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A CAYLEY-TYPE IDENTITY FOR TREES

RAN J. TESSLER

Abstract. We prove a weighted generalization of the formula for the number of plane vertex-labeled trees.

1. Introduction

It is well known that the number of vertex-labeled trees on n vertices is nn−2. The formula was discovered
by Carl Wilhelm Borchardt in 1860 [Borchardt(1860)] and was extended by Cayley in [Cayley(1889)].
Since then many proofs of this formula were given, and many extensions were found. A beautiful well-
known extension is the following weighted Cayley formula.

Theorem 1.1. Let Tn be the set of vertex-labeled trees with n vertices labeled by [n] = {1, . . . , n}. Associate

a variable xi to every i ∈ [n], and associate the monomial
∏

i∈[n] x
dT (i)
i to T ∈ Tn, where dT (i) is the

degree of i in T. Then

∑

T∈Tn

∏

i∈[n]

x
dT (i)
i =

n
∏

i=1

xi

(

n
∑

i=1

xi

)n−2

.

An identity closely related to Cayley’s formula is the formula, due to Leroux and Miloudi, [Leroux and Miloudi(1992)]

(see also [Callan(2014)] for a short proof) which says that for n ≥ 2 there are
(

2n−3
n−1

)

vertex-labeled plane
trees on n vertices. By a plane tree we mean an abstract tree enriched with cyclic orders for the edges
which emanate from each vertex.

In this note we prove a ”weighted version” for this formula, namely

Theorem 1.2. Associate a variable xi to every i ∈ [n], and for integers m ≥ 1 and a denote by
(

x+m+a
x+a

)

the polynomial

a+m
∏

i=a+1

(x+ i),

we extend the definition to m = 0 by writing
(

x+a
x+a

)

= 1. For n ≥ 2 it holds that

∑

T∈Tn

∏

i∈[n]

(

xi + dT (i)− 1

xi − 1

)

=
n
∏

i=1

xi

(
∑

i∈[n] xi + 2n− 3
∑

i∈[n] xi + n− 1

)

.

For example, for n = 2 the left and right hand sides of the formula give x1x2. For n = 3 the formula
gives

x1x2x3(x1 + x2 + x3 + 3).

Dividing both sides by
∏

xi and substituting x1 = . . . = xn = 0 gives precisely the Leroux-Miloudi
formula. The weighted Leroux-Miloudi formula was used in [Luria and Tessler(2016)] to calculate and
prove the threshold for the appearance of spanning 2−spheres in the Linial-Meshulam model for random
2−complexes.
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2. Proof of the formula

When n = 2 the formula trivially holds (in fact, correctly interpreted, the formula extends to n = 1).
Our proof will be inductive. By dividing both sides by

∏

xi the theorem is seen to be equivalent to
proving, for n ≥ 2,

(1)
∑

T∈Tn

∏

i∈[n]

(

xi + dT (i) − 1

xi

)

=

(
∑

i∈[n] xi + 2n− 3
∑

i∈[n] xi + n− 1

)

.

Substitute yi = xi + 1. (1) then translates to

(2) Ln(y1, . . . , yn) :=
∑

T∈Tn

∏

i∈[n]

(

yi + dT (i)− 2

yi − 1

)

=

(
∑

i∈[n] yi + n− 3
∑

i∈[n] yi − 1

)

=: Rn(y1, . . . , yn).

Both the left hand and right hand side are polynomials of degree n−2 in n variables. Thus, any monomial
does not contain at least one of the variables. Hence, (2) will follow from proving that for each i = 1, . . . , n

(3) Ln(y1, . . . , yn)|yi=0 = Rn(y1, . . . , yn)|yi=0.

Since Ln, Rn are in addition symmetric, it is enough to prove (3) for i = n. As
(

n
∑

i=1

yi

)

|yn=0 =

n−1
∑

i=1

yi

we have

(4) Rn|yn=0 = (n − 3 +
n−1
∑

i=1

yi)Rn−1.

The induction will therefore follow if we could show that

(5) Ln|yn=0 = (n − 3 +

n−1
∑

i=1

yi)Ln−1.

Denote by w(T ) the summand in (2) which corresponds to the tree T,

w(T ) =
∏

i∈[n]

(

yi + dT (i)− 2

yi − 1

)

.

Observe that if yn = 0 then w(T ) = 0 whenever dT (n) > 1. Thus,

(6) Ln(y1, . . . , yn)|yi=0 =
∑

T∈T ′

n

∏

i∈[n]

(

yi + dT (i)− 2

yi − 1

)

,

where T ′

n ⊆ Tn is the collection of trees in which n is a leaf. For t ∈ T ′

n let a(t) ∈ [n − 1] be the single
neighbour of n and let t(T ) ∈ Tn−1 be the tree obtained from erasing the vertex n. It hold that

(7) w(T ) = (ya(t) + dT (a(t)) − 2)w(t(T )) = (ya(t) + dt(T )(a(t)) − 1)w(t(T )).

Since the sum of degrees of vertices in a graph is twice the number of edges, and the number of edges in
a tree on m vertices is m− 1 (7) yields, for any T ∈ Tn−1,

(8)
∑

T ′∈t−1(T )

w(T ′) =
∑

a∈[n−1]

(ya + dT (a)− 1)w(T ) = (

n−1
∑

a=1

yi + n− 3)w(T ).

Putting (6),(8) and the definition of Ln together

Ln|yi=0 =
∑

T∈T ′

n

∏

i∈[n]

(

yi + dT (i)− 2

yi − 1

)

= (
n−1
∑

a=1

yi + n− 3)
∑

T∈Tn−1

w(T ) = Ln−1

which is precisely (5)



A CAYLEY-TYPE IDENTITY FOR TREES 3

References

[Borchardt(1860)] C. B. Borchardt. ber eine Interpolationsformel fr eine Art Symmetrischer Functionen und ber Deren
Anwendung. Math. Abh. der Akademie der Wissenschaften zu Berlin, pages 1–20, 1860.

[Callan(2014)] D. Callan. A quick count of plane (or planar embedded) labeled trees. 2014. URL https://oeis.org/A006963/

a006963_1.pdf.
[Cayley(1889)] A. Cayley. A theorem on trees. Quart. J. Pure Appl. Math., 23:376–378, 1889.
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