbers and how to find them

The pattern of lucky numbers in a finite lottery will depend on the map-
ping from random flips to ticket numbers. The common programming idiom

randomInteger(n) := randomInteger(2b) mod n

assigns more random outcomes to lower ticket numbers, whereas

randomInteger(n) := bn · randomFloat[0, 1)c ,
widely enshrined in the libraries of scientific computing environments, has
patterned lucky numbers, exemplifed by

Proposition 15. Given b, choose any n = 2aMk with a ≥ 0, k > 1, a +
k ≤ b, and let p ∼ Ub(1) be a random variable uniformly sampled from the
set Ub

.
= {0, 1/2b, 2/2b, 3/2b, · · · , 2b−2/2b, 2b−1/2b}. Then random integers q .

=

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 10

bnpc ∈ {0, · · · , n− 1} and q modMk are both nonuniformly distributed with
a length-Mk pattern of lucky and unlucky numbers. Furthermore, if k |b− a,
then given two numbers 0 ≤ qL, qU < n with Mk − 1 ≡ qL (mod Mk) and
Mk−1 6≡ qU (mod Mk), qL is lucky with Pr(q=qL)

Pr(q=qU) =
c+1
c with c = b2b−a

Mk
c ∈ N

as small as c = 1 for n = 3 · 2b−2.

Proof. bnpc (mod Mk) wraps Ub, viewed as a knotted string, around a cylin-
der of circumferenceMk withMk equidistant notches, then assigns each knot
to the closest notch in one direction. Since 2a | 2b, the string wraps exactly 2a

times such that each consecutive group of 2b−a samples from Ub is identically
assigned to elements of the residue set {0, · · · ,Mk − 1}. Since 2b−a > Mk

and Mk - 2b−a, by the pigeonhole principle, 2b−a modMk elements of the
residue set get assigned one extra sample. If k | b − a, exactly 1 ≡ 2b−a

(mod Mk) element gets this surplus, because (x − y) | (xz − yz) and thus
k | b − a =⇒ (2k − 1) | (2k(b−a)/k − 1) =⇒ Mk | Mb−a =⇒ 1 ≡ 2b−a

(mod Mk). The lucky element’s position in the residue set is: last for bnpc;
first for dnpe; middle for bnpe. The remainder of the proposition follows
from arithmetic. �

In practice, the pattern and prominence of lucky numbers will also depend
on the number of bits used internally for CPU arithmetic and the choice of
rounding scheme. At time of writing the bias can be demonstrated in sev-
eral numerically sophisticated programming environments, even when Mk is
replaced by an arbitrary odd number. For example, with b = 53 bits in the
IEEE754 double-precision floating point significand, let j be a small integer,
f = Fj , and n = b2b−1(Fj/Fj−1)e. Then in k trials, lottery ticket num-
bers (mod f) are winners in Matlab or Octave with non-uniform relative
frequencies

full(sparse(1+ mod(randi(n, k, 1), f), 1, 1, f, 1))/k

Similar bias can be elicited from the sample() and runif() functions in the
R statistics environment. Python and Mathematica use arbitrary-precision
arithmetic which drives the bias down to insignificant levels.

Rejection sampling offers a trivial but inefficient way to restore fairness:
Obtain a fair R ∈ {1, . . . , 2b} from a round of b tosses, reject and repeat if
R > n. Naïvely this takes a impractical e′ = 1+(1−n/2b)e′ = 2b/n rounds of
b tosses each. But if we instead reject when R > nb2b/nc, the largest multiple
of n that is ≤ 2b, then R mod n is a fair draw from {0, . . . , n − 1} and the
expectation falls to e′ = 1/(1−(2b mod n)/2b) rounds. In tosses, b ≤ e < 2b,
e[3] = b and e[Fb−1] = 2b(1 − 1/Fb). Although quite bit-inefficient, C++
libraries appear to use an (algebraically) equivalent strategy.

CHOOSING 1 OF N WITH AND WITHOUT LUCKY NUMBERS 11

Appendix B. Solution for e[n] recurrence in (3.1)

Algorithm 1 An integer-arithmetic solution of the recursive fixpoint for
e[n]. m is the number of coin flips in each round; o is the number of possible
outcomes; r is the number of unassigned outcomes; and r/o is the probability
of going another round.

Input: Odd n ≥ 3.
Initialize: f ← 1, g ← 0, h← 1, r ← 1.
Iterate: m, o← minm s.t. o = 2mr > n,

r ← o− n, f ← fo, g ← (g +mh)o, h← hr.
Until: r = 1.

Output: e[n] = g/(f − h).

MERL, 201 Broadway, Cambridge MA USA

	1. Introduction
	2. Some inefficient schemes
	2.1. Odd man out
	2.2. Partitions of unity
	2.3. A sidenote on lucky numbers

	3. A fair and efficient scheme
	4. Peak locations
	5. Peak values
	6. Bounds on e[n]
	6.1. Continuous upper bound
	6.2. Discrete upper bound

	7. Orderings
	References
	Appendix A. Lucky numbers and how to find them
	Appendix B. Solution for e[n] recurrence in (??)
	

