A CAYLEY-TYPE IDENTITY FOR TREES

RAN J. TESSLER

Abstract. We prove a weighted generalization of the formula for the number of plane vertex-labeled trees.

1. Introduction

It is well known that the number of vertex-labeled trees on n vertices is n^{n-2}. The formula was discovered by Carl Wilhelm Borchardt in 1860 Borchardt(1860)] and was extended by Cayley in Cayley(1889). Since then many proofs of this formula were given, and many extensions were found. A beautiful wellknown extension is the following weighted Cayley formula.

Theorem 1.1. Let T_{n} be the set of vertex-labeled trees with n vertices labeled by $[n]=\{1, \ldots, n\}$. Associate a variable x_{i} to every $i \in[n]$, and associate the monomial $\prod_{i \in[n]} x_{i}^{d_{T}(i)}$ to $T \in T_{n}$, where $d_{T}(i)$ is the degree of i in T. Then

$$
\sum_{T \in T_{n}} \prod_{i \in[n]} x_{i}^{d_{T}(i)}=\prod_{i=1}^{n} x_{i}\left(\sum_{i=1}^{n} x_{i}\right)^{n-2}
$$

An identity closely related to Cayley's formula is the formula, due to Leroux and Miloudi, Leroux and Miloudi(1992) (see also Callan(2014) for a short proof) which says that for $n \geq 2$ there are $\binom{2 n-3}{n-1}$ vertex-labeled plane trees on n vertices. By a plane tree we mean an abstract tree enriched with cyclic orders for the edges which emanate from each vertex.

In this note we prove a "weighted version" for this formula, namely
Theorem 1.2. Associate a variable x_{i} to every $i \in[n]$, and for integers $m \geq 1$ and a denote by $\binom{x+m+a}{x+a}$ the polynomial

$$
\prod_{i=a+1}^{a+m}(x+i)
$$

we extend the definition to $m=0$ by writing $\binom{x+a}{x+a}=1$. For $n \geq 2$ it holds that

$$
\sum_{T \in T_{n}} \prod_{i \in[n]}\binom{x_{i}+d_{T}(i)-1}{x_{i}-1}=\prod_{i=1}^{n} x_{i}\binom{\sum_{i \in[n]} x_{i}+2 n-3}{\sum_{i \in[n]} x_{i}+n-1}
$$

For example, for $n=2$ the left and right hand sides of the formula give $x_{1} x_{2}$. For $n=3$ the formula gives

$$
x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}+3\right) .
$$

Dividing both sides by $\prod x_{i}$ and substituting $x_{1}=\ldots=x_{n}=0$ gives precisely the Leroux-Miloudi formula. The weighted Leroux-Miloudi formula was used in Luria and Tessler(2016) to calculate and prove the threshold for the appearance of spanning 2 -spheres in the Linial-Meshulam model for random 2 -complexes.
1.1. Acknowledgements. R.T. is supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.

2. PRoof of the formula

When $n=2$ the formula trivially holds (in fact, correctly interpreted, the formula extends to $n=1$). Our proof will be inductive. By dividing both sides by $\prod x_{i}$ the theorem is seen to be equivalent to proving, for $n \geq 2$,

$$
\begin{equation*}
\sum_{T \in T_{n}} \prod_{i \in[n]}\binom{x_{i}+d_{T}(i)-1}{x_{i}}=\binom{\sum_{i \in[n]} x_{i}+2 n-3}{\sum_{i \in[n]} x_{i}+n-1} \tag{1}
\end{equation*}
$$

Substitute $y_{i}=x_{i}+1$ (11) then translates to

$$
\begin{equation*}
L_{n}\left(y_{1}, \ldots, y_{n}\right):=\sum_{T \in T_{n}} \prod_{i \in[n]}\binom{y_{i}+d_{T}(i)-2}{y_{i}-1}=\binom{\sum_{i \in[n]} y_{i}+n-3}{\sum_{i \in[n]} y_{i}-1}=: R_{n}\left(y_{1}, \ldots, y_{n}\right) . \tag{2}
\end{equation*}
$$

Both the left hand and right hand side are polynomials of degree $n-2$ in n variables. Thus, any monomial does not contain at least one of the variables. Hence, (2) will follow from proving that for each $i=1, \ldots, n$

$$
\begin{equation*}
\left.L_{n}\left(y_{1}, \ldots, y_{n}\right)\right|_{y_{i}=0}=\left.R_{n}\left(y_{1}, \ldots, y_{n}\right)\right|_{y_{i}=0} \tag{3}
\end{equation*}
$$

Since L_{n}, R_{n} are in addition symmetric, it is enough to prove (3) for $i=n$. As

$$
\left.\left(\sum_{i=1}^{n} y_{i}\right)\right|_{y_{n}=0}=\sum_{i=1}^{n-1} y_{i}
$$

we have

$$
\begin{equation*}
\left.R_{n}\right|_{y_{n}=0}=\left(n-3+\sum_{i=1}^{n-1} y_{i}\right) R_{n-1} \tag{4}
\end{equation*}
$$

The induction will therefore follow if we could show that

$$
\begin{equation*}
\left.L_{n}\right|_{y_{n}=0}=\left(n-3+\sum_{i=1}^{n-1} y_{i}\right) L_{n-1} \tag{5}
\end{equation*}
$$

Denote by $w(T)$ the summand in (2) which corresponds to the tree T,

$$
w(T)=\prod_{i \in[n]}\binom{y_{i}+d_{T}(i)-2}{y_{i}-1}
$$

Observe that if $y_{n}=0$ then $w(T)=0$ whenever $d_{T}(n)>1$. Thus,

$$
\begin{equation*}
\left.L_{n}\left(y_{1}, \ldots, y_{n}\right)\right|_{y_{i}=0}=\sum_{T \in T_{n}^{\prime}} \prod_{i \in[n]}\binom{y_{i}+d_{T}(i)-2}{y_{i}-1} \tag{6}
\end{equation*}
$$

where $T_{n}^{\prime} \subseteq T_{n}$ is the collection of trees in which n is a leaf. For $t \in T_{n}^{\prime}$ let $a(t) \in[n-1]$ be the single neighbour of n and let $t(T) \in T_{n-1}$ be the tree obtained from erasing the vertex n. It hold that

$$
\begin{equation*}
w(T)=\left(y_{a(t)}+d_{T}(a(t))-2\right) w(t(T))=\left(y_{a(t)}+d_{t(T)}(a(t))-1\right) w(t(T)) \tag{7}
\end{equation*}
$$

Since the sum of degrees of vertices in a graph is twice the number of edges, and the number of edges in a tree on m vertices is $m-1$ (7) yields, for any $T \in T_{n-1}$,

$$
\begin{equation*}
\sum_{T^{\prime} \in t^{-1}(T)} w\left(T^{\prime}\right)=\sum_{a \in[n-1]}\left(y_{a}+d_{T}(a)-1\right) w(T)=\left(\sum_{a=1}^{n-1} y_{i}+n-3\right) w(T) \tag{8}
\end{equation*}
$$

Putting (6), (8) and the definition of L_{n} together

$$
\left.L_{n}\right|_{y_{i}=0}=\sum_{T \in T_{n}^{\prime}} \prod_{i \in[n]}\binom{y_{i}+d_{T}(i)-2}{y_{i}-1}=\left(\sum_{a=1}^{n-1} y_{i}+n-3\right) \sum_{T \in T_{n-1}} w(T)=L_{n-1}
$$

which is precisely (5)

References

[Borchardt(1860)] C. B. Borchardt. ber eine Interpolationsformel fr eine Art Symmetrischer Functionen und ber Deren Anwendung. Math. Abh. der Akademie der Wissenschaften zu Berlin, pages 1-20, 1860.
[Callan(2014)] D. Callan. A quick count of plane (or planar embedded) labeled trees. 2014. URL https://oeis.org/A006963/ 2006963_1.pdf.
[Cayley(1889)] A. Cayley. A theorem on trees. Quart. J. Pure Appl. Math., 23:376-378, 1889.
[Leroux and Miloudi(1992)] P. Leroux and B. Miloudi. Généralisations de la formule d'Otter. Ann. Sci. Math. Québec, 16 (1):53-80, 1992.
[Luria and Tessler(2016)] Z. Luria and R. J. Tessler. A Sharp Threshold for Spanning 2-Spheres in Random 2-Complexes. 2016.

Institute for Theoretical Studies, ETH Zürich

