
ar
X

iv
:1

80
8.

08
44

9v
2

 [
m

at
h.

C
O

]
 7

 S
ep

 2
01

8

What is an answer?— remarks, results and

problems on PIO formulas in combinatorial

enumeration, part I

Martin Klazar

September 11, 2018

Abstract

For enumerative problems, i.e. computable functions f : N → Z, we
define the notion of an effective (or closed) formula. It is an algorithm
computing f(n) in the number of steps that is polynomial in the combined
size of the input n and the output f(n), both written in binary notation.
We discuss many examples of enumerative problems for which such closed
formulas are, or are not, known. These problems include (i) linear re-
currence sequences and holonomic sequences, (ii) integer partitions, (iii)
pattern-avoiding permutations, (iv) triangle-free graphs and (v) regular
graphs. In part I we discuss problems (i) and (ii) and defer (iii)–(v) to
part II. Besides other results, we prove here that every linear recurrence
sequence of integers has an effective formula in our sense.

1 Introduction

We define what is an effective (closed, explicit) formula (solution, algorithm)
for a problem in enumerative combinatorics or number theory. An enumerative
problem or a counting function is a computable function

f : N → Z

(in part II also a computable function f : {0, 1}∗ → Z) given usually via
an algorithm computing it. The algorithm, often inefficient, usually follows
straightforwardly from the statement of the problem. Our notation: |X | and
#X denote cardinality of a set X , N = {1, 2, . . .}, N0 = {0, 1, . . .}, Z is the
ring of integers, Q and C are, respectively, the fields of rational and complex
numbers and {0, 1}∗ is the set of finite binary words. The asymptotic symbols
o(·), O(·), Ω(·), Θ(·), · ≪ ·, · ∼ · and poly(·) have their usual meaning (≪ is
synonymous to O and poly(x) = O((1 + |x|)d) for some d ∈ N). We will discuss
many enumerative problems and effective formulas.

Here are some examples of enumerative problems f : N → Z.

1

http://arxiv.org/abs/1808.08449v2

1. The Catalan numbers f(n) = cn = 1
n

(
2n−2
n−1

)
which count planted trees

with n vertices, and many other structures.

2. Let f(n) = cn for even cn and f(n) = 1 for odd cn.

3. A linear recurrence sequence f(n+ k) =
∑k−1

i=0 aif(n+ i), given by initial
values f(1), . . . , f(k) ∈ Z and recurrence coefficients a0, . . . , ak−1 ∈ Z.

4. We may be interested in f(n) =
∑

λ∈P (n)

(

‖λ‖‖λ‖‖λ‖ − ⌊log ‖λ‖⌋
)

where

λ runs through all partitions of n and ‖λ‖ is the number of parts.

5. Or in the surplus f(n) of the partitions of n into an even number of distinct
parts from {11, 12, 21, 22, 31, . . . } (two-sorted natural numbers) over those
with an odd number of distinct parts, that is, f(n) is the coefficient of qn

in the expansion of
∏∞

k=1(1− qk)2.

6. Another function f(n) counts 1324-avoiding permutations a1a2 . . . an of
[n] = {1, 2, . . . , n}; the avoidance means that no four indices 1 ≤ i1 <
i2 < i3 < i4 ≤ n exist with ai1 < ai3 < ai2 < ai4 .

7. Or f(n) may be the number of labeled triangle-free graphs on the vertex
set [n].

8. In the binary words setting, if λ = 0m01m1 . . . (n− 1)mn−1 , mi ∈ N0, is a
multiset with m0+m1+· · ·+mn−1 = n, then f(λ) ∈ N0 counts the labeled
simple graphsG on the vertex set [n] such that for i = 0, 1, . . . , n−1 exactly
mi vertices of G have degree i. We encode the input λ as an element of
{0, 1}∗ in an appropriate way which we will discuss later in part II.

This shows the variety of problems in enumeration one can consider and investi-
gate. We say something on each of them from the perspective of Definition 1.1.
Here we consider Examples 1–5 and defer the remaining ones to part II.

We put forward our definition of an effective formula for an enumerative
problem. The acronym PIO stands for polynomial in input and output.

Definition 1.1 (PIO formula). For a counting function f : N → Z, a
PIO formula is an algorithm, called a PIO algorithm, that for some constants
c, d ∈ N for every input n ∈ N computes the output f(n) ∈ Z in at most
c ·m(n)d = O(m(n)d) = poly(m(n)) steps, where

m(n) = mf (n) := log(1 + n) + log(2 + |f(n)|)

measures the combined complexity of the input and the output. Similarly for
counting function f : X → Z defined on a subset X ⊂ N.

We think this is the precise and definitive notion of a “closed formula”, and the
yardstick one should use, possibly with some ramifications or weakenings, to
determine if a solution to an enumerative problem is effective. We call counting
functions possessing PIO formulas shortly PIO functions. Definition 1.1 repeats

2

(more explicitly) the proposal made already in M. Klazar [88, p. 10] in 2010,
the innovation is that meanwhile we learned that the relevant complexity class
PIO exists for a long time in the literature. In fact, after submitting this text
for publication we found out that J. Shallit mentioned briefly Definition 1.1 as
a “very good formula” in [133, slide 3] in 2016.

We comment on the definition. The steps mean steps of the formal specifica-
tion of an algorithm as a multitape Turing machine. We are primarily interested
in the bit complexity but sometimes consider also the algebraic complexity, the
number of required arithmetic operations. We do not consider the space com-
plexity which concerns memory requirements. The shifts 1 + n and 2 + |f(n)|
serve for removing arguments 0 and 1, inconvenient for logarithms. The two
natural logarithms come from the decadic or binary (but not unary!) encoding
of numbers: log(2 + |f(n)|) = Θ(r) where r is the number of bits in the binary
code for f(n) ∈ Z. The rationale behind the definition is that any algorithm
solving a nontrivial enumerative problem f : N → Z needs minimum roughly
m(n) steps just for reading the input n and printing the output f(n), and an
effective algorithm takes only polynomially many steps in this minimum. We
include the output in the complexity of the problem because in enumeration typ-
ically the output is much larger than the input, and thus considering only the
input complexity (and ignoring the time it takes to print the output) is bound
to lead to confusion. But we will see, and a moment of reflection reveals it, that
not large outputs but on the contrary the unexpectedly small ones pose diffi-
culty— for them one has much less time for effective computation. We reflect
such “cancellative” problems by selecting Z, and not N or N0, as the codomain
of counting functions. In Example 1, m(n) = Θ(n) because log(2 + cn) = Θ(n),
and in Example 2, m(n) = Θ(n) for even cn and m(n) = Θ(log(1+n)) when cn
is odd.

We state the definition of the complexity class PIO ([149, 65, 153]) which
we above specialized to counting functions; |u| denotes the length n of a binary
word u = a1a2 . . . an ∈ {0, 1}∗.
Definition 1.2 (complexity class PIO). A function f : {0, 1}∗ → {0, 1}∗
is in the complexity class PIO if there is an algorithm that for every input
u ∈ {0, 1}∗ computes the output f(u) in time polynomial in max(|u|, |f(u)|).
PIO belongs to standard complexity classes, see the “complexity zoo” [153], but
it appears not to be widely known. It was introduced implicitly by M. Yanakakis
[149, Theorem 5.1, also pages 86 and 93] and later explicitly and independently
by Y. Gurevich and S. Shelah [65]. Researchers in database theory measure by it
complexity of algorithms, see for example S. Cohen, B. Kimelfeld and Y. Sagiv
[46], S. Cohen and Y. Sagiv [47], Y. Kanza and Y. Sagiv [85] or M. Vardi [143].
We are not aware of any mention of the class PIO in enumerative combinatorics
where we think it has a natural place.

The title alludes to the pioneering work [146] of the late H. S. Wilf who was
the first to ponder in the light of computational complexity the question what
it precisely means to give an effective, or a nontrivial, solution—an answer—
to a problem in enumeration. The first of two of his definitions says that a

3

nontrivial solution (he actually uses the term effective solution) is an algorithm
that computes f(n) for a counting function f : N → N0 in the number of
steps that is o(List(n)) where “List(n) = the complexity of producing all of the
members of the set Sn [where f(n) = |Sn|], one at a time, by the speediest known
method, and counting them.” ([146, Definition 1 and the preceding sentence]).
As it depends on the complexity of the current “speediest known method”, it
depends on time and progress of knowlege, and so it is not really a mathematical
definition but more a heuristic to measure effectivity of algorithms. In part II
we give another specification of this notion. But we have to add here that this
is not a bug but a feature of the first definition: “We will see that a corollary
of this attitude is that our decision as to what constitutes an answer may be
time-dependent: as faster algorithms for listing the objects become available, a
proposed formula for counting the objects will have to be comparably faster to
evaluate.” ([146, p. 289]).

The second definition of H. S. Wilf says that for superpolynomially growing
f(n) (“a problem in the class νπ”) an effective solution (he actually uses the
term that a problem is p-solved) is an algorithm that computes f(n) in poly(n)
steps ([146, Definition 2]). We also have to mention that he does not restrict
only to bit complexity but allows also other measures of complexity, “such as
multiplication or division of numbers in a certain size range, or bit operations,
or function evaluations, etc.” ([146, p. 290]).

Shortcomings of H. S. Wilf’s second definition, rectified in Definition 1.1,
are that it does not take into account complexity of the output and restricts
only to functions f with superpolynomial growth. (In the second definition the
function f(n) is not bounded from above, but it appears that tacitly it is of at
most broadly exponential growth, log(1 + f(n)) ≪ nd.) Thus Example 2 falls
outside his framework, which is kind of unsatisfactory, and so we sought better
definition. H. S. Wilf illustrates his two definitions with the function (we quote
from [146])

f(n) =
∑

λ∈P (n)

2g(λ)

1m1 ·m1! · 2m2 ·m2! · . . . · nmn ·mn!
where

g(λ) =
1

2

(n∑

i,j=1

gcd(i, j)mimj −
∑

k≥1

m2k−1

)

and λ = 1m12m2 . . . nmn runs through the partitions of n— f(n) counts the un-
labeled (i.e., nonisomorphic) graphs on the vertex set [n] (G. Pólya [118]). Since

f(n) ∼ 2n(n−1)/2/n!, we have List(n) = Ω(2(1+o(1))n2/2), but the formula based
on the displayed sum over P (n) computes f(n) in O(p(n)nd) = O(exp(c

√
n))

steps (where c > 0 is a constant and p(n) = |P (n)| is the number of partitions of
n), which is asymptotically much smaller. Thus we have a nontrivial solution.
An effective solution is in question because no algorithm is known that would
compute f(n) in O(nd) steps. H. S. Wilf asks if such algorithm exists, but so
far his question remains unanswered.

H. S. Wilf’s article [146] is discussed by D. Zeilberger [151] and it gave rise to

4

the notion of a Wilfian formula (also called a polynomial enumeration scheme),
which is an algorithmworking in time polynomial in n, for enumerative problems
n 7→ f(n) ∈ N0 of the type Ω(nc) = log(2 + f(n)) = O(nd) (for some real
constants 0 < c < d). It appears in the works on enumeration of Latin squares
by D. S. Stones [140] or permutations with forbidden patterns by V. Vatter
[144], B. Nakamura and D. Zeilberger [109], B. Nakamura [108] and others.
Recently [146] was invoked by V. S. Miller [104] for counting squares in Fn×n

2

by a nontrivial formula making exponentially many steps (an effective solution
is not known) or by M. Kauers and D. Zeilberger [86].

Perhaps our proposal in Definition 1.1 has a certain reinventing-the-wheel
quality because nowadays, unlike in the times of, say, L. Comtet [48] or J.
Riordan [126] when computational complexity did not exist, it is a common
knowledge that an effective solution to a problem means, in the first approxi-
mation, a polynomial time algorithm (see, for example, B. Edixhoven and J.-M.
Couveignes [51] or V. Becher, P.A. Heiber and T.A. Slaman [14]). For this
common knowledge we are indebted to A. Cobham [45] and J. Edmonds [52] in
1965. But, then, it seems not to be a common knowledge that one should consis-
tently include the complexity of the output in the complexity of an enumerative
problem. Also, one can still read in contemporary literature on enumerative
combinatorics statements to the effect that there is no precise definition or de-
termination of a closed formula or answer to an enumerative problem. For
example, M. Aigner [3, Introduction, p. 1] writes that “There is no straight-
forward answer as to what “determining” a counting function means.” or F.
Ardila [10, Chapter 1 What is a good answer?] concludes that “So what is
a good answer to an enumerative problem? [emphasize in original] Not
surprisingly, there is no definitive answer to this question.” On the other hand,
the text of P. J. Cameron [33, 34, Chapter 1.3] contains an interesting discussion
of the complexity matters which does reflect the output complexity of enumera-
tive problems, but does not result in concrete definition of a closed formula. We
believe that Definition 1.1 gives the definitive and more or less straightforward
answer. Recently (I wrote the main bulk of this article in autumn 2016 and
add this in March 2018, and now see that it is even August) the excellent sur-
vey [112] of I. Pak appeared that also tackles the question what is an effective
formula in enumeration but it changes nothing on our above discussion.

Content and main results. In the following two sections we discuss,
from the perspective of Definition 1.1, in their order the eight examples given
at the beginning. At least, this we initially intended but as the text started get
too long, we decided to split it in two parts. Here we consider Examples 1–5
and defer Examples 6–8 to part II. The length of our text is caused only by
the great variety of enumerative problems offering themselves for investigation.
Section 2 deals with Examples 1–3. After establishing in Propositions 2.1 and
2.2 PIO formulas for Examples 1 and 2, where Example 2 is chosen to illustrate
peculiarity of this notion, we prove in Theorem 2.3 that every integral linear
recurrence sequence has a PIO formula (but with a non-effective complexity
bound). This seems so far not to be reflected in the literature. Propositions 2.4
and 2.6–2.8 gather tools for proving Theorem 2.3. We present some problems

5

and results on holonomic sequences which generalize linear recurrence sequences.
For example, in Problem 2.10 we ask if every holonomic sequence f : N → Z is
a PIO function.

In Section 3 we consider enumerative problems inspired by Examples 4 and 5.
Propositions 3.1 and 3.2 revisit efficient evaluation of the partition function p(n).
It still holds from us some secrets, for example, it is not known how to compute
efficiently the parity of p(n) (Problem 3.3). In Proposition 3.4 we show that
counting functions like Example 4 are PIO functions and in Proposition 3.5 we
prove it for partitions with distinct parts. Hence Corollary 3.6: compositions of
n with distinct parts are counted by a PIO function. Proposition 3.8 is a general
result implying that, for example, the partitions of n whose multiplicities of parts
divide n are counted by a PIO function. If parts are required to divide n, PIO
formula seems not to be known. Another corollary is Corollary 3.10: if g : N →
N strictly increases, grows only polynomially and is polynomial-time computable
then the partitions of n with parts in {g(1), g(2), . . . } are counted by a PIO
function. Yet another Corollary 3.11 shows that the number of partitions of n
into distinct squares is a PIO function. Corollary 3.13 gives PIO formulas for
counting functions of partitions with prescribed multiplicities. Problem 3.14,
inspired by H. S. Wilf [147], asks if we can effectively count partitions of n
with distinct multiplicities of parts. The well known theorem of E.T. Bell
[15] (Proposition 3.15) says that partitions of n that take parts from a fixed
finite set A ⊂ N are counted by a quasipolynomial in n. In Corollaries 3.17
and 3.18 we point out that the argument proving Proposition 3.15 gives with
almost no change more general results. Corollary 3.19 returns to Example 4:
if the function g : N → Z has a finite support then f(n) =

∑

λ∈P (n) g(‖λ‖)
is a PIO function because it is a quasipolynomial in n. We mention further
quasipolynomial enumerative results on partitions, Proposition 3.20 due to D.
Zeilberger [152] and Proposition 3.21 due to G.E. Andrews, M. Beck and N.
Robbins [8]. Rather general quasipolynomial enumerative result was obtained
by T. Bogart, J. Goodricks and K. Woods [19] (Theorem 3.22). Problem 3.23
asks if one can effectively count partitions of n into powers of a fixed integer
m ≥ 2 and Theorem 3.25 quotes a recent positive resolution of this problem by I.
Pak and D. Yeliussizov [113, 114]. Proposition 3.26 points out that the two basic
cancellative counting problems on partitions, n 7→ ∑

λ∈Q(n)(−1)‖λ‖ and n 7→
∑

λ∈P (n)(−1)‖λ‖ (where P (n) are all partitions of n, and Q(n) are those with

distinct parts), are both PIO functions. The former follows from the pentagonal
identity of L. Euler, and the latter from J.W. L. Glaisher’s identity [62]. In the
former case we have almost complete cancellation but in the latter case only
little cancellation. Problem 3.27 asks when such cancellation for (−1)‖λ‖-count
of partitions occurs. We look at this problem for partitions into squares and for
partitions into parts from l-sorted N (Example 5 is l = 2), including the case
l = 24 that gives the Ramanujan tau function—the last Problem 3.29 concerns
computation of coefficients in powers of R. Dedekind’s η-function.

When we below state and prove results on PIO functions for enumerative
problems, we are not content with just saying that a PIO algorithm for the prob-

6

lem exists— it would be ironic to refer in such a way to efficient algorithms—but
we always indicate if and how the PIO algorithm can be constructed from the
given data. See, for example, Theorem 2.3 or Corollary 3.10.

2 The numbers of Catalan and Fibonacci

We start with Example 1. A planted tree is a finite tree with a distinguished
vertex, called a root, and with every set of children of a vertex linearly ordered.
Its size is the number of vertices. (For a long time I used to call this kind of trees
rooted plane trees, which also some literature uses, but F. Bergeron, G. Labelle
and P. Leroux [16] showed me that this terminology is imprecise: embedding in
the plane gives to the children of the root only cyclic, not linear, ordering.)

Proposition 2.1. Let cn be the n-th Catalan number, the number of (unlabeled)
planted trees with size n. Then n 7→ cn is a PIO function and the PIO algorithm
is given by the recurrence displayed below.

Proof. We only need to know the recursive structure of planted trees. There
is just one planted tree with size 1, and for n ≥ 2 every planted tree T of size
n bijectively decomposes in an ordered pair (U, V) of planted trees with sizes
adding to n; U is the subtree of T rooted in the first child of T ’s root and V is
the rest of T . Thus the combinatorial recurrence c1 = 1 and, for n ≥ 2,

cn =

n−1∑

k=1

ckcn−k .

It implies that cn ≥ 2cn−1 for n ≥ 3 and by induction cn ≫ 2n. On the other
hand, by induction cn ≤ (n − 1)! ≤ nn for every n ≥ 1 and log(2 + cn) ≪ n2

(such crude but easy to obtain bound suffices for our purposes). Hence n ≪
m(n) ≪ n2 in this enumerative problem and we need to compute cn in O(nd)
steps.

We do it on a Turing machine with six tapes T1, . . . , T6. Recall that elemen-
tary school algorithms multiply two O(m)-bit numbers in O(m2) steps and add
them in O(m) steps (see comments below). Tape T1 stores, in this order, the
binary codes for c1, c2, . . . , cn−1. For k = 1, 2, . . . , n − 1 we do the following.
We find ck and cn−k on T1 and write them on the respective tapes T2 and T3.
This costs O(log(1 + c1) + · · ·+ log(1+ cn−1)) = O(n3) steps, say. We compute
in O(n4) steps the product ckcn−k =: s and write it on T4. Tape T5 stores
∑k−1

i=1 cicn−i =: t. In O(n2) steps we compute the sum s + t and store it on
T6. We conclude by rewritting in O(n2) steps the content of T5 with that of T6.

After the step k = n − 1, tape T5 contains t =
∑n−1

i=1 cicn−i = cn and we copy
this in O(n2) steps on T1. The computation of cn from c1, c2, . . . , cn−1 takes
O(n · n4) = O(n5) steps. The recurrence, implemented by the six-tape Turing
machine, computes cn from beginning in

∑n
k=2 O(k5) = O(n6) = O(m(n)6)

steps, and n 7→ cn is a PIO function. ✷

7

We give some comments. If the Turing machine has only one tape, and the two
O(m)-bit numbers to be added are stored on it one after another, it is impossi-
ble to add them in O(m) steps as the reading head has to move back and forth
between them, and one needs Θ(m2) steps for addition. This can be proven
similarly as F.C. Hennie [71] proved the Θ(m2) lower bound on recognition of
m-bit palindromes. Therefore we use multitape Turing machines. The cost of
adding or multiplying two numbers is not only the cost of the operation but
in practice includes also the cost of recalling both operands from the memory,
and therefore we analyzed above the computation of cn in more details. But
these technicalities cause at worst only polynomial slowdown and are not im-
portant for our main concern that is a purely qualitative alternative: there is a
polynomial time PIO algorithm for the enumerative problem considered or its
existence is not known.

The Catalan numbers

(cn)n≥1 = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .)

form sequence A000108 in the database OEIS (The Online Encyclopedia of
Integer Sequences) [154]. Using stronger bound log(2 + cn) = Θ(n) and faster
integer multiplication (consult D. Harvey, J. van der Hoeven and G. Lecerf [70]
and D. Harvey and J. van der Hoeven [69] for the state of art and history of
multiplication algorithms) we can evaluate cn in, say, O(n3 logd(1 + n)) steps.
It is not a surprise that Catalan numbers can be effectively computed, but it
depends on what “effectively” precisely means. The combinatorial recurrence
computes cn in poly(n) arithmetic operations, and to get poly(n) steps we need
that all numbers involved in the computation have O(nd) digits for a fixed
d. This is ensured by (i) the bound cn ≤ nn and (ii) the non-negativity of
coefficients in the recurrence which entails that the result cn upper bounds
every number arising in evaluating the recurrence. But we also need that each
cn has Ω(nc) digits for a fixed real c > 0, which is ensured by the bound
cn ≫ 2n, so that poly(n) steps means poly(m(n)) steps and we really have an
effective algorithm. If, say, for infinitely many n we had the bound cn = O(1)
then poly(n) steps would cease to mean an effective algorithm in the sense of
Definition 1.1 and we would have to try more, as in Example 2.

To establish qualitatively a PIO formula for cn, the combinatorial recurrence
suffices and one does not need generating functions or “advanced” formulas for
cn like (n ∈ N)

cn =
1

n

(
2n− 2

n− 1

)

= (−1)n+1 4
n

2

(1
2

n

)

or cn+1 =
4n− 2

n+ 1
cn .

The last recurrence gives a more efficient PIO formula than the combinatorial
recurrence. The Catalan numbers have asymptotics cn ∼ cn−3/24n with a
constant c > 0. For asymptotic methods in enumeration consult P. Flajolet and
R. Sedgewick [58], and R. Pemantle and M.C. Wilson [117] for the multivariate
case.

8

We move to Example 2. As we will see shortly, the case f(n) = 1 occurs
for infinitely many n. Then the reader probably realizes that even though the
two functions fc and fo, defined as fc(n) := cn and fo(n) := n for even n and
fo(n) := 1 for odd n, are PIO functions and compose to the counting function
f(n) = fo(fc(n)) of Example 2, composition of their PIO algorithms is not a
PIO algorithm for f(n). It is an algorithm that always does Ω(nd) steps, but
we need an algorithm that for n with odd cn makes only O(logd(1 + n)) steps.
Naturally, we need to determine effectively which numbers cn are odd.

Proposition 2.2. Let cn be the n-th Catalan number. Then the function
f : N → N, f(n) = cn for even cn and f(n) = 1 for odd cn, is a PIO function.
The PIO algorithm is described below.

Proof. The combinatorial recurrence for cn shows that cn is odd iff n = 2m

for an m ∈ N0: c1 = 1 is odd, for odd n > 1 the number cn = 2(c1cn−1 +
· · ·+ c(n−1)/2c(n+1)/2) is even and, similarly, for even n the number cn = c2n/2+

2(c1cn−1+· · ·+c(n−2)/2c(n+2)/2) has the same parity as cn/2. Thus we effectively

compute f(n) as follows. For given n ∈ N we first in O(log2(1 + n)) steps
determine if n is a power of 2. If it is so, we output 1 in O(1) steps. Else we
output, using the PIO formula for n 7→ cn, in O(n6) or so steps the value cn.
This gives a formula for f(n) that for even cn makes O(n6) steps and for odd
cn only O(log2(1 + n)) steps, which is O(m(n)6) steps for every n ∈ N. ✷

Alternatively, we get a PIO algorithm for the f(n) of Proposition 2.2 or, more
generally, we determine effectively if a fixedm ∈ N divides cn (or, more generally,
a hypergeometric term), by means of A.-M. Legendre’s formula k = νp(n!) =
∑

j≥1⌊n/pj⌋ for the largest k ∈ N0 for which pk divides 1 · 2 · . . . · n (or by
means of a generalization of the formula to products of numbers in arithmetic
progressions). At the close of the section we mention other effective formulas
for modular reductions of cn and similar numbers.

Example 2 illustrates the fact that composition of two PIO algorithms need
not be a PIO algorithm. In fact, as one expects, composition of two PIO
functions need not be a PIO function. An example of such functions is easily
constructed by taking a computable function not in PIO, e.g. a function f :
{0, 1}∗ → {0, 1} in EXP\P, see Ch.H. Papadimitriou [115, Chapter 7.2]. Y.
Gurevich and S. Shelah [65, Lemma 2.1] elaborate such example.

Example 3 concerns the ubiquitous linear recurrence sequences. Best known
of them are the Fibonacci numbers fn, given by f0 = 0, f1 = 1, and fn+2 =
fn+1 + fn for every n ∈ N0. The sequence

(fn) = (fn)n≥1 = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .)

is sequence [154, A000045]. Since 2fn−2 ≤ fn ≤ 2fn−1 for n ≥ 3, we have
exponential bounds (

√
2)n ≪ fn ≪ 2n, n ∈ N. The precise asymptotics is

fn ∼ cφn where c > 0 is a constant and φ = 1.61803 . . . satisfies φ2 −φ− 1 = 0.

9

In general, a linear recurrence sequence in Z, abbreviated as a LRS, is a
function f : N → Z determined by 2k integers a0, . . . , ak−1, f(1), . . . , f(k) with
k ∈ N0 and a0 6= 0, and the recurrence relation

f(n+ k) = ak−1f(n+ k − 1) + ak−2f(n+ k − 2) + · · ·+ a0f(n), n ∈ N .

(Later we point out that allowing ai outside Z does not give new LRS.) Note
that we require a0 6= 0 and the recurrence to hold from the beginning. By
reverting the recurrence every LRS f extends naturally to f : Z → Q, for
example (1, 2, 4, 8, . . .) extends to f(n) = 2n−1, n ∈ Z. Thus (0, 1, 1, 1, . . .)
is not a LRS, as can be seen be reverting the purported recurrence, but it is
true that this sequence differs from a LRS in just one term. If k = 0 or if
f(1) = f(2) = · · · = f(k) = 0, we get the zero sequence that has f(n) = 0
for every n ∈ N. We say that f (more precisely, the recurrence) has order k.
Like the Fibonacci numbers, every LRS has an easy exponential upper bound
|f(n)| ≤ cn for every n ∈ N, with the constant c = kmaxi |ai|maxi≤k |f(i)|.
Lower bound is a different story, see Proposition 2.7.

The defining recurrence computes every LRS f(n) in Θ(n) arithmetic op-
erations. We recall, on the Fibonacci numbers fn, the well known and beauti-
ful formula (algorithm) based on binary powering that computes f(n) in only
poly(logn) arithmetic operations. By E. Bach and J. Shallit [11, p. 122] or
D. E. Knuth [91, p. 695], it appears first in J. C. P. Miller and D. J. Spencer

Brown [103]. For fn the formula reads: if n =
∑k

i=0 bi2
i with bi ∈ {0, 1} is the

binary expansion of n ∈ N0 (where 0 = 020) then

fn = (0, 1) ·
k∏

i=0




. . .





((
1 1
1 0

)bi
)2




2

. . .






2

︸ ︷︷ ︸

i squarings

·
(

1
0

)

.

Indeed, if M is the stated 2× 2 matrix and Fn is the column (fn+1, fn)
T then,

since the first row of M records the recurrence for fn and matrix multiplication
is associative, we have MFn = Fn+1 and Fn = MnF0. The power Mn is then
computed by repeated squaring from the bis. Since k = O(log(n + 1)), the
formula computes fn in only O(log(n+1)) multiplications of two integral 2× 2
matrices, so in only O(log(n + 1)) arithmetic operations with integers. This
easily extends to general LRS. For more information on repeated squaring and
computing terms in linear recurrence sequences see J. von zur Gathen and J.
Gerhard [61, Chapters 4.3 and 12.3]. Recent contribution to the literature on
computing linear recurrence sequences is S.G. Hyun, S. Melczer and C. St-Pierre
[77].

For qualitative bit complexity such cleverness seems superfluous, the n-th
term f(n) of a LRS is an O(n) digit number (which cannot be printed in fewer
steps) and already the defining recurrence computes f(n) in poly(n) steps, which
might be viewed as an efficient computation. But not from the point of view
of Definition 1.1. Since f(n) may have as few as O(1) digits, to get a PIO

10

formula we need to locate effectively these small values (cf. Example 2) and
compute them in poly(log n) steps. This is not automatic by the above dis-
played poly(logn) arithmetic operations formula because only poly(log n) digit
numbers may be used, and for general LRS the displayed formula contains
negative numbers (the result need not upper bound intermediate values, as in
1 = 2n − (2n − 1)). It can be done, albeit on the verge of non-effectivity, and
we prove the following theorem.

Theorem 2.3. Every linear recurrence sequence f : N → Z in Z of order
k ∈ N0 is a PIO function. In the proof we indicate an algorithm A with inputs
(a, b, n) ∈ Zk×Zk ×N, where k ∈ N0, and outputs in Z such that for every fixed
tuple (a, b) = (a0, . . . , ak−1, f(1), . . . , f(k)) with a0 6= 0, A is a PIO algorithm
computing the LRS f(n) determined by (a, b).

We will see that the implicit constant in the O(m(n)d) complexity bound in these
PIO algorithms is currently non-effective—at the present state of knowledge we
cannot provide for it any specific value. The theorem follows by combining stan-
dard results from the theory of linear recurrence sequences, see the monograph
[54] of G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, but we did
not find it mentioned in [54] or anywhere else.

We review tools for the proof of Theorem 2.3. For background on linear
recurrence sequences see [54], W.M. Schmidt [131] or R. P. Stanley [138, Chapter
4]. By Q ⊂ C we denote the field of algebraic numbers, consisting of all roots
of monic polynomials from Q[x]. The subring of algebraic integers is formed by
all roots of monic polynomials from Z[x]. A power sum is an expression

s(x) =
l∑

i=1

pi(x)α
x
i

where l ∈ N0, αi ∈ Q are distinct and nonzero numbers, and pi ∈ Q[x] are
nonzero polynomials. The numbers αi are the roots of the power sum. A
sequence f : N → Q is represented by a power sum s(x) if f(n) = s(n) for
every n ∈ N. The empty power sum with l = 0 represents the zero sequence.
We consider the more general linear recurrence sequences in Q, shortly LRS
in Q—they are defined as LRS, only their values and coefficients of defining
recurrences lie in the field Q instead of its subring Z. If f : N → Q is a LRS
in Q given by a recurrence f(n+ k) =

∑k−1
i=0 aif(n+ i), ai ∈ Q and a0 6= 0, the

recurrence polynomial p(x) is

p(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · · − a0 ∈ Q[x] .

If the recurrence for f has minimum order, we denote p(x) by pf (x) and call it
the characteristic polynomial of f ; in a moment we show that there is always a
unique pf (x). For example, the characteristic polynomial of the zero sequence
is the constant polynomial p≡0(x) = 1. For a sequence f : N → C and a

polynomial p(x) =
∑k

i=0 aix
i ∈ C[x] we let pf : N → C denote the sequence

11

given by pf(n) =
∑k

i=0 aif(n+ i). We say that p annihilates f if pf is the zero
sequence. The set of rational polynomials annihilating f is denoted by V (f) ⊂
Q[x]. Clearly, V (f) consists exactly of all rational recurrence polynomials for f
(with a0 = 0 and non-unit leading coefficient allowed). The following results are
well known but we prove them here for reader’s convenience and as an workout
for the author.

Proposition 2.4. Power sums and linear recurrence sequences have the fol-
lowing properties.

1. Every sequence f : N → Q has at most one power sum representation.

2. If f : N → C is a sequence then V (f) is an ideal in the ring Q[x].

3. If f : N → Q is a LRS in Q then V (f) = 〈pf (x)〉 for a unique monic
polynomial pf ∈ Q[x] with pf (0) 6= 0. This unique generator pf of V (f)
is called the characteristic polynomial of f and gives the unique minimum
order rational recurrence for f .

4. A sequence f : N → Q is a LRS in Q if and only if it is represented by a
power sum s(x). If it is the case, the roots αi of s(x) are exactly the roots
of pf (x).

Proof. 1. It suffices to show that no nonempty power sum represents the zero
sequence. For a power sum s(x) as above we define deg s(x) =

∑l
i=1(deg pi(x)+

1) ∈ N0. Clearly, only the empty power sum has degree 0. For any nonempty
s(x) we define the new power sum ∆s(x) = s(x + 1) − α1s(x). Note that,
crucially, deg∆s(x) = deg s(x) − 1. Also, if s(x) represents the zero sequence
then so does ∆s(x), and no s(x) with deg s(x) = 1 represents the zero sequence.
(In fact, if deg s(x) = 1 then s(n) 6= 0 for every n ∈ N.) The last three facts
together imply that no nonempty power sum represents the zero sequence.

2 and 3. It is easy to see that for any p, q ∈ C[x] and any sequence f : N → C

we have (p+ q)f = pf + qf and (pq)f = p(qf). Thus V (f) is an ideal in Q[x].
Every ideal in Q[x] is principal, is generated by a single element, because the
ring Q[x] is Euclidean. Requiring the generator monic makes it unique because
the units of Q[x] are exactly the nonzero constants. Finally, pf (0) 6= 0 because
f being a LRS in Q implies that V (f) contains a p with p(0) 6= 0.

4. Suppose that f : N → Q is a LRS in Q with minimum order k and
characteristic polynomial pf (x). Thus in the ring of formal power series Q[[x]]
we have the equality

∑

n≥0

f(n)xn =
q(x)

qf (x)

where qf (x) = xkpf(1/x), q ∈ Q[x] has degree < k and q(x) and qf (x) are
coprime (by the minimality of k). The value f(0) is computed from f(1),
f(2), . . . , f(k) by the reverted recurrence; now it would be more convenient
if f had domain N0 or even Z but counting functions have domain N. After

12

decomposing the rational function q(x)/qf (x) in partial fractions, expanding
them in Q[[x]] in generalized geometric series, and comparing coefficients of xn,
we get a representation of f(n) by a power sum s(x). The roots of s(x) are
exactly the roots of pf (x) because of the coprimality of q(x) and qf (x).

Let f : N → Q be represented by a power sum s(x) =
∑l

i=1 pi(x)α
x
i :

f(n) = s(n) for every n ∈ N. We may assume that f is not the zero sequence
and so s(x) is nonempty. We show that f is a LRS in Q. The argument is of
interest because of three invocations of Lemma 2.5 below and because it uses
negative n ∈ Z. If d = maxi deg pi(x) then s(x) is a Q-linear combination of
the t = (d + 1)l expressions xjαx

i for 0 ≤ j ≤ d and 1 ≤ i ≤ l. So is every shift

s(x+ r) for r ∈ N, as can be seen by expanding (x+ r)j =
∑j

b=0

(
j
b

)
rj−bxb and

αx+r
i = αr

iα
x
i . By Lemma 2.5 there exist coefficients β0, β1, . . . , βt ∈ Q, not all

zero, such that

β0s(x) + β1s(x+ 1) + · · ·+ βts(x+ t) = 0

identically. But we need coefficients not only in Q but in Q. We set

V = {(f(n), f(n+ 1), . . . , f(n+ t)) | n ∈ N} ⊂ Qt+1 ⊂ Q
t+1

and select a maximum subset B ⊂ V of linearly independent (over Q) vectors.
By Lemma 2.5, |B| ≤ t+1. Every vector z ∈ V is a Q-linear combination of the
vectors in B. If |B| = t+1, the matrix whose rows are the linearly independent
vectors z ∈ B is a square matrix and thus has linearly independent columns.
But the system

z · (x0, x1, . . . , xt) = 0, z ∈ B ,

has a nontrivial solution xi = βi ∈ Q which means that the columns are linearly
dependent. Hence |B| ≤ t. But B ⊂ Q1+t and thus by Lemma 2.5 this system
has a nontrivial solution xi = γi ∈ Q, with not all γi zero. So

z · (γ0, γ1, . . . , γt) = 0 and γ0s(n) + γ1s(n+ 1) + · · ·+ γts(n+ t) = 0

for every z ∈ V and every n ∈ N. By part 1, then γ0s(x) + γ1s(x + 1) + · · ·+
γts(x + t) = 0 identically (the left side is the empty power sum) and the last
displayed equality thus holds for every n ∈ Z. Let u ∈ N0 and v ∈ N0 be the
respective minimum and maximum index r with γr 6= 0, and let w = v−u ∈ N0.
Then

γvf(n+ w) + γv−1f(n+ w − 1) + · · ·+ γuf(n)

= γts(n− u+ t) + γt−1s(n− u+ t− 1) + · · ·+ γ0s(n− u) = 0

for every n ∈ N (the arguments of s(·) may be negative). After dividing by γv
and rearranging we see that f is a LRS in Q of order w. The roots of pf(x) and
of s(x) coincide by the previously proved opposite implication and by uniqueness
of s(x) proved in part 1. ✷

13

Note that nonzero power sums may vanish for infinitely many n ∈ N, for example
s(x) = 1x + (−1)(−1)x on 2N, and the first part is therefore more subtle result
than for polynomials. Recalling the zeros of sin(πx) we have

exp(πix) − exp(−πix) = exp(πi)x + (−1) exp(−πi)x = 0 for every x ∈ Z

but this, of course, is not a counterexample to the first part (why?). Also,

fn =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

is the familiar power sum representation of the Fibonacci numbers. The next
lemma, used several times in the previous proof, is a well known result from
linear algebra. Its proof is left to the interested reader as an exercise.

Lemma 2.5. Let m,n ∈ N with m < n. Every linear homogeneous system

aj,1x1 + aj,2x2 + · · ·+ aj,nxn = 0K , j = 1, 2, . . . ,m ,

with m equations, n unknowns xi, and coefficients aj,i in a field K has a non-
trivial solution xi ∈ K with not all xi = 0K.

Recall that a root of unity is a number α ∈ C such that αk = 1 for some
k ∈ N, i.e. α is a root of xk − 1. The minimum such k is the order of α. We
say that a power sum s(x) is degenerate if some root αi or some ratio αi/αj

of two roots is a root of unity different from 1, else s(x) is non-degenerate. So
we allow 1 as a root in a non-degenerate power sum, and empty power sum is
non-degenerate. For any sequence f : N → X and numbers m ∈ N and j ∈ [m],
the m-section fj,m : N → X of f is the subsequence of values of f on the residue
class j mod m:

fj,m(n) = f(j +m(n− 1)), n ∈ N .

If f : N → Q is represented by a power sum s(x) =
∑l

i=1 pi(x)α
x
i , then the

m-section fj,m is represented by the power sum

sj,m(x) =

l∑

i=1

αj−m
i pi(j −m+mx)(αm

i)x =

r∑

i=1

qi(x)β
x
i

where r ≤ l and {βi | i = 1, . . . , r} ⊂ {αm
i | i = 1, . . . , l}—we collect like terms

in the middle expression so that the numbers βi are distinct and the polynomials
qi(x) nonzero. For example, the degenerate power sum s(x) = 2x + (−2)x has
2-sections s1,2(x) = 0 (the empty power sum with r = 0) and s2,2(x) = 2 · 4x.
It is not hard to prove that for any m ∈ N, f : N → Q is a LRS in Q if and
only if every m-section fj,m is a LRS in Q.

Proposition 2.6. The following holds for roots of unity and power sums.

1. If p ∈ Z[x] is a monic polynomial with p(0) 6= 0 and every root of p has
modulus at most 1, then every root of p is a root of unity.

14

2. If s(x) =
∑l

i=1 pi(x)α
x
i is a power sum such that every αi is an algebraic

integer, |αi| ≤ 1 for every i, and s(n) ∈ Q for every n ∈ N, then every αi

is a root of unity.

Proof. 1. This is called Kronecker’s theorem. See U. Zannier [150, Theorem
3.8 and Remark 3.10 (i)] or E. Bombieri and W. Gubler [21, Theorem 1.5.9] or
V.V. Prasolov [123, Theorem 4.5.4].

2. By the assumption and part 4 of Proposition 2.4, the sequence f(n) =
s(n), n ∈ N, is a LRS in Q. By parts 3 and 4 of Proposition 2.4, the numbers
αi are exactly the roots of the characteristic polynomial pf (x) ∈ Q[x]. Since
all αi are algebraic integers, so are the coefficients of pf (x) (by expressing them
in terms of the αis). But this implies that pf(x) ∈ Z[x]. Using part 1 of the
present proposition, we get that all αi are roots of unity. ✷

On the Internet or even in paper literature one can encounter the erroneous
claim that if α ∈ Q with |α| = 1 then α is a root of unity. The number 4+3i

5 is
a counterexample. Part 1 of Proposition 2.6 shows when arguments of this sort
are correct. Concerning exponential lower bounds on growth of linear recurrence
sequences, there is the next deep result.

Proposition 2.7. If f : N → Q is represented by a non-degenerate power sum
whose roots have maximum modulus β > 1, then for every ε > 0 there is an
n0 ∈ N such that

|f(n)| > β(1−ε)n for every n > n0 .

Proof. This is [54, Theorem 2.3] where the proof is omitted. At [54, p. 32] the
result is attributed to J.-H. Evertse [55] and independently A. van der Poorten
and H.P. Schlickewei [122]. J.-H. Evertse [55, p. 229] attributes it to A. van
der Poorten [120]. See also A. van der Poorten [121]. ✷

We deduce the following growth dichotomy for LRS that effectively separates
small and large values.

Proposition 2.8. Suppose f : N → Z is a LRS of order k ∈ N0, represented
by a power sum s(x). We let m ∈ N be the least common multiple of the orders
of the roots of unity among the roots αi of s(x) and their ratios αi/αj, and let
J ⊂ [m] be the set of j ∈ N for which the power sum sj,m(x) is empty or has
the single root 1. Then there exist a real constant c > 1 and an n0 ∈ N such
that for every j ∈ [m] the following holds.

1. If j ∈ J then fj,m(n) is a rational polynomial in n ∈ N with degree less
than k.

2. If j 6∈ J then |fj,m(n)| > cn for every n > n0.

15

Proof. By parts 3 and 4 of Proposition 2.4, all roots αi of s(x) are algebraic
integers. Take a j ∈ [m] and consider the power sum sj,m(x) =

∑r
i=1 qi(x)β

x
i

representing fj,m(n). The βis are m-th powers of αis and are algebraic integers
too. Also, sj,m(x) is non-degenerate. Suppose that |βi| ≤ 1 for every i =
1, 2, . . . , r. By part 2 of Proposition 2.6 all βi are roots of unity. But then
non-degeneracy of sj,m(x) implies that either r = 0, sj,m(x) is empty and fj,m
is the zero sequence, or r = 1, β1 = 1 and fj,m(n) = q1(n) ∈ Z for every
n ∈ N. It follows that q1 ∈ Q[x] and deg q1 ≤ maxi deg pi < k (pi are the
polynomials in s(x)). Thus we get the first case with j ∈ J . If |βi| > 1 for some
i, Proposition 2.7 gives the second case with j 6∈ J . ✷

Unfortunately, currently no proof of Proposition 2.7 is known giving an explicit
upper bound on the threshold n0, only its existence is proven. Therefore also the
n0 of Proposition 2.8 is non-effective (we cannot compute it). Effective versions
of much weaker inequalities are not known. Already T. Skolem [135] proved
that if f(n) is a nonzero LRS represented by a non-degenerate power sum then
|f(n)| ≥ 1 for every n > n0, that is, f(n) = 0 has only finitely many solutions
n ∈ N. To obtain an effective version of this result with an explicit upper bound
on n0, that is, on the sizes of solutions, is a famous open problem, mentioned
for example in T. Tao [141, Chapter 3.9] or in B. Poonen [119]. Before we turn
to the proof of Theorem 2.3 we state a corollary of Proposition 2.8. Recall that
a sequence f : N → Z is a quasi-polynomial if for some m ∈ N polynomials
q1, . . . , qm ∈ Q[x] we have fj,m(n) = qj(n) for every j ∈ [m] and n ∈ N.

Corollary 2.9. If a LRS f : N → Z has subexponential growth,

lim sup
n→∞

|f(n)|1/n ≤ 1 ,

then f(n) is a quasi-polynomial.

We remark that one can prove Proposition 2.8 and Corollary 2.9 in a conceptu-
ally simpler (but probably not much shorter) way without Kronecker’s theorem,
using incomensurability of the frequencies of the roots of non-degenerate power
sums.

Proof of Theorem 2.3. Let k ∈ N0 and 2k integers a0, . . . , ak−1, f(1), . . . ,
f(k), a0 6= 0, be given. We describe a PIO algorithm for the LRS f : N → Z

defined by

f(n+ k) =

k−1∑

i=0

aif(n+ i) .

We take the recurrence polynomial p(x) = xk − ak−1x
k−1 − · · · − a0 of f ,

decompose the generating function

∑

n≥0

f(n)xn =
r(x)

q(x)
∈ Q(x), q(x) = xkp(1/x) and deg r(x) < k ,

16

into partial fractions and as in the proof of the first implication in part 4 of
Proposition 2.4 determine from them the power sum s(x) representing f(n).
From s(x) we determine the number m and set J ⊂ [m] as defined in Proposi-
tion 2.8. For each j ∈ J we find the polynomial qj ∈ Q[x] such that deg qj < k
and qj(n) = fj,m(n) for n = 1, 2, . . . , k. This precomputation can be done algo-
rithmicly. Now for an input n ∈ N we compute the residue j ∈ [m] of n modulo
m. If j ∈ J , we output f(n) = qj((n +m− j)/m). If j 6∈ J , we compute f(n)
by the defining recurrence.

Correctness of the algorithm follows from Proposition 2.8. We bound its
time complexity in terms of m(n). The precomputation takes O(1) steps and
determining j takes poly(logn) steps. If j ∈ J , computing qj((n+m− j)/m) =
f(n) takes poly(logn) steps because we do O(1) arithmetic operations with
O(log(1+n)) digit numbers. If j 6∈ J , computing f(n) by the defining recurrence
takes poly(n) steps because f(n) is an O(n) digit number for every n ∈ N. As
for m(n), if j ∈ J then f(n) is an O(log(1 + n)) digit number (fj,m(n) grows
only polynomially) and m(n) = Θ(log(1 + n)). If j 6∈ J then f(n) is an Ω(n)
digit number (by case 2 of Proposition 2.8) and m(n) = Θ(n). No matter if
j ∈ J or not, for every n ∈ N the algorithm does poly(m(n)) steps and is a PIO
algorithm. ✷

Since the constant in the Ω(n) lower bound at the end of the proof is non-
effective, the complexity bound poly(m(n)) = O(m(n)d) involves a non-effective
constant as well.

Before we turn to holonomic sequences, we discuss the effect of domain
extension for recurrence coefficients of a LRS. In the definition we required
them to lie in Z. Could one get more integer-valued sequences if the coefficients
lie in a larger domain than Z? The answer is no. We already proved in the
proof of the second implication in part 4 of Proposition 2.4 that if K ⊂ L is an
extension of fields and f : N → K is a LRS in L then f is in fact a LRS in K.
This folklore result on linear recurence sequences is mentioned for example in M.
Stoll [139, Lemma 3.1]. Recurrence coefficients outside Q thus give nothing new.
One can also prove that if f : N → Z is a LRS in Q (recurrence coefficients lie
in Q), then f is in fact a LRS (another recurrence exists with coefficients in Z).
See R. P. Stanley [138, Problem 4.1 (a)] for the proof by generating functions
and references for this result, known as the Fatou lemma.

One could also try to extend Theorem 2.3 to linear recurrence sequences in
Q. For this one extends the codomain of counting functions from Z to Q and in
the definition of m(n) (Definition 1.1) replaces |f(n)| with max(|a|, |b|) where
f(n) = a

b ∈ Q, gcd(a, b) = 1. We hope to return to this question later.
We conclude the section with some results and problems on computing terms

in holonomic sequences. These generalize LRS and are also quite common in
enumerative combinatorics and number theory. For simplicity we restrict to
integer-valued sequences. A sequence f : N → Z is holonomic (synonymous
terms in use are P -recursive and polynomially recursive) if for some k rational

17

functions a0, . . . , ak−1 ∈ Z(x), k ∈ N0 and a0(x) 6= 0, we have

f(n+ k) = ak−1(n)f(n+ k − 1) + ak−2(n)f(n+ k − 2) + · · ·+ a0(n)f(n)

for every n > n0. Now the recurrence cannot hold in general from the beginning
because of possible zeros of the denominators in the ai(x). Examples of such
sequences are f(n) = n! or the Catalan numbers f(n) = cn (see the “advanced”
recurrence for cn). Unfortunately, holonomic sequences lack some analog of the
power sum representation; for a form of the matrix exponential representation
(used in the matrix formula for the Fibonacci numbers) see Ch. Reutenauer
[124]. We propose the following problem.

Problem 2.10. Is it true that every holonomic sequence f : N → Z is a PIO
function?

A. Bostan, P. Gaudry and E. Schost [26] give an algorithm computing the n-th
term of a holonomic sequence in O(n1/2 logd(1 + n)) arithmetic operations.

Since Example 2 and Proposition 2.2 deal with an effective computation
of the function n 7→ cn mod 2, we mention a problem and some results on
effective computation of modular reductions of holonomic sequences. For a
sequence f : N → Z and m ∈ N, the modular reduction n 7→ f(n) mod m
has values in the fixed set of residues [m], and so a PIO formula for it means
a computation in poly(log n) steps. Trivially, modular reduction of every LRS
is eventually periodic and has therefore a PIO formula. As we saw in the proof
of Proposition 2.2, cn modulo 2 is not eventually periodic. We propose the
following problem.

Problem 2.11. Is it true that for every m ∈ N and every holonomic sequence
f : N → Z its modular reduction n 7→ (f(n) mod m) ∈ [m] is a PIO function,
that is, can be computed in O(logd(1 + n)) steps?

The answer is affirmative for algebraic f , that is, if the generating series f(x) =
∑

n≥1 f(n)x
n satisfies a polynomial equation, P (x, f(x)) = 0 for a nonzero

polynomial P ∈ Z[x, y] (it is not hard to show that every algebraic sequence is
holonomic). This applies to the Catalan numbers as c(x) =

∑

n≥1 cnx
n satisfies

c(x)2 − c(x) + x = 0. See A. Bostan, X. Caruso, G. Christol and P. Dumas
[24] for fast algorithm computing modular reduction of algebraic f . In fact, the
answer is affirmative for an even larger subclass of holonomic sequences, namely
for rational diagonals. These are sequences f : N → Z representable for n ∈ N

as

f(n) = an,n,...,n where
∑

n1,...,nk≥1

an1,...,nk
xn1

1 . . . xnk

k =
P (x1, . . . , xk)

Q(x1, . . . , xk)

for some polynomials P,Q ∈ Z[x1, . . . , xk], Q 6= 0 (one can show that every
algebraic sequence is a rational diagonal, and that every rational diagonal is
holonomic). See [24], A. Bostan, G. Christol and P. Dumas [25] and E. Rowland

18

and R. Yassawi [130] (and some of the references therein) for more information
on these two results. At the conclusion of [129] E. Rowland mentions that a
conjecture of G. Christol [38] implies affirmative answer to Problem 2.11 for
any at most exponentially growing holonomic sequence. See C. Krattenthaler
and T.W. Müller [96] (and other works of the authors cited therein) for another
approach to computation of modular reductions of algebraic sequences.

3 Integer partitions

Let us discuss PIO formulas for enumerative problems related to and motivated
by the initial Examples 4 and 5. A partition λ of a number n ∈ N0 is a multiset
of natural numbers summing to n. We write partitions in two formats,

λ = 1m12m2 . . . nmn , mi ∈ N0, and λ = (λ1 ≥ λ2 ≥ · · · ≥ λk), λi ∈ N, k ∈ N0 .

So |λ| := n =
∑

i mii =
∑

i λi. The numbers 1, 2, . . . , n and λ1, λ2, . . . , λk are
the parts of λ and the mi are their multiplicities. We denote the number of
parts in λ by ‖λ‖, so ‖λ‖ = m1 +m2 + · · ·+mn = k. The set of all partitions
of n is P (n), their number is p(n) = |P (n)|, and P :=

⋃

n≥0 P (n). For the
empty partition ∅ = () we have |()| = ‖()‖ = 0, P (0) = {()} and p(0) = 1.
Similar quantities are Q(n), q(n), and Q, defined for partitions with distinct
parts (all mi ≤ 1, i.e. λi > λi+1). Pk(n) are the partitions of n with k parts,
and similarly Qk(n) are those with k distinct parts. The sequence p : N → N

is [154, A000041] and begins

(p(n))n≥1 = (1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . .) ;

(q(n))n≥1 = (1, 1, 2, 2, 3, 4, 5, . . .) is [154, A000009]. We give two proofs for the
well known fact that p(n) can be efficiently computed and is a PIO function
in our parlance, and so is q(n). What would be a non-efficient computation?
For example, the “cave man formula” in [151]: p(n) =

∑

λ∈P (n) 1. By the

multiplicity format, q(n) ≤ p(n) ≤ (n+ 1)n. To get a lower bound, for a given
n ∈ N, n ≥ 4, consider the maximumm ∈ N with 1+2+· · ·+m =

(
m+1
2

)
≤ n

2−1.

Then m = Θ(n1/2) and

n =
∑

i∈X

i+

(

n−
∑

i∈X

i

)

, X ⊂ [m] ,

are 2m different partitions in Q(n). So p(n) ≥ q(n) ≥ 2m ≫ exp(Ω(n1/2)) for
n ∈ N. Thus for the partition function p(n) we have n1/2 ≪ m(n) ≪ n2 and
need to compute p(n) in poly(n) steps. Asymptotically,

p(n) ∼ exp(π
√

2n/3)

4 · 31/2 · n and q(n) ∼ exp(π
√

n/3)

4 · 31/4 · n3/4
as n → ∞

(G.H. Hardy and S. Ramanujan [67], G. Meinardus [102], G. E. Andrews [6],
V. Kotěšovec [94]). Thus, more precisely, p(n) and q(n) have Θ(n1/2) digits

19

and m(n) = Θ(n1/2). For the sake of brevity we treat the PIO algorithms and
their complexity in Propositions 3.1 and 3.2 below more schematically and do
not discuss their implementation by multitape Turing machines as we did in
Proposition 2.1. These omitted details could be easily filled in, and it is easy to
see that the deduced polynomiality of algorithms holds true.

Proposition 3.1. For k, n ∈ N with 1 ≤ k ≤ n let pk(n) = |Pk(n)| be the
number of partitions of n with k parts, and let pk(n) = 0 and Pk(n) = ∅ if
k > n. Then for every n ≥ 1 we have pn(n) = p1(n) = 1, and for every n ≥ 2
and every k with 1 < k < n we have

pk(n) = pk(n− k) + pk−1(n− 1) .

Consequently, p(n) = p1(n) + p2(n) + · · ·+ pn(n) is a PIO function.

Proof. The values pn(n) = p1(n) = 1 are trivial. The displayed recurrence
mirrors the set partition Pk(n) = A ∪ B where A are the partitions of n with
all k parts at least 2 and B are the remaining partitions with at least one part
1. Decreasing each part in every λ ∈ A by 1 gives the bijection A → Pk(n− k)
and removing one part 1 from every λ ∈ B gives the bijection B → Pk−1(n−1),
whence the recurrence.

For given input n ∈ N we use the recurrence and the initial and border
values and generate the array of O(n2) numbers (pk(m) | 1 ≤ k ≤ m ≤ n) in
O(n2) additions. Another n−1 additions produce p(n). Every number involved
in the computation has O(n2) digits (in fact, O(n1/2) digits), and therefore the
algorithm makes O(n4) steps (in fact, O(n5/2) steps), which is O(m(n)8) steps
(in fact, O(m(n)5) steps) as m(n) ≫ n1/2. Therefore the stated recurrence
schema is a PIO formula for p(n). ✷

The interested reader will find in M. Bodirsky, C. Gröpl and M. Kang [17] a
recurrence schema, in its priciple similar to the previous one but much more
involved in details, that computes in polynomial time the number of labeled
planar graphs on the vertex set [n]; computation of this number for n = 50 in
one hour is reported.

The second proof shows that L. Euler’s generating function formula

∑

n≥0

p(n)qn =
∏

k≥1

1

1− qk
=
∏

k≥1

(1 + qk + q2k + . . .)

also gives a PIO formula for p(n). Let [xn]a(x) := an if a(x) =
∑

n≥0 anx
n.

Proposition 3.2. Let m,n ∈ N. The product ab of two polynomials a, b ∈ Z[x]
such that deg a, deg b ≤ n and each coefficient in them has at most m digits can
be computed in the obvious way in O(m2n3) steps. Thus

p(n) = [qn]

n∏

k=1

(1 + qk + q2k + · · ·+ q⌊n/k⌋k)

is a PIO function.

20

Proof. Each of the 1 + deg a+ deg b = O(n) sums [xk]ab =
∑

i+j=k[x
i]a · [xj]b,

k ≤ deg a+ deg b, has O(n) summands, multiplication in each summand takes
O(m2) steps, and each addition costs O(m+n) steps (we add two numbers with
≪ m+log(1+n) ≪ m+n digits). The list of coefficients of ab is thus computed
in

≪ n(m2n+ (m+ n)n) = O(m2n3)

steps.
The value p(n) is a coefficient in the product of n polynomials with degrees

at most n and coefficients 0 and 1. We apply the lemma about the product
of two polynomials n − 1 times and each time we multiply two polynomials
with degrees at most n2 and with coefficients of size ≤ p(n2) that have ≪ n4

digits. Thus we compute the product of the n polynomials in O(n(n4)2(n2)3) =
O(n15) = O(m(n)30) steps (recall that m(n) ≫ n1/2) and see that p(n) is a PIO
function. ✷

Often less elementary recurrences are invoked to efficiently compute p(n):

p(n) =
∑

i≥1

(−1)i+1(p(n− ai) + p(n− bi)) or p(n) =
1

n

n∑

i=1

σ(i)p(n− i)

where n = 1, 2, . . . , ai = i(3i−1)
2 and bi = i(3i+1)

2 are so called (generalized)
pentagonal numbers, p(0) = 1, p(n) := 0 for n < 0, and σ(n) :=

∑

d |n d is

the sum of divisors function (G.E. Andrews [6]). For more recurrences for p(n)
see Y. Choliy, L.W. Kolitsch and A.V. Sills [37]. The pentagonal recurrence
yields an algorithm computing the list of values (p(m) | 1 ≤ m ≤ n) in O(n2)
steps (D. E. Knuth [92, Chapter 7.2.1.4, exercise 20]) while the algorithm of
Proposition 3.1 makes O(n5/2) steps. N. Calkin, J. Davis, K. James, E. Perez
and C. Swannack [32, Corollary 3.1] give an algorithm producing this list in
O(n3/2 log2 n) steps, which is close to optimum complexity (because it takes
Ω(n3/2) steps just to print it).

The exponent 30 in the proof of Proposition 3.2 is hilarious but the reader
understands that we do not optimize bounds and instead focus on simplicity
of arguments. We can decrease it by computing the product a(x)b(x) more
quickly but in a less elementary way in O((mn)1+o(1)) steps by [61, Chap-
ter 8.4]. A clever implementation of the Hardy–Ramanujan–Rademacher ana-
lytic formula for p(n) ([6]) by F. Johansson [80, Theorem 5] computes p(n) in

O(n1/2 log4+o(1) n) = O(m(n)1+o(1)) steps, again in close to optimum complex-
ity. F. Johansson reports computing p(106) by his algorithm in milliseconds and
p(1019) in less than 100 hours; see [81] for his computation of p(1020). Proposi-
tion 3.2 represents p(n) as a coefficient in a polynomial from Z[x]. J.H. Bruiner
and K. Ono [30] recently found another (more complicated) representation in
this spirit, which has (1− 24n)p(n) as the next to leading coefficient in a monic
polynomial from Q[x], see also J.H. Bruiner, K. Ono and A.V. Sutherland [31].
Computation-wise for p(n) it lags far behind the H–R–R formula ([31]).

21

There is an extensive literature on modular properties of p(n) (for both
meanings of “modular”), see K. Ono [110, 111] and the references therein. N.
Calkin et al. [32, Theorem 3.1] can generate the list (p(k) mod m | 1 ≤ k ≤ n)
for special prime moduli m depending on n in O(n1+o(1)) steps. But unlike for
the Catalan numbers and algebraic sequences, so far we do not know an efficient
way to determine the parity of individual numbers p(n).

Problem 3.3. Is the parity of p(n), the function n 7→ (p(n) mod 2) ∈ [2], a PIO
function? That is, can one compute it in O(logd(1 + n)) steps (bit operations)?

By [81], “With current technology, the most efficient way to determine p(n)
modulo a small integer is to compute the full value p(n) and then reduce it.”
(cf. the discussion of Example 2). Cannot we do better? The parity of p(n)
was investigated by T.R. Parkin and D. Shanks [116] already in 1967. At the
end of their article they ask if it can be computed in O(n) steps.

We generalize Proposition 3.1 by replacing 1 in p(n) =
∑

λ∈P (n) 1 with a
positive PIO function of the number of parts. This includes Example 4.

Proposition 3.4. If g : N → N is a PIO function then f : N → N,

f(n) =
∑

λ∈P (n)

g(‖λ‖) ,

is a PIO function too. Construction of the PIO algorithm for f from that for g
is described in the proof.

Proof. We set G(n) = max(g(1), g(2), . . . , g(n)). Clearly,

f(n) =
n∑

k=1

g(k)pk(n) ,

and so
f(n) ≥ p(n) +G(n)− 1 .

Thus the combined input and output complexity of f(n) satisfies

m(n) = log(1+n) + log(2+ f(n)) ≫ log(p(n) +G(n)) ≫ n1/2 + log(2+G(n)) .

By the assumption on g we compute the list (g(k) | 1 ≤ k ≤ n) in

≪ n(log(1 + n) + log(2 +G(n)))d

steps, for a fixed d ∈ N. By Proposition 3.1 we compute the list (pk(n) | 1 ≤
k ≤ n) in O(n5/2) steps. The product g(k)pk(n) is computed by elementary
school multiplication in

≪ log2 p(n) + log2(2 +G(n)) ≪ (n1/2 + log(2 +G(n)))2

22

steps, and this also bounds the cost of each addition in the sum. The displayed
sum therefore computes f(n) in

≪ n(log(1 + n) + log(2 +G(n)))d + n5/2 + n(n1/2 + log(2 +G(n)))2

≪ (n1/2 + log(2 +G(n)))d+4 ≪ m(n)d+4

steps. ✷

Functions covered by the proposition include f(n) = p(n) for g(n) = 1 and the
contrived counting function f(n) of Example 4. For g(n) = n we get the total
number of parts in all partitions of n, so

f(n) =
∑

λ∈P (n)

‖λ‖ =
n∑

i=1

τ(i)p(n− i)

is a PIO function. Here τ(i) denotes the number of divisors of i. One can deduce
the last sum (which itself is a PIO formula for f(n), given one for p(n), no matter
that we cannot compute effectively i 7→ τ(i)) by differentiating the generating
function

∑

λ∈P y‖λ‖x|λ| = 1
(1−yx)(1−yx2)... by y and then setting y = 1.

For partitions with distinct parts we have similar results.

Proposition 3.5. If g : N → N is a PIO function then f : N → N,

f(n) =
∑

λ∈Q(n)

g(‖λ‖) ,

is a PIO function too. Construction of the PIO algorithm for f from that for g
is described in the proof.

Proof. Now f(n) =
∑n

k=1 g(k)qk(n) where qk(n) = |Qk(n)| is the number of
partitions of n with k distinct parts. For qk(n) we have the recurrence schema
q1(n) = qn(n) = 1 for every n ≥ 1, qk(n) = 0 for k > n, and

qk(n) = qk(n− k) + qk−1(n− k)

for n ≥ 2 and 1 < k < n. Compared to Proposition 3.1, this differs in the last
summand: now the set of λ ∈ Qk(n) with one part 1 bijectively corresponds to
Qk−1(n− k), delete the 1 and decrease each of the remaining k − 1 parts by 1.
We only replace p(n) with q(n) and pk(n) with qk(n) and argue as in the proof
of Proposition 3.4. ✷

Now for g(n) = n we get that the total number of parts in all λ ∈ Q(n),

f(n) =
∑

λ∈Q(n)

‖λ‖ =

n∑

i=1

τ±(i)q(n− i) ,

is a PIO function. Here τ±(i) :=
∑

d | i(−1)d+1 is the surplus of the odd divi-

sors of i over the even ones. The last sum (again by itself a PIO formula for

23

f(n), given one for q(n)) follows by the same manipulation with the generating
function

∑

λ∈Q y‖λ‖x|λ| = (1 + yx)(1 + yx2) . . . as before. We remark that

(
∑

λ∈P (n) ‖λ‖)n≥1 = (1, 3, 6, 12, 20, 35, 54, 86, 128, 192, . . .) and

(
∑

λ∈Q(n) ‖λ‖)n≥1 = (1, 3, 3, 5, 8, 10, 13, 18, 25, 30, . . .)

are respective sequences [154, A006128] and [154, A015723]. The first one was
investigated by “Miss S.M. Luthra, University of Delhi” [99] (see p. 485 for the
formula with τ(n)), and the second by A. Knopfmacher and N. Robbins [89]
(they deduce the formula with τ±(n)).

Recall that a composition c of n ∈ N is an “ordered partition” of n, that is,
a tuple c = (c1, c2, . . . , ck) ∈ Nk with c1 + c2 + · · · + ck = n. It is well known
and easy to show that there are 2n−1 compositions of n. What is the number
fcdp(n) of compositions of n with distinct parts?

Corollary 3.6. The number fcdp(n) of compositions of n with no part repeated
is a PIO function. The PIO algorithm for fcdp is described in the proof.

Proof. The mapping (c1, c2, . . . , ck) 7→ (ci1 > ci2 > · · · > cik) sending a compo-
sition of n with distinct parts to its decreasing reordering is a k!-to-1 mapping
from the set of compositions of n with k distinct parts onto Qk(n). Thus
fcdp(n) =

∑n
k=1 k!qk(n) and the result is an instance of Proposition 3.5 for

g(n) = n! (clearly, n 7→ n! is a PIO function, also see P.B. Borwein [23]). ✷

The sequence (fcdp(n))n≥1 = (1, 1, 3, 3, 5, 11, 13, 19, 27, . . .) is [154, A032020].
B. Richmond and A. Knopfmacher [125] note that

fcdp(n) = exp((1 + o(1))(2n)1/2 logn)

and obtain a more precise asymptotics. See the book of S. Heubach and T.
Mansour [72] for many more enumeration problems for compositions and words,
especially with forbidden patterns.

We pose the following problem.

Problem 3.7. Give general sufficient conditions on functions g : N → Z

ensuring that

f(n) =
∑

λ∈P (n)

g(‖λ‖) and f(n) =
∑

λ∈Q(n)

g(‖λ‖)

are PIO functions.

Propositions 3.4 and 3.5 say that it suffices when g is a positive PIO function,
but it would be more interesting to have general sufficient conditions allowing
negative values of g. Corollary 3.19 and Proposition 3.26 are motivated by this
problem too.

We generalize Proposition 3.2. Many enumerative problems on partition, but
of course not all, fit in the general schema of counting partitions with prescribed

24

parts and multiplicities: for every triple (n, i, j) ∈ N2 × N0 we say if ij, part
i with multiplicity j, may or may not appear in the counted partitions of n.
If m(n) ≫ nc with c > 0 for the counting problem, the simple algorithm of
Proposition 3.2 gives a PIO formula. We spell it out explicitly.

Proposition 3.8. Suppose that X ⊂ N is a set, g(n, i, j) ∈ {0, 1} is a function
defined for n, i ∈ N and j ∈ N0 with i, j ≤ n and computable in poly(n) steps,
and that the function f : N → N0, defined by

f(n) = |{λ = 1j12j2 . . . njn ∈ P (n) | g(n, i, ji) = 1 for every i ∈ [n]}|

= [qn]

n∏

i=1

n∑

j=0

g(n, i, j)qij ,

grows for n ∈ X as f(n) ≫ exp(nc) with a constant c > 0. Then the restriction
f : X → N0 is a PIO function. The proof shows that the algorithm for g
constructively gives the PIO algorithm for f , provided that the function f gets
as inputs only elements of X.

Proof. In the formula for f(n) we have a product of n polynomials with degrees
at most n2 each and with the coefficients 0 and 1 that can be computed in
poly(n) steps. We argue as in the proof of Proposition 3.2 and deduce that f(n)
can be computed in poly(n) steps, which means poly(m(n)) steps for n ∈ X by
the assumption on growth of f . ✷

This applies to partitions of n into distinct parts, odd parts, squares, etc. but
first we illustrate the proposition with two problems where the condition defining
counted partitions λ ∈ P (n) depends on n—then our reflex to write a formula
for
∑

n≥0 f(n)q
n, often an infinite product of simple factors, fails us as it cannot

be done. They are the functions fm, fp : N → N where fm(n) (resp. fp(n))
counts partitions of n such that every nonzero multiplicity (resp. every part
with nonzero multiplicity) divides n. Then

(fm(n))n≥1 = (1, 2, 3, 5, 4, 10, 6, 17, 14, 26, 13, 66, 19, 63, 60, . . .) and

(fp(n))n≥1 = (1, 2, 2, 4, 2, 8, 2, 10, 5, 11, 2, 45, 2, 14, 14, . . .)

are respective sequences [154, A100932] and [154, A018818]. By Proposition 3.8,
applied with X = N and g(n, i, j) = 1 if j divides n and g(n, i, j) = 0 else, the
function fm(n) is a PIO function (with PIO algorithm given in Proposition 3.8)
because g(n, i, j) is computable even in poly(log n) steps and fm(n) ≥ q(n) ≫
exp(Ω(n1/2)) (by the above lower bound on q(n)). The second function fp(n)
was investigated by D. Bowman, P. Erdös and A. Odlyzko [27] who proved that

(1 + o(1))

(
τ(n)

2
− 1

)

logn < log fp(n) < (1 + o(1))
τ(n)

2
logn ,

in fact with stronger bounds in place of the o(1) terms. A PIO formula for
fp(n) is apparently not known (in contrast to fm(n), the growth condition is

25

not satisfied and small values occur). After M. Agrawal, N. Kayal and N. Saxena
[2] we however know a PIO function f : N → {0, 2} with the property that
f(n) = 2 ⇐⇒ fp(n) = 2 for every n ∈ N—we can efficiently compute fp(n)
for infinitely many n, namely the prime numbers.

We turn to the more standard situation when g(n, i, j) does not depend on
n. Then we easily obtain Corollary 3.10 below. For its proof we need the next
lemma which is also used in the proof of Corollary 3.13.

Lemma 3.9. Let a1, a2, . . . , ak ∈ N be distinct numbers such that if d ∈ N

divides each ai then d = 1.

1. There is an n0, specified in the proof, such that for every n ∈ N with
n > n0 the equation

n = a1x1 + · · ·+ akxk

has a solution x1, . . . , xk ∈ N0.

2. The same holds even if the k numbers xi are required be distinct.

Proof. 1. The ideal 〈a1, . . . , ak〉 in the ring Z shows that 1 = a1b1 + · · ·+ akbk
for some bi ∈ Z. It is not hard to see that one may take all bi with |bi| ≤ Ak−1

if |ai| ≤ A for every i. We set c = a1 maxi |bi| and d =
∑

i aic. It follows
that n0 = d − 1 works because any n ≥ d is expressed by the nonnegative
solution x1 = c + l + jb1, xi = c + jbi if i > 1, for appropriate l ∈ N0 and
j ∈ {0, 1, . . . , a1 − 1}.

2. Now we set c = 2a1maxi |bi| and d =
∑

i aic(k+ 1− i). Then n0 = d− 1
works, because any n ≥ d is expressed by the nonnegative solution with distinct
coordinates x1 = ck+ l+jb1, xi = c(k+1−i)+jbi if i > 1, again for appropriate
l ∈ N0 and j ∈ {0, 1, . . . , a1 − 1}. ✷

The first part of the lemma is well known and is the simplest version of the
Frobenius problem, see the book [4] of J. L. R. Alfonśın for more information.

We look at restricted partitions with parts in a prescribed set A ⊂ N; let
PA(n) ⊂ P (n) be their set and pA(n) := |PA(n)|. We show that we can count
them efficiently if the elements of A can be efficiently recognized and A is not too
sparse. To be precise, in general we probably only “can” count them efficiently
because the proof relies on quantities d ∈ N and B ⊂ N that in general appear
not to be computable.

Corollary 3.10. Suppose that the function g = g(n) : N → N increases,
is computable in poly(n) steps and grows only polynomially, g(n) < (1 + n)d

for every n ∈ N and a constant d ∈ N, and define f(n) = pA(n) for A =
{g(1), g(2), . . .},

∑

n≥0

f(n)qn =
∏

i≥1

(

1 +
∞∑

j=1

qg(i)j
)

=
∏

i≥1

1

1− qg(i)
.

26

Then f(n) is a PIO function. We show how to compute the PIO algorithm for
f(n) from the algorithm for g(n) if we are given the number d = gcd(A) =
gcd(g(1), g(2), . . .) ∈ N and a finite set B ⊂ A with gcd(B) = d.

Proof. Let g(n), A, d and B be as stated (it is easy to see from prime factor-
izations that such finite subset B exists) and let

n0 = max({0} ∪ {n ∈ dN | pB(n) = 0}) ∈ N0 .

Then n0 < ∞ by part 1 of Lemma 3.9 applied to the numbers 1
dB, and in fact

we can compute n0 from the given B. So f(n) = 0 if n 6∈ dN and for n ∈ N we
can decide in poly(log n) steps if n ∈ dN. Subsets S ⊂ {g(1), g(2), . . . , g(m)}\B,
where m ∈ N is maximum with

g(1) + g(2) + · · ·+ g(m) ≤ n− n0 − d ,

prove that for n ∈ dN with n ≥ n0 + d one has f(n) ≫ exp(Ω(n1/(d+1))) (for
each S we complete the sum of its elements by an appropriate partition with
parts in B to a partition of n).

We compute f(n) effectively as follows. For the input n ∈ N we check in
poly(logn) steps if n 6∈ dN and if n ≤ n0. In the former case we output f(n) = 0
and in the latter case we compute f(n) by brute force. If neither case occurs,
we have n ∈ dN and n > n0 and compute f(n) by Proposition 3.8, applied with
X = dN\[n0] and g(n, i, j) defined as g(n, i, j) = 0 if j ≥ 1 and i 6∈ A, and
g(n, i, j) = 1 else (it is clear that the assumptions are satisfied, we can check if
i 6∈ A in poly(i) steps). It follows that this is a PIO algorithm for f(n). Also,
we have constructed it explicitly from the algorithm for g(n) and the knowledge
of d and B. ✷

In general the quantities d and B probably are not computable from the al-
gorithm for the function g(n). Hence, probably, the PIO algorithm for f(n)
cannot be computed given only the algorithm for g(n). For example, we may
take g(n) = n2 (so d = 1 and B = {1}) and compute the number fsq(n) of par-

titions of n into squares,
∑

n≥0 fsq(n)q
n =

∏

k≥1(1− qk
2

)−1. By Corollary 3.10
we get a PIO function

(fsq(n))n≥1 = (1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, . . .) ,

[154, A001156]. The function fsq(n) was investigated by J. Bohman, C.-E.
Fröberg and H. Riesel [20]. As we showed in the proof, fsq(n) ≫ exp(Ω(n1/3)).
More generally, already in 1934 E.M. Wright found in [148] the asymptotics
for the number pSk

(n) of partitions of n into k-th powers Sk = {nk | n ∈ N}
(k ∈ N):

pSk
(n) ∼ ∆

(2π)(k+1)/2
· k1/2

(k + 1)3/2
· n 1

k+1
− 3

2 · exp(∆n1/(k+1))

27

where
∆ = (k + 1) ·

(
(1/k) · Γ(1 + 1/k) · ζ(1 + 1/k)

)1−1/(k+1)
.

More recently the asymptotics for pSk
(n) with k = 2 (i.e., fsq(n)) was treated

by R.C. Vaughan [145], for general k by A. Gafni [60], and for pA(n) with A
formed by values of an integral polynomial by A. Dunn and N. Robles [49].

Why not partition n into distinct squares, fdsq(n) := [qn]
∏

k≥1(1 + qk
2

)?
The initially somewhat dull sequence

(fdsq(n))n≥1 = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, . . .) ,

[154, A033461], eventually takes off (the first n with f(n) ≥ 2 is n = 25) and R.
Sprague [137] proved in 1948 that n = 128 is the last number with fdsq(n) = 0.
See M.D. Hirschhorn [74] for “an almost complete proof” that

fdsq(n) ∼ c2n
−5/6 exp(c1n

1/3)

where c1 = 3c
2/3
3 , c2 = c

1/3
3 /

√
6π, and c3 =

√
π(2 −

√
2)ζ(3/2)/8. We have

Corollary 3.11. The function fdsq(n) : N → N0 counting partitions of n into
distinct squares, which is the same as counting partitions of n such that each
part i ∈ N has multiplicity either 0 or i, is a PIO function. The PIO algorithm
is described in the proof.

Proof. This follows from Proposition 3.8, applied with X = {129, 130, . . .} and
g(n, i, j) = 1 iff (i = k2 & j = 1) or j = 0, if we show that fdsq(n) ≫ exp(nc) on
X for some c > 0.

To obtain such lower bound for fdsq(n) we begin with a lemma: for every
j ∈ [4] and n ≥ 4 we have |{A ⊂ [n] | |A| ≡ j (mod 4)}| ≫ 2n because any
B ⊂ [n− 3] can be enlarged by adding one of n− 2, n− 1, n to have cardinality
j modulo 4. Now for given n ∈ N with n ≡ j (mod 4), j ∈ [4] and n > 1000,
consider the maximum m ∈ N with 12 +32 +52 + · · ·+ (2m− 1)2 ≤ n− 4 · 129.
Clearly, m = Θ(n1/3). For every subset C ⊂ [m] with |C| ≡ j (mod 4) the sum
SC =

∑

i∈C(2i − 1)2 is also j modulo 4. By R. Sprague’s theorem mentioned

above and our selection of m we may partition n−SC

4 ∈ N into distinct squares,

say n−SC

4 = x2
1+ · · ·+x2

k. But then n = SC +(2x1)
2+ · · ·+(2xk)

2 is a partition
of n into distinct squares, and distinct subsets C yield distinct such partitions.
Using the lemma we get that fdsq(n) ≫ 2m = exp(Ω(n1/3)) for n ∈ X . ✷

As M.D. Hirschhorn [74] himself admits, also in [75], his proof of the asymptotics
for fdsq(n) is not complete.

Problem 3.12. Derive rigorously asymptotics for fdsq(n).

Could not theta functions tell us something about fsq(n) or fdsq(n)? It tran-
spires that fdsq(n) (with other partition counting functions) comes up in quan-
tum statistical physis. M.N. Tran, M.V.N. Murty and R.K. Bhaduri [142]

28

and, recently, M.V.N. Murthy, M. Brack, R.K. Bhaduri and J. Bartel [106]
investigate the asymptotics of fdsq(n). The main term is derived, with some
further terms in the asymptotic expansion, but it is not clear to us whether
these arguments are rigorous, and so we leave Problem 3.12 as it is.

We partitioned n into squares with arbitrary multiplicities, why not partition
n into arbitrary parts but with square multiplicities, fsm(n) := [qn]

∏

i≥1(1 +
∑

j≥1 q
ij2)? In general setting this leads to the next counterpart to Corol-

lary 3.10. Now we have no restriction on the growth of the set of allowed
multiplicities, it may very well be finite.

Corollary 3.13. Suppose that 1 ≤ g1 < g2 < . . . is a finite or infinite
nonempty increasing sequence of natural numbers such that n 7→ gn is com-
putable in poly(n) steps and define f(n) = fA(n) ∈ N0 to be the number of
partitions λ ∈ P (n) with all nonzero multiplicities in A = {g1, g2, . . . },

∑

n≥0

f(n)qn =
∏

i≥1

(

1 +
∑

j≥1

qigj
)

.

Then f(n) is a PIO function. We show how to compute the PIO algorithm
for f(n) from the algorithm for gn if we are given the number d = gcd(A) =
gcd(g(1), g(2), . . .) ∈ N and a finite set B ⊂ A with gcd(B) = d.

Proof. Let gn, A, d and B be as stated and let

n0 = max({0} ∪ {n ∈ dN | fB(n) = 0}) ∈ N0 .

Then n0 < ∞ by the second part of Lemma 3.9 and we can compute n0 from
B. So f(n) = 0 if n 6∈ dN, and for any n ∈ N the membership of n in dN is
decidable in poly(log n) steps. We obtain a lower bound for f(n) with large
n ∈ dN as in the proof of Corollary 3.11. Namely, we may assume that g1

d
is odd (there is certainly a gk with odd gk

d) and take arbitrary n ∈ dN with
n > 2n0 + 1 and n

d ≡ r modulo 2, r ∈ [2]. Let m ∈ N be maximum with

(1 + 3 + 5 + · · · + (2m − 1))g1 ≤ n − 2(n0 + 1). Then m = Θ(n1/2) and there
are ≫ 2m subsets C ⊂ [m] such that |C| g1d ≡ r modulo 2. For each C we have
(n− g1

∑

i∈C(2i − 1))/2 ∈ dN\[n0] and this number equals
∑

g∈D igg for some
D ⊂ B and |D| distinct numbers ig ∈ N. But then

n =
∑

i∈C

(2i− 1)g1 +
∑

g∈D

(2ig)g

is a partition of n into parts {2i − 1 | i ∈ C}, each with multiplicity g1, and
parts {2ig | g ∈ D}, with respective multiplicities {g | g ∈ D}. All multiplicities
are in A and distinct subsets C give distinct such partitions. Thus for n ∈ dN
with n > n0 one has f(n) ≫ 2m = exp(Ω(n1/2)).

We compute f(n) effectively as follows. For the input n ∈ N we check in
poly(logn) steps if n 6∈ dN and if n ≤ n0. In the former case we output f(n) = 0

29

and in the latter case we compute f(n) by brute force. If neither case occurs,
we have n ∈ dN and n > n0 and compute f(n) by Proposition 3.8, applied with
X = dN\[n0] and g(n, i, j) defined for j ≥ 1 and j 6∈ A as g(n, i, j) = 0 and
g(n, i, j) = 1 else (clearly the assumption is satisfied, this g(n, i, j) is computable
in poly(n) steps). We have for f(n) a PIO algorithm which we have constructed
explicitly from the algorithm for gn and the knowledge of d and B. ✷

Similarly to Corollary 3.10, the PIO algorithm for f(n) probably cannot be
computed given only the algorithm for gn. The sequence

(fsm(n))n≥1 = (1, 1, 2, 3, 3, 5, 6, 8, 12, 12, 17, 23, 27, 32, 41, 52, . . .)

corresponding to gn = n2 (d = 1 and B = {1}) was for a long time we were
preparing this article absent in OEIS, but checking it once more in August 2018
we found out that S. Manyama had added it as [154, A300446] in May 2018,
thank you.

An interesting counting problem for partitions outside the framework of
Proposition 3.8 is the number fdm(n) of partitions of n into parts with distinct
nonzero multiplicities, so

fdm(n) = [qn]∗
n∏

i=1

(

1 +

n∑

j=1

qij
)

where the “star extraction” of the coefficient means that in the product we only
accept monomials qi1j1qi2j2 . . . qikjk , 1 ≤ i1 < · · · < ik ≤ n, with |{j1, . . . , jk}| =
k. The sequence

(fdm(n))n≥1 = (1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 28, 31, 45, 55, 62, . . .)

is [154, A098859]. The problem to investigate fdm(n) was posed by H. S. Wilf
[147] in 2010. To get a lower bound on fdm(n), for given n ∈ N consider the
maximumm ∈ N such that 1m+2(m−1)+· · ·+m1 = (m+1)

∑m
i=1 i−

∑m
i=1 i

2 ≤
n. Then m = Θ(n1/3) and the subsets of {2m−1, 3m−2, . . . ,m1}, where the
exponents are used in the multiplicities sense, show that fdm(n) ≥ 2m−1 ≫
exp(Ω(n1/3)) (we can always add at least m 1s to get a distinct multiplicities
partition of n). Thus fdm(n) still has a broadly exponential growth but it is not
clear how to compute it efficiently.

Problem 3.14. Is the number fdm(n) of distinct-multiplicity partitions of n a
PIO function? That is, can we compute it in O(nd) steps for a constant d ∈ N?

D. Zeilberger [152] says: “I conjecture that the fastest algorithm takes exponen-
tial time, but I have no idea how to prove that claim.” See [154, A098859] for
the first 500 or so terms of (fdm(n))n≥1. J.A. Fill, S. Janson and M.D. Ward
[56] proved that fdm(n) = exp((1 + o(1))13 (6n)

1/3 logn) and D. Kane and R.C.
Rhoades [84] obtained an even more precise asymptotics.

So far we mostly considered partition counting functions f(n) of broadly
exponential growth, satisfying log(2 + f(n)) ≫ nc for a constant c > 0. We

30

turn to broadly polynomial growth when log(2 + f(n)) ≪ logd(1 + n) for a
constant d ∈ N. In Corollary 3.10 we effectively computed pA(n) for infinite
and not too sparse sets A ⊂ N. At the opposite extreme lie finite sets A ⊂ N,
for them pA(n) ≪ n|A|. By the classical result of E.T. Bell [15] (going back to
J. Sylvester in 1857, as E.T. Bell himself acknowledges in [15]), then pA(n) can
also be effectively computed.

Proposition 3.15 (E. T. Bell, 1943). For any finite set A ⊂ N, the number
pA(n) of partitions λ = (λ1 ≥ · · · ≥ λk) ∈ P (n) with all λi ∈ A is a rational
quasipolynomial in n.

Hence for every finite A, pA(n) is a PIO function. Below we extend Propo-
sition 3.15 and indicate how to obtain the PIO algorithm. Recall from the
previous section that a quasipolynomial f : Z → C is determined by a modulus
m ∈ N and m polynomials pi ∈ C[x], i ∈ [m], such that f(n) = pi(n) if n ≡ i
modulo m. If d ≥ deg pi(x) for every i ∈ [m], we say that the quasipolyno-
mial f has class (m, d). Replacing in the definition C with Q, we get rational
quasipolynomials. Equivalently, f is a quasipolynomial if and only if

f(n) = ak(n)n
k + · · ·+ a1(n)n+ a0(n)

for some periodic functions ai : Z → C,Q. If f(n) = pi(n), n ≡ i modulo m,
only holds for every n ≥ N for some N , we speak of eventual quasipolynomials.
Particular cases are (eventually) periodic sequences f : N0 → C,Q which are
the constant (eventual) quasipolynomials, each polynomial pi(x) is (eventually)
constant.

There are many treatments of E.T. Bell’s result in the literature. We men-
tion only R. P. Stanley [138, Chapter 4.4], Ø. J. Rødseth and J.A. Sellers [128],
M. Cimpoeaş and F. Nicolae [41, 42], the inductive proof of R. Jakimczuk [78]
or the recent S. Robins and Ch. Vignat [127]. The last reference gives a very
nice, simple and short proof of Proposition 3.15 by generating functions, which
moreover presents a PIO formula for pA(n), A = {a1, a2, . . . , ak}, explicitly:

pA(n) =
∑

j∈J, a1j1+···+akjk≡n (mod D)

(1
D (n− a1j1 − · · · − akjk) + k − 1

k − 1

)

where D is any common multiple of a1, . . . , ak and J = [0, D
a1

− 1] × · · · ×
[0, D

ak
− 1]. We give yet another proof via a closure property. We prove that the

family of rational quasipolynomials is closed under convolution. The (Cauchy)
convolution of functions f, g : N0 → C is the function f ∗ g : N0 → C,

(f ∗ g)(n) =
n∑

i=0

f(i)g(n− i) =
∑

i+j=n

f(i)g(j) .

Convolution gives coefficients in products of power series, if a, b ∈ C[[x]] then
[xk]ab = ([xn]a)∗ ([xn]b)(k). If we can compute a rational quasipolynomial f(n)

31

and know its class (m, d), we effectively have a PIO algorithm for f(n). Namely,
we compute the first (in fact, any) d + 1 values f(n) in each congruence class
n ≡ imodulom and find by Lagrange interpolation the m polynomials pi ∈ Q[x]
fitting them. The pi(x) then constitute the PIO algorithm for f(n). Thus it
is useful to know how classes of quasipolynomials transform under convolution
(and linear combination). For other closure properties of sequences under the
operation of convolution see S.A. Abramov, M. Petkovšek and H. Zakraǰsek [1].

Proposition 3.16. Let f, g : N0 → Q, α, β ∈ Q and N,N ′ ∈ N0.

1. If f and g are rational quasipolynomials then so is f ∗ g. If f and g have
classes, respectively, (m, d) and (m′, d′) then f ∗g has class (M,d+d′+1)
where M is any common multiple of m and m′.

2. If f and g are eventual rational quasipolynomials then so is αf +βg. If f
and g have classes, respectively, (m, d) for n ≥ N and (m′, d′) for n ≥ N ′

then αf + βg has class (M,max(d, d′)) for n ≥ max(N,N ′) where M is
any common multiple of m and m′.

3. If f and g are eventual rational quasipolynomials then so is f ∗g. If f and
g have classes, respectively, (m, d) for n ≥ N and (m′, d′) for n ≥ N ′ then
f ∗ g has class (M,d + d′ + 1) for n ≥ N + N ′ where M is any common
multiple of m and m′.

Proof. 1. By [138, Chapter 4.4] we have

∑

n≥0

f(n)qn =
a(q)

(1 − qm)d+1
and

∑

n≥0

g(n)qn =
b(q)

(1− qm′)d′+1

for some polynomials a, b ∈ Q[q] with degree smaller than that of the denomi-
nator. Using the identity

1− qke = (1− qe)(1 + qe + q2e + · · ·+ q(k−1)e), e, k ∈ N ,

which is the main trick in [127], we can write for any common multiple M of m
and m′ the product in the same form

∑

n≥0

f(n)qn ·
∑

n≥0

g(n)qn =
a(q)

(1− qm)d+1
· b(q)

(1− qm′)d′+1
=

c(q)

(1− qM)d+d′+2

where c ∈ Q[q] with deg c < M(d + d′ + 2). By expanding the denominator in
generalized geometric series we get the result.

2. This is immediate to see.
3. Let

∑

n≥0 f(n)q
n = a(q) + b(q) and

∑

n≥0 g(n)q
n = c(q) + d(q) where

a, c ∈ Q[[q]] have sequences of coefficients that are rational quasipolynomials
with the stated classes for n ≥ 0 and b, d ∈ Q[q] are polynomials with degrees

32

deg b < N and deg d < N ′. Let M be any common multiple of m and m′. Then
(f ∗ g)(n) is the sequence of coefficients in

(a+ b)(c+ d) = ac+ ad+ bc+ bd .

By parts 1 and 2, the sequences of coefficients in the last four summands are
eventual rational quasipolynomials with classes, respectively, (M,d + d′ + 1)
for n ≥ 0, (m, d) for n ≥ N ′ (the sequence of coefficients in ad is a linear
combination of deg d + 1 shifts, by numbers < N ′, of that in a), (m′, d′) for
n ≥ N , and (1, 0) for n ≥ N +N ′ − 1. The result for f ∗ g follows by applying
part 2 thrice. ✷

We generalize Proposition 3.15 as follows.

Corollary 3.17. Let k,m ∈ N and

g : N× N0 → {0, 1}

be a function such that g(i, 0) = 1 for i > k, g(i, j) = 0 for i > k and j > 0,
and for i ≤ k each of the k 0-1 sequences (g(i, j))j≥0 is m-periodic. Then the
function f : N → N0,

f(n) = #{λ = 1j12j2 . . . njn ∈ P (n) | g(i, ji) = 1 for every i = 1, 2, . . . , n}

= [qn]

k∏

i=1

∞∑

j=0

g(i, j)qij ,

is a rational quasipolynomial with class (m · k!, k − 1). The PIO algorithm for
f(n) follows constructively from k,m and g.

We state the “eventual” version. Let k,m and g be as before, with the
modification that each sequence (g(i, j))j≥0, i ≤ k, is m-periodic only for j ≥ N ,
for some given N ∈ N0. Then the function f(n), defined as above, is an eventual
rational quasipolynomial of class (m · k!, k − 1) for n ≥

(
k+1
2

)
N . The PIO

algorithm for f(n) follows constructively from k,m,N and g.

Proof. For each i ≤ k we set Gi(q) =
∑∞

j=0 g(i, j)q
ij . So Gi ∈ {0, 1}[[q]] has im-

periodic sequence of coefficients (i.e., with class (im, 0)). By k − 1 applications
of part 1 of Proposition 3.16,

f(n) = [qn]

k∏

i=1

Gi(q)

is a rational quasipolynomial with class (m ·k!, k−1). In the “eventual” version,
Gi ∈ {0, 1}[[q]] has im-periodic sequence of coefficients for n ≥ iN . The result
follows by k − 1 applications of part 3 of Proposition 3.16. ✷

For finite A ⊂ N, Proposition 3.15 is the instance with k = max(A) and g(i, j) =
1 if and only if i ∈ A or j = 0. More generally Corollary 3.17 implies, for

33

example, eventual quasipolynomiality of the numbers of partitions of n with
parts in A = {3, 4, 27} and such that 3 appears an even number of times, except
that multiplicity 2018 is not allowed, and the multiplicity of 27 equals 2 or 7
modulo 11. Not much changes in the proof, using again Proposition 3.16, of the
next generalization, and we leave it as an exercise.

Corollary 3.18. Let k,m, d ∈ N and

g : N× N0 → Z

be a function such that g(i, 0) = 1 for i > k, g(i, j) = 0 for i > k and j > 0, and
for every i ≤ k the function j 7→ g(i, j) is a rational quasipolynomial of class
(m, d). Then (λ = 1j12j2 . . . njn)

f(n) :=
∑

λ∈P (n)

n∏

i=1

g(i, ji) ∈ Z

is a rational quasipolynomial with class (m ·k!, k(d+1)−1). The PIO algorithm
for f(n) follows constructively from k,m, d and g.

If each function g(i, j), i ≤ k, is an eventual rational quasipolynomial of
class (m, d) for j ≥ N , for some given N ∈ N0, then f(n) is an eventual
rational quasipolynomial with class (m · k!, k(d + 1) − 1) for n ≥

(
k+1
2

)
N . The

PIO algorithm for f(n) follows constructively from k,m, d,N and g.

For example, the weighted number of partitions λ ∈ PA(n), A = {3, 4, 27}, with
the weight of λ equal to (−1)mm5 + 3m where m is the multiplicity of 4, is a
rational quasipolynomial (we leave determination of its class as an exercise for
the reader).

Support of a function is the set of arguments where it attains nonzero values.
In Propositions 3.4 and 3.5 we made our life easy by positivity of the function
g(n). Another easy case occurs when g(n) is almost always zero.

Corollary 3.19. If g : N → Z has finite support S ⊂ N with s = max(S) then
both functions f1, f2 : N → Z,

f1(n) =
∑

λ∈P (n)

g(‖λ‖) and f2(n) =
∑

λ∈Q(n)

g(‖λ‖) ,

are rational quasipolynomials with class (s!, s−1). The PIO algorithm for fi(n)
follows constructively from s and g. (Recall that Q(n) are the partitions of n
with no part repeated.)

Proof. Using conjugation of partitions, which is the involution

(λ1 ≥ λ2 ≥ · · · ≥ λk) ↔ 1λ1−λ22λ2−λ3 . . . (k − 1)λk−1−λkkλk ,

we get the well known identity

pk(n) = p[k](n)− p[k−1](n)

34

—the number of partitions of n with k parts equals the number of those parti-
tions of n with parts in [k] that use part k. Thus

f1(n) =
∑

λ∈P (n)

g(‖λ‖) =
∑

k∈S

g(k)(p[k](n)− p[k−1](n)) .

By part 1 of Proposition 3.16, p[k](n) is a rational quasipolynomial of class
(k!, k − 1). The result follows by part 2 of Proposition 3.16.

As for f2(n), we have f2(n) =
∑

k∈S g(k)qk(n). Conjugation of partitions
yields the identity

qk(n) = p[k](n)−
∣
∣
∣
∣

k⋃

i=1

P[k]\{i}(n)

∣
∣
∣
∣

—the number of partitions of n into k distinct parts equals the number of
those partitions of n with parts in [k] that use each part 1, 2, . . . , k. Applying
the principle of inclusion and exclusion, we express f2(n) as an integral linear
combination of the functions pA(n) with A ⊂ [s]. The result follows by part 2
of Proposition 3.16. ✷

In the literature one can find several interesting enumerative results on partitions
involving quasipolynomials. We state the results of D. Zeilberger [152] and of
G. E. Andrews, M. Beck and N. Robbins [8], for other quasipolynomial results
see A. D. Christopher and M.D. Christober [39] and V. Jeĺınek and M. Klazar
[79].

Proposition 3.20 (D. Zeilberger, 2012). For every finite set A ⊂ N the
number f(n) of the partitions λ ∈ PA(n) that have distinct nonzero multiplicities
is a quasipolynomial in n (and so a PIO function).

Proposition 3.21 (G. E. Andrews, M. Beck and N. Robbins, 2015).
Let t ∈ N0 with t ≥ 2. The number f(n) of λ = (λ1 ≥ · · · ≥ λk) ∈ P (n) with
λ1 − λk = t is a quasipolynomial in n (and so a PIO function).

For t = 0 and 1 the reader can check that, respectively, f(n) = τ(n) and f(n) =
n − τ(n) where τ(n) is the number of divisors of n (and not the Ramanujan
function which we will discuss too). Sadly, despite their simplicity, we do not
know if these are PIO formulas because we do not know how to efficiently
factorize numbers. In fact, [8] contains a more general result for prescribed
differences between parts.

Quite general result in enumeration and logic involving quasipolynomials
was achieved by T. Bogart, J. Goodrick and K. Woods [19]. In the statement
we extend in the obvious way the notion of eventual quasipolynomial to function
defined on an eventually periodic subset of N0.

Theorem 3.22 (T. Bogart, J. Goodrick and K. Woods, 2017). Let d ∈
N and

t 7→ Xt ⊂ Zd, t ∈ N ,

35

be a sequence of sets Xt that is defined by a formula in 1-parametric Pressburger
arithmetic. Then the set Y ⊂ N of t ∈ N for which |Xt| < ∞ is eventually
periodic and f : Y → N0, f(t) = |Xt|, is an eventual quasipolynomial (and so
a PIO function).

The way of definition of the sequence t 7→ Xt is that the membership

(x1, x2, . . . , xd) ∈ Xt

is defined, for some k ∈ N, by a formula built by logical connectives and quan-
tification of integer variables from atomic inequalities of the form

a1y1 + a2y2 + · · ·+ akyk ≤ b where ai, b ∈ Z[t]

(here enters the single parameter t in the problem) and the yi are integer vari-
ables including the xi. Consult [19] for details and examples and, of course,
for the proof. T. Bogart, J. Goodrick, D. Nguyen and K. Woods prove in [18]
that for more than one parameter, polynomial-time computability disappears
(assuming P 6= NP). We state Propositions 3.20 and 3.21 and Theorem 3.22 in
their original form and so do not indicate how to get PIO algorithms from the
given data, but with some effort such extensions probably could be obtained
from the proofs.

In Corollary 3.17, for i ≤ k each 0-1 sequence (g(i, j))j≥0 recording allowed
multiplicities of part i follows a linear (periodic or eventually periodic) pattern.
What happens for, say, quadratic patterns? What is the number fx2+2y2(n) of

partitions λ = 1x
2

2y
2 ∈ P (n), x, y ∈ N0, that is, partitions of n into parts 1 and

2 with square multiplicities? A nice formula exists:

fx2+2y2(n) =
τ1,8(n) + τ3,8(n)− τ5,8(n)− τ7,8(n) + δ

2

where τi,m(n) counts divisors of n that are i modulo m, δ = 1 if n is a square
or twice a square and δ = 0 else. This goes back to P. Dirichlet in 1840, see
M.D. Hirschhorn [73] for a proof. From the reason we already mentioned we
do not know if it is a PIO formula. We do not know how to count efficiently
solutions of equations like n = x2 + 2y2 or n = x2 + y2 (x, y ∈ N0 or, more
classically, x, y ∈ Z). But if only one of the patterns is quadratic, we can again
count efficiently. For example, we can count efficiently solutions of n = x+2y2:

fx+2y2(n) := #{λ = 1j12j
2
2 ∈ P (n) | ji ∈ N0} = ⌊

√

n/2⌋+ 1

is a PIO function (but not a quasipolynomial). We compute it in poly(logn)
steps as follows. To compute integral square root n 7→ ⌊√n⌋ in poly(logn)
steps, initialize m := 0, add to m in m := m+ 2r the largest power of two such
that m2 ≤ n, and repeat. When m cannot be increased by adding a power of
two, m = ⌊√n⌋. See [61, Chapter 9.5 and Exercise 9.43] for faster algorithms.
We hope to treat generalizations of fx+2y2(n) elsewhere.

36

In the setup of Corollary 3.10, we get for f(n) broadly polynomial growth
if g(n) grows at least exponentially. The classical example is for m ∈ N with
m ≥ 2 the counting function

fmp(n) = fmp(n,m) := p{1,m,m2,m3,... }(n)

counting the partitions of n in powers of m, so called m-ary partitions. For
m = 2 we get the binary partitions. Binary partitions with distinct parts are

easy to count as
∏∞

k=0(1 + q2
k

) =
∑∞

n=0 q
n (partition theorist’s joke). But it

appears not easy to count effectively general binary partitions or m-ary par-
titions. “Effectively” here means, of course, in poly(logn) steps: m(n) =
log(1+n)+log(2+fmp(n)) = Θ(log2(1+n)) because K. Mahler [100] proved that
fmp(n) = exp((1 + o(1))(1/2 logm) log2 n). More precise asymptotic relations
were derived by N.G. de Bruijn [29], C.-E. Fröberg [59] and others.

Problem 3.23. Let m ∈ N with m ≥ 2. Is the function

fmp(n) = #{(xi)i≥0 ⊂ N0 | ∑i≥0 xim
i = n}

counting m-ary partitions of n a PIO function? That is, can we compute it in
O(logd(1 + n)) steps (bit operations) for a fixed d ∈ N?

An interesting algorithm of V. P. Bakoev [12] suggests that the answer might
be positive.

Proposition 3.24 (V. P. Bakoev, 2004). Let m ∈ N with m ≥ 2 be given.
There is an algorithm computing fmp(m

n) for every n ∈ N in O(n3) arithmetic
operations.

From the literature on m-ary partitions we further mention T. Edgar [50], M.D.
Hirschhorn and J.A. Sellers [76] and D. Krenn and S. Wagner [97] (which deals
mostly with m-ary compositions). It is easy to see that the number fbp(n) :=
fmp(n, 2) of binary partitions of n follows the recurrence fbp(0) = 1 and fbp(n) =
fbp(n−1)+fbp(n/2) for n ≥ 1 (where fbp(n/2) = 0 if n/2 6∈ N0). The reduction
f ′
bp(n) := fbp(2n) follows the recurrence f ′

bp(0) = 1 and (n ≥ 1) f ′
bp(n) =

f ′
bp(n− 1) + f ′

bp(⌊n/2⌋) and forms the sequence [154, A000123],

(fbp(2n))n≥0 = (f ′
bp(n))n≥0 = (1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, . . .) ,

investigated by D. E. Knuth [90] fifty years ago.
Recently, I. Pak [112, Theorem 2.19] has announced positive resolution of

Problem 3.23 in I. Pak and D. Yeliussizov [113, 114]: (we quote verbatim from
[112])

Theorem 3.25 (I. Pak and D. Yeliussizov). Let A = {a1, a2, . . . }, and
suppose ak/ak−1 is an integer ≥ 2, for all k > 1. Suppose also that membership
x ∈ A can be decided in poly(log x) time. Then {pA(n)} can be computed in
time poly(logn).

37

In conclusion of Section 3 and of our article we turn to cancellative problems
related to the initial Example 5. Sums of integers with large absolute values
still may be small, even 0. In enumeration it means that a formula, effective
for nonnegative summands, may no longer be effective (in the sense of Defini-
tion 1.1) for integral summands, if cancellations occur. In the next proposition
we give both an example and a non-example of such cancellation. The former
is a classics but the latter may be not so well known.

Proposition 3.26. Both functions

q±(n) :=
∑

λ∈Q(n)

(−1)‖λ‖ and p±(n) :=
∑

λ∈P (n)

(−1)‖λ‖

are PIO functions. Concretely,

∞∑

n=0

q±(n)qn =

∞∏

k=1

(1 − qk) = 1 +

∞∑

n=1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2)

and

∞∑

n=0

p±(n)qn =

∞∏

k=1

1

1 + qk
=

∞∏

k=1

(1 + (−q)2k−1) = 1 +

∞∑

n=1

(−1)nqo(n)q
n

where qo(n) := #{λ ∈ Q(n) | λi ≡ 1 (mod 2)}.

Proof. The first identity is the famous pentagonal identity of L. Euler [53] (or
[6, 68]). Replacing q(n) with q±(n) leads to almost complete cancellation to
values just 0 and ±1, and m(n) = Θ(log(1 + n)) for q±(n). The algorithms
of Propositions 3.5 (recurrence schema) and 3.2 (coefficient extraction from
a generating polynomial) still work but do poly(n) steps and are not effec-
tive for computing n 7→ q±(n). For a PIO formula more efficient algorithm is
needed. Fortunately, the pentagonal identity provides it. We easily determine

in poly(logn) steps the existence of a solution i ∈ N to the equation n = i(3i±1)
2

and its parity, simply by computing the integral square root as discussed above
in connection with fx+2y2(n).

The second identity, more precisely the middle equality, follows at once from
1

1+qk = 1−qk

1−q2k . Now the replacement of p(n) with p±(n) leads to almost no
cancellation because

|p±(n)| = qo(n) = [qn]

∞∏

k=1

(1 + q2k−1) ∼ exp(π
√

n/6)

23/2 · 61/4 · n3/4

([154, A000700]; V. Kotěšovec [94, p. 9]; G. Meinardus [102, p. 301]) remains
of broadly exponential growth. Thus for p±(n) we have m(n) ≫ n1/2 and both
algorithms for p(n) remain effective for p±(n). Hence, more easily than for
q±(n), p±(n) is a PIO function. ✷

38

We had derived the second identity and then we learned in A. Ciolan [43] that
it is in fact due to J.W. L. Glaisher [62]. The above examples lead us to the
following question.

Problem 3.27. Find general sufficient conditions on the functions

a = ai : N → N0 and b = bi,j,k : N× N0 × N → {0, 1}

ensuring that

f(n) = [qn]

∞∏

i=1

ai∏

k=1

∞∑

j=0

bi,j,k(−1)jqij

is a PIO function. Find asymptotics of f(n).

Thus f(n) is the (−1)‖λ‖-count of the partitions λ of n into parts i ∈ N coming
in ai sorts (i, 1), (i, 2), . . . , (i, ai) such that the part (i, k)j may appear if and
only if bi,j,k = 1. For ai = 1, bi,0,1 = bi,1,1 = 1, and bi,j,k = 0 else we get
q±(n), and for ai = 1, bi,j,1 = 1, and bi,j,k = 0 else we get p±(n). For ai = 2,
bi,0,1 = bi,1,1 = bi,0,2 = bi,1,2 = 1, and bi,j,k = 0 else we get the function f(n) of
Example 5. More generally, for l ∈ N the counting functions

∞∑

n=0

q±,l(n)qn :=

∞∏

n=1

(1− qn)l

correspond to ai = l, bi,0,1 = bi,1,1 = bi,0,2 = bi,1,2 = · · · = bi,0,l = bi,1,l = 1,
and bi,j,k = 0 else; q±(n) = q±,1(n) and Example 5 is q±,2(n). A related open
problem, due to D. Newman, is mentioned in G.E. Andrews and D. Newman
[9]: In

∑

n≥0

p(n)qn =

∞∏

k=1

(1 + pk + p2k + . . .) ,

can one change some signs in the last product so that on the left side the p(n)
turn to coefficients 0 and ±1?

Another example of non-cancellation in Problem 3.27 is the result of A.
Ciolan [43, (22)]: if S2 := {1, 4, 9, 16, . . .}, B := Γ(3/2)ζ(3/2)/2

√
2 and

tn :=
∑

λ∈P (n), λi∈S2

(−1)‖λ‖ = [qn]
∏

k≥1

1

1 + qk2

then

tn ∼ (−1)n
exp

(
3(B/2)2/3n1/3

)

(3π)1/2(2n)5/6/B1/3
.

In [154, A292520], for example

(tn)
49
n=32 = (1, −2, 3, −4, 3, −2, 1, 0, 1, −2, 3, −4, 3, −2, 1, 0, 0, −2) ,

39

V. Kotěšovec gave this asymptotic formula as well, without proof. If

sn := [qn]
∏

k≥1

(1− qk
2

)

is the corresponding number for distinct squares, with the help of MAPLE we
get the values

(sn)
15
n=0 = (1, −1, 0, 0, −1, 1, 0, 0, 0, −1, 1, 0, 0, 1, −1, 1, 0)

or

(sn)
3000
n=2990 = (111, −112, 61, 46, −114, 116, −21, 11, −30, −17, 37)

and maxn≤3000 |sn| = 319. It is [154, A276516].

Problem 3.28. Is (sn) unbounded?

We finish with the generalization of Example 5 to the numbers q±,l(n), l ∈ N.
These result from an almost complete cancellation because by the pentagonal
identity,

∣
∣q±,l(n)

∣
∣ ≤ [qn]

(∞∑

n=0

∣
∣q±,1(n)

∣
∣ qn
)l

≤ [qn](1− q)−l =

(
n+ l − 1

l− 1

)

.

So q±,l(n) = O(nl−1), m(n) = Θl(log(1 + n)) for this counting problem and ef-
fective computation of q±,l(n) means computation in poly(logn) steps. Besides
the pentagonal identity for l = 1, another nice identity occurs for l = 3:

∏

n≥1

(1 − qn)3 =
∑

n≥0

(−1)n(2n+ 1)qn(n+1)/2 ,

due to C. Jacobi (G.H. Hardy and E.M. Wright [68, Theorem 357]). Thus also
q±,3(n) is a PIO function. For l = 2, Example 5, we get

(q±,2(n))n≥0 = (1, −2, −1, 2, 1, 2, −2, 0, −2, −2, 1, 0, 0, 2, 3, −2, 2, 0, . . .)

or

(q±,2(n))75n=58 = (0, −2, 0, −2, 0, −2, 2, 0, −4, 0, 0, −2, −1, 2, 0, 2, 0, 0) ,

[154, A002107], not showing any clear pattern. J.W. L. Glaisher [63, p. 183]
writes: “I had no hope that these coefficients would follow any simple law, as in
the Eulerian or Jacobian series; for, if such a law existed, it could not fail to have
been discovered long ago by observation.” Let us see how we advanced in 130
years. In August 2018 the “links” section of the entry [154, A002107] (author
N. J.A. Sloane) lists these references: table of first 10000 values by S. Manyama,
G. E. Andrews [7], M. Boylan [28], S. Finch [57], J.W. L. Glaisher [63], J. T.
Joichi [82], V.G. Kač and D.H. Peterson [83], M. Koike [93], V. Kotěšovec [95],

40

Y. Martin [101], T. Silverman [134], index to 74 sequences in [101] by M. Somos,
M. Somos [136], and article Ramanujan Theta Functions in E. Weisstein [156].
J.W. L. Glaisher [63] did discover and prove a kind of simple pattern for this
sequence, which we state in the elegant form given in [57] (the other references
seem not relevant for computation of q±,2(n)): q±,2(n) = G(12n + 1) where
G : N → Z is a multiplicative function, which means that G(ab) = G(a)G(b)
whenever a, b ∈ Z are coprime numbers, defined on prime powers pr, r ∈ N, by

G(pr) =







1 . . . p ≡ 7, 11 (mod 12), r ≡ 0 (mod 2),

(−1)r/2 . . . p ≡ 5 (mod 12), r ≡ 0 (mod 2),

r + 1 . . . p ≡ 1 (mod 12), (−3)(p−1)/4 ≡ 1 (mod p),
(−1)r(r + 1) . . . p ≡ 1 (mod 12), (−3)(p−1)/4 ≡ −1 (mod p),
0 . . . otherwise .

This is a PIO formula for G(n) = G(pr) if n is a known prime power. But
in general we do not know if q±,2(n) is a PIO function because we do not
know how to effectively factorize numbers. For example, q±,2(58) = G(697) =
G(17)G(41) = 0× · · · = 0 and q±,2(59) = G(709) = (−1)1(1 + 1) = −2 because

709 is a prime that is 1 modulo 12 and (−3)177 = −32
7

32
5

32
4

3 ≡ −1 modulo
709 as 316 ≡ 495, 332 ≡ 420 and 3128 ≡ 29.

For repeated parts,

∑

n≥0

p±,2(n)qn :=
∏

n≥1

1

(1 + qn)2
=
∏

n≥1

(1 + (−q)2n−1)2 ,

we get

(p±,2(n))n≥0 = (1, −2, 1, −2, 4, −4, 5, −6, 9, −12, 13, −16, 21, −26, . . .) ,

[154, A022597], and see, like before, that p±,2(n) is also (−1)n times the number
of partitions of n into 2-sorted distinct odd numbers and that we have almost
no cancellation.

For l = 24 a shift of q±,24(n) gives the Ramanujan tau function τ(n),

∑

n≥0

τ(n)qn := q
∏

n≥1

(1− qn)24 .

So

(τ(n))n≥1 = (1, −24, 252, −1472, 4830, −6048, −16744, 84480, −113643, . . .) ,

[154, A000594]. Combinatorially, τ(n) is the (−1)‖λ‖-count of partitions λ of
n − 1 into parts in 24-sorted N (not that this would really help for deriving
properties of τ(n)). Is τ(n) a PIO function, can we compute it effectively, in
poly(logn) steps (as we noted above, τ(n) = O(n23))? The Wikipedia article
[155] on tau function is silent about this fundamental aspect but the simple
and unsatisfactory answer is again that we do not know. If we could effectively
factorize numbers, we could besides decoding secret messages also compute τ(n)

41

effectively: (i) τ(mn) = τ(m)τ(n) if m and n are coprime, (ii) τ(pk+2) =
τ(p)τ(pk+1) − p11τ(pk) for every prime number p and every k ∈ N0 and (iii)
τ(p) can be computed in poly(log p) steps for every prime p. The first two
properties, conjectured by S. Ramanujan, were proved by L. J. Mordell [105]
and the whole book [51], edited and mostly written by B. Edixhoven and J.-M.
Couveignes, is devoted to exposition of an algorithm proving (iii).

Problem 3.29. Are, in the current state of knowledge, the known PIO func-
tions q±,l(n) only those for l = 1 and 3? For which l ∈ N can one compute
q±,l(n) in poly(logn) steps with the help of an oracle that can factorize integers
efficiently?

From the extensive literature on the numbers q±,l(n) we further mention only
H.H. Chan, S. Cooper and P.Ch. Toh [35, 36] (check the former for l = 26), E.
Clader, Y. Kemper and M. Wage [44] and J.-P. Serre [132].

Acknowledgments. The OEIS database [154] was very helpful. I thank I. Pak
for valuable comments and references.

References

[1] S.A. Abramov, M. Petkovšek and H. Zakraǰsek, Convolutions of Liouvillian
sequences, arXiv:1803.08747v1, 2018, 24 pages.

[2] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Ann. Math. 160 (2004),
781–793.

[3] M. Aigner, A Course in Enumeration, Springer, Berlin, 2007.

[4] J. L.R. Alfonśın, The Diophantine Frobenius Problem, Oxford University Press,
Oxford, 2005.

[5] F. Amoroso and U. Zannier (editors), Diophantine Approximation. Lectures
given at the C.I.M.E. Summer School held in Cetraro, Italy, June 28–July 6,
2000, Lecture Notes in Mathematics 1819, Springer, Berlin, 2003.

[6] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.

[7] G. E. Andrews, Advanced problem 6562, Amer. Math. Monthly 94 (1987), 1011.

[8] G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences be-
tween largest and smallest parts, Proc. Amer. Math. Soc. 143 (2015), 4283–4289.

[9] G. E. Andrews and D. Newman, Binary representations of theta functions, In-
tegers 18 (2018), #A34, 8 pages.

[10] F. Ardila, Algebraic and Geometric Methods in Enumerative Combinatorics,
arXiv:1409.2562v2, 2014, 144 pages (also Chapter 1 in [22]).

[11] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms,
The MIT Press, Cambridge, MA, 1996.

[12] V. P. Bakoev, Algorithmic approach to counting of certain types m-ary parti-
tions, Discrete Math. 275 (2004), 17–41.

[13] Y. Bar-Hillel (editor), Logic, Methodology and Philosophy of Science. Proceedings
of the 1964 International Congress, North-Holland, Amsterdam, 1965.

42

http://arxiv.org/abs/1803.08747
http://arxiv.org/abs/1409.2562

[14] V. Becher, P.A. Heiber and T.A. Slaman, A polynomial-time algorithm for com-
puting absolutely normal numbers, Information and Computation 232 (2013),
1–9.

[15] E.T. Bell, Interpolated denumerants and Lambert series, Amer. J. Math. 65

(1943), 382–386.

[16] F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like
Structures, Cambridge University Press, Cambridge, 1998.

[17] M. Bodirsky, C. Gröpl and M. Kang, Generating labeled planar graphs uniformly
at random, Theoretical Comp. Sci. 379 (2007), 377–386.

[18] T. Bogart, J. Goodrick, D. Nguyen and K. Woods, Parametric Presburger arith-
metic: complexity of counting and quantifier elimination, arXiv:1802.00974v1,
2018, 14 pages.

[19] T. Bogart, J. Goodrick and K. Woods, Parametric Presburger arithmetic: logic,
combinatorics, and quasipolynomial behavior, Discrete Analysis, 2017, 34 pages.

[20] J. Bohman, C.-E. Fröberg and H. Riesel, Partitions in squares, BIT 19 (1979),
297–301.

[21] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Cambridge Uni-
versity Press, Cambridge, 2006.

[22] M. Bóna (editor), Handbook of Enumerative Combinatorics, CRC Press, Boca
Raton, FL, 2015.

[23] P.B. Borwein, On the complexity of calculating factorials, J. of Algorithms 6

(1985), 376–380.

[24] A. Bostan, X. Caruso, G. Christol and P. Dumas, Fast coefficient computation
for algebraic power series in positive characteristic, arXiv:1806.06543v1, 2018,
16 pages.

[25] A. Bostan, G. Christol and P. Dumas, Fast computation of the Nth term of an
algebraic series in positive characteristic, in: ISSAC’16 Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation (2016),
119–126.

[26] A. Bostan, P. Gaudry and E. Schost, Linear recurrences with polynomial co-
efficients and application to integer factorization and Cartier–Manin operator,
SIAM J. Comput. 36 (2007), 1777–1806.

[27] D. Bowman, P. Erdös and A. Odlyzko, Partitions of n into parts which are
divisors of n, Amer. Math. Monthly 99 (1992), 276–277.

[28] M. Boylan, Exceptional congruences for the coefficients of certain eta-product
newforms, J. Number Theory 98 (2003), 377–389.

[29] N.G. de Bruijn, On Mahler’s partition problem, Proc. Kon. Ned. Akad. v. Wet.
Amsterdam 51 (1948), 659–669.

[30] J. H. Bruiner and K. Ono, Algebraic formulas for the coefficients of half-integral
weight harmonic weak Maas forms, Adv. Math. 246 (2013), 198–219.

[31] J. H. Bruiner, K. Ono and A.V. Sutherland, Class polynomials for nonholomor-
phic modular functions, J. Number Theory 161 (2016), 204–229.

[32] N. Calkin, J. Davis, K. James, E. Perez and C. Swannack, Computing the integer
partition function, Math. Comp. 76 (2007), 1619–1638.

43

http://arxiv.org/abs/1802.00974
http://arxiv.org/abs/1806.06543

[33] P. J. Cameron, Notes on Counting: An Introduction to Enumerative Combina-
torics, 2010, 217 pages (available from P. J. Cameron’s homepage).

[34] P. J. Cameron, Notes on Counting: An Introduction to Enumerative Combina-
torics, Cambridge University Press, Cambridge, 2017.

[35] H.H. Chan, S. Cooper and P.Ch. Toh, The 26th power of Dedekind’s η-function,
Adv. in Math. 207 (2006), 532–543.

[36] H.H. Chan, S. Cooper and P.Ch. Toh, Ramanujan’s Eisenstein series and powers
of Dedekind’s η-function, J. London Math. Soc. 75 (2007), 225–242.

[37] Y. Choliy, L.W. Kolitsch and A.V. Sills, Partition recurrences, Integers 18B

(2018), article A1, 15 pages.

[38] G. Christol, Globally bounded solutions of differential equations, in: [107], 45–
64.

[39] A.D. Christopher and M.D. Christober, Estimates of five restricted partition
functions that are quasi polynomials, Bull. Math. Sci. 5 (2015), 1–11.

[40] W. Chu, G. Gardin, S. Ohsuga and Y. Kambayashi (editors), Proc. 7th Inter-
national Conference on Very Large Data Bases, Morgan Kaufmann, Cannes,
1981.

[41] M. Cimpoeaş and F. Nicolae, On the restricted partition function,
arXiv:1609.060901v1, 2016, 20 pages (to appear in The Ramanujan J.).

[42] M. Cimpoeaş and F. Nicolae, On the restricted partition function II,
arXiv:1611.00256v4, 2018, 12 pages.

[43] A. Ciolan, Asymptotics and inequalities for partitions into squares,
arXiv:1806.00708v1, 2018, 16 pages.

[44] E. Clader, Y. Kemper and M. Wage, Lacunarity of certain partition-theoretic
generating functions, Trans. Amer. Math. Soc. 137 (2009), 2959–2968.

[45] A. Cobham, The intrinsic computational difficulty of functions, in: [13], 24–30.

[46] S. Cohen, B. Kimelfeld and Y. Sagiv, Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties, J. Computer and Sys-
tem Sci. 74 (2008), 1147–1159.

[47] S. Cohen and Y. Sagiv, An incremental algorithm for computing ranked full
disjunction, J. Computer and System Sci. 73 (2007), 648–668.

[48] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions,
D. Reidel, Dordrecht, 1974 (first published in French in 1970).

[49] A. Dunn and N. Robles, Polynomial partition asymptotics, arXiv:1705.00384v1,
2017, 22 pages.

[50] T. Edgar, On the number of hyper m-ary partitions, Integers 18 (2018), article
A47.

[51] B. Edixhoven and J.-M. Couveignes (editors), Computational aspects of modular
forms and Galois representations. How one can compute in polynomial time the
values of Ramanujan’s tau at a prime, Princeton University Press, Princeton,
NJ, 2011.

[52] J. Edmonds, Path, trees, and flowers, Canad. J. Math. 17 (1965), 449–467.

44

http://arxiv.org/abs/1609.06090
http://arxiv.org/abs/1611.00256
http://arxiv.org/abs/1806.00708
http://arxiv.org/abs/1705.00384

[53] L. Euler, Evolutio producti infiniti (1− x)(1− xx)(1− x3)(1− x4)(1− x4)(1−
x5)(1 − x6) etc. in seriem simplicem, Acta Academiae Scientiarum Imperialis
Petropolitanae (1780) (1783), 47–55.

[54] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Se-
quences, AMS, Providence, RI, 2003.

[55] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53
(1984), 225–244.

[56] J. A. Fill, S. Janson and M.D. Ward, Partitions with distinct multiplicities of
parts: On an “Unsolved Problem” posed by Herbert Wilf, Electronic J. Combi-
natorics 19 (2012), Paper #P18, 6 pages.

[57] S. Finch, Powers of Euler’s q-series, ArXiv:math/0701251v2, 2007, 17 pages.

[58] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University
Press, Cambridge, 2009.

[59] C.-E. Fröberg, Accurate estimation of the number of binary partitions, BIT 17

(1977), 386–391.

[60] A. Gafni, Power partitions, J. Number Theory 163 (2016), 19–42.

[61] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Uni-
versity Press, Cambridge, 2013 (3rd edition).

[62] J.W.L. Glaisher, On formulae of verification in the partition of numbers, Proc.
Royal Soc. London 24 (1876), 250–259.

[63] J.W.L. Glaisher, On the square of Euler’s series, Proc. London Math. Soc. 21
(1889), 182–215.

[64] T. Gowers, J. Barrow-Green and I. Leader (editors), The Princeton Companion
to Mathematics, Princeton University Press, Princeton, NJ, 2008.

[65] Y. Gurevich and S. Shelah, Time polynomial in input or output, J. Symb. Logic
54 (1989), 1083–1088.

[66] G. Halász (editor), Topics in Classical Number Theory. Vol. II (Colloq. Math.
Soc. J. Bolyai 34), North-Holland, Amsterdam, 1984.

[67] G.H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis,
Proc. London Math. Soc. 2 (1918), 75–115.

[68] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers,
Clarendon Press, Oxford, 1979 (fifth edition, first published in 1938).

[69] D. Harvey and J. van der Hoeven, Faster integer multiplication using short
lattice vectors, arXiv:1802.07932v1, 2018, 16 pages.

[70] D. Harvey, J. van der Hoeven and G. Lecerf, Even faster integer multiplication,
J. Complexity 36 (2016), 1–30.

[71] F.C. Hennie, One-tape, off-line Turing machine computations, Information and
Control 8 (1965), 553–578.

[72] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chap-
man and Hall/CRC, Boca Raton, FL, 2009.

[73] M.D. Hirschhorn, Partial fractions and four classical theorems of number theory,
Amer. Math. Monthly 107 (2000), 260–264.

45

http://arxiv.org/abs/math/0701251
http://arxiv.org/abs/1802.07932

[74] M.D. Hirschhorn, The number of partitions of a number into distinct squares,
Math. Gazette 90 (2006), 80–87.

[75] M.D. Hirschhorn, My contact with Ramanujan, J. Indian Math. Soc. (N. S.),
(2013), 33–43 (special volume to commemorate the 125th birth anniversary of
Srinivasa Ramanujan).

[76] M.D. Hirschhorn and J. A. Sellers, A diferent view of m-ary partitions, Aus-
tralasian J. Combinatorics 30 (2004), 193–196.

[77] S.G. Hyun, S. Melczer and C. St-Pierre, A fast algorithm for solving linearly
recurrent sequences, arXiv:1806.03554v1, 2018, 4 pages.

[78] R. Jakimczuk, Restricted partitions, Internat. J. of Mathem. and Mathem. Sci-
ences 36 (2004), 1893–1896.

[79] V. Jeĺınek and M. Klazar, Generalizations of Khovanskĭı’s theorem on the growth
of sumsets in Abelian semigroups, Adv. in Appl. Math. 41 (2008), 115–132.

[80] F. Johansson, Efficient implementation of the Hardy–Ramanujan–Rademacher
formula, LMS J. Comput. Math. 15 (2012), 341–359.

[81] F. Johansson, New partition function record: p(1020) computed,
fredrikj.net/blog/2014/new-partition-function-record/, 2014 (viewed in
August 2016).

[82] J. T. Joichi, Hecke–Rogers, Andrews identities; combinatorial proofs, Discrete
Math. 84 (1990), 255–259.

[83] V.G. Kač and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions
and modular forms, Adv. in Math. 53 (1984), 125–264.

[84] D. Kane and R.C. Rhoades, Asymptotics for Wilf’s partitions with distinct
multiplicities, preprint, 2012, 8 pages.

[85] Y. Kanza and Y. Sagiv, Computing full disjunctions, in: Proceedings of the
22nd ACM SIGMOND-SIGACT-SIGART Symposium on Principles of Database
Systems, ACM Press, San Diego, CA, 2003, 78–89.

[86] M. Kauers and D. Zeilberger, A simple re-derivation of Onsager’s solution of the
2D Ising model using experimental mathematics, arXiv:1805.09057v1, 2018, 10
pages.

[87] J. Kennedy (editor), Interpreting Gödel. Critical Essays, Cambridge University
Press, Cambridge, 2014.

[88] M. Klazar, Overview of some general results in combinatorial enumeration, in:
[98], 3-40.

[89] A. Knopfmacher and N. Robbins, Identities for the total number of parts in
partitions of integers, Util. Math. 67 (2005), 9–18.

[90] D. E. Knuth, An almost linear recurrence, Fibonacci Q. 4 (1966), 117–128.

[91] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algo-
rithms, Addison-Wesley, Reading, MA, 1997.

[92] D. E. Knuth, The Art of Computer Programming, Pre-fascicle 3B, A Draft of
Sections 7.2.1.4–5: Generating all Partitions, preprint, 2004.

[93] M. Koike, On McKay conjecture, Nagoya Math. J. 95 (1984), 85–89.

[94] V. Kotěšovec, A method of finding the asymptotics of q-series based on the
convolution of generating functions, arXiv:1509.08708v3, 2016, 28 pages.

46

http://arxiv.org/abs/1806.03554
http://arxiv.org/abs/1805.09057
http://arxiv.org/abs/1509.08708

[95] V. Kotěšovec, The integration of q-series, oeis.org/A258232/a258232 2.pdf,
2015, 3 pages (viewed in August 2018).

[96] C. Krattenthaler and T.W. Müller, Motzkin numbers and related sequences
modulo powers of 2, arXiv:1608.05657v1, 2016, 28 pages.

[97] D. Krenn and S. Wagner, Compositions into powers of b: asymptotic enumera-
tion and parameters, Algorithmica 75 (2016), 606–631.

[98] S. Linton, N. Ruskuc and V. Vatter (editors), Permutation Patterns. St. Andrews
2007, vol. 376 of London Mathematical Society Lecture Note Series, Cambridge
Unversity Press, Cambridge, 2010.

[99] S.M. Luthra, On the average number of summands in partitions of n, Proc. Nat.
Inst. Sci. India, Part A 23 (1957), 483–498.

[100] K. Mahler, On a special functional equation, J. London Math. Soc. 68 (1940),
115–123.

[101] Y. Martin, Multiplicative η-quotients, Trans. of the Amer. Math. Soc. 348

(1996), 4825–4856.

[102] G. Meinardus, Über Partitionen mit Differenzenbedingungen, Math. Zeit. 61

(1954), 289–302.

[103] J. C. P. Miller and D. J. Spencer Brown, An algorithm for evaluation of remote
terms in a linear recurrence sequence, Comput. J. 9 (1966), 188–190.

[104] V. S. Miller, Counting matrices that are squares, arXiv:1606.09299v1, 2016, 37
pages.

[105] L. J. Mordell, On Mr. Ramanujan’s empirical expansions of modular functions,
Proc. Cambridge Phil. Soc. 19 (1917), 117–124.

[106] M.V.N. Murthy, M. Brack, R.K. Bhaduri and J. Bartel, Semi-classical analysis
of distinct square partitions, arXiv:1808.05146v1, 2018, 38 pages.

[107] K. Nagasaka and E. Fouvry (editors), Analytic Number Theory, Lectures Notes
in Mathematics 1434, Springer, Berlin, 1990.

[108] B. Nakamura, Approaches for enumerating permutations with a prescribed num-
ber of occurrences of patterns, Pure Math. Appl. 24 (2013), 179–194.

[109] B. Nakamura and D. Zeilberger, Using Noonan–Zeilberger functional equation
to enumerate (in polynomial time!) generalized Wilf classes, Adv. in Appl. Math.
50 (2013), 356–366.

[110] K. Ono, The distribution of the partition function modulo m, Ann. of Math.
151 (2000), 293–307.

[111] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular
Forms and q-series, AMS, Providence, RI, 2004.

[112] I. Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636v2,
2018, 31 pages.

[113] I. Pak and D. Yeliussizov, in preparation.

[114] I. Pak and D. Yeliussizov, Ehrhart polynomial of some Schlafli simplices, 2018
(talk at Joint Mathematics Meeting, San Diego, Ca, January 2018).

[115] Ch.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
MA, 1994.

47

http://arxiv.org/abs/1608.05657
http://arxiv.org/abs/1606.09299
http://arxiv.org/abs/1808.05146
http://arxiv.org/abs/1803.06636

[116] T. R. Parkin and D. Shanks, On the distribution of parity in the partition func-
tion, Math. Comput. 21 (1967), 466–480.

[117] R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables,
Cambridge University Press, Cambridge, 2013.

[118] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen and
chemische Verbindungen, Acta Math. 68 (1937), 145–254.

[119] B. Poonen, Undecidable problems: a sampler, in: [87], 211–241.

[120] A. van der Poorten, Some problems of recurrent interest, Macquarie Math. Re-
ports, Macquarie University, Northridge, Australia, 81-0037 (1981).

[121] A. van der Poorten, Some problems of recurrent interest, in: [66], 1265–1294.

[122] A. van der Poorten and H.P. Schlickewei, Additive relations in fields, J. Austral.
Math. Soc. Ser. A 51 (1991), 154–170.

[123] V.V. Prasolov, Polynomials, Springer, Berlin, 2004 (translated from the Russian
by Dimitry Leites).

[124] Ch. Reutenauer, On a matrix representation for polynomially recursive se-
quences, Electr. J. Combin. 19 (2012), #P36, 26 pages.

[125] B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequat.
Math. 49 (1995), 86–97.

[126] J. Riordan, Introduction to Combinatorial Analysis, John Wiley, New York,
1958.

[127] S. Robins and Ch. Vignat, Simple proofs and expressions for the restricted par-
tition function and its polynomial part, arXiv:1802.07310v1, 2018, 5 pages.

[128] Ø. J. Rødseth and J. A. Sellers, Partitions with parts in a finite set, Int. J.
Number Theory 2 (2006), 455–468.

[129] E. Rowland, What is . . . an automatic sequence?, Notices AMS 62 (2015), 274–
276.

[130] E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational
functions, J. Théor. Nombres Bordeaux 27 (2015), 245–288.

[131] W.M. Schmidt, Linear recurrence sequences, in: [5], 171–247.

[132] J.-P. Serre, Sur la lacunarite des puissances de η, Glasgow Math. J. 27 (1985),
203–221.

[133] J. Shallit, The Logical Approach to Automatic Sequences. Part 4: Enumeration
and Automatic Sequences, 2016,
https://cs.uwaterloo.ca/~Shallit/Talks/linz4a.pdf

(viewed September 2018)

[134] T. Silverman, Counting cliques in finite distant graphs, arXiv:1612.08085v1,
2016, 16 pages.

[135] T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen,
in: Comptes rendus du congrés des mathématiciens scandinaves, Stockholm,
1934 (1935), 163–188.

[136] M. Somos, Introduction to Ramanujan theta functions,
https://somos.crg4.com/multiq.pdf (viewed in August 2018).

48

http://arxiv.org/abs/1802.07310
http://arxiv.org/abs/1612.08085

[137] R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51 (1948),
289–290.

[138] R. P. Stanley, Enumerative Combinatorics. Volume I, Wadsworth &
Brooks/Cole, Monterey, CA, 1986.

[139] M. Stoll, Rational and transcendental growth series for the higher Heisenberg
groups, Invent. Math. 126 (1996), 85–109.

[140] D. S. Stones, The many formulae for the number of Latin squares, Electron. J.
Combin. 17 (2010), #A1, 46 pages.

[141] T. Tao, Structure and Randomness: pages from year one of a mathematical blog,
AMS, Providence, NJ, 2008.

[142] M.N. Tran, M.V.N. Murty and R.K. Bhaduri, On the quantum density of states
and partitioning an integer, Ann. Phys. 311 (2004), 204–219.

[143] M. Vardi, On the complexity of bounded-variable queries, in: Proc. 14th Sym-
posium on Principles of Database Systems, ACM Press, San Jose, CA, 1995,
266–276.

[144] V. Vatter, Enumeration schemes for restricted permutations, Combinatorics,
Probability and Computing 17 (2008), 137–159.

[145] R.C. Vaughan, Squares: additive questions and partitions, Int. J. Number The-
ory 11 (2015), 1367–1409.

[146] H. S. Wilf, What is an answer?, Amer. Math. Monthly 89 (1982), 289–292.

[147] H. S. Wilf, Some unsolved problems, 3 pages,
www.math.upenn.edu/~wilf/website/UnsolvedProblems.pdf,
posted Dec. 13, 2010 (viewed in August 2018).

[148] E.M. Wright, Asymptotic partition formulae, III. Partitions into k-th powers,
Acta Math 63 (1934), 143–191.

[149] M. Yanakakis, Algorithms for acyclic database schemes, in: [40], 82–94.

[150] U. Zannier, Lecture Notes on Diophantine Analysis, Scuola Normale Superiore,
Pisa, 2009.

[151] D. Zeilberger, Enumerative and Algebraic Combinatorics, in: [64], 550–561.

[152] D. Zeilberger, Using GENERATINGFUNCTIONOLOGY to enumerate distinct-
multiplicity partitions, ArXiv:1201.493v1, 2012, 6 pages.

[153] Complexity Zoo, http://complexityzoo.uwaterloo.ca (zoo keeper: Scott
Aaronson).

[154] The On-line Encyclopedia of Integer Sequences, https://oeis.org (founded in
1964 by N. J.A. Sloane).

[155] https://en.wikipedia.org/wiki/Ramanujan tau function (viewed in August
2018).

[156] mathworld.wolfram.com/RamanujanThetaFunctions.html

(WolframMathWorld, created by E. Weisstein).

Martin Klazar
Department of Applied Mathematics

49

http://complexityzoo.uwaterloo.ca

Charles University, Faculty of Mathematics and Physics
Malostranské náměst́ı 25
11800 Praha
Czechia
klazar@kam.mff.cuni.cz

50

	1 Introduction
	2 The numbers of Catalan and Fibonacci
	3 Integer partitions

