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Abstract

Despite the fact that the field of pattern avoiding permutations has been skyrock-
eting over the last two decades, there are very few exhaustive generating algorithms
for such classes of permutations. In this paper we introduce the notions of regular and
colored regular set of forbidden patterns, which are particular cases of right-justified
sets of forbidden patterns. We show the (colored) regularity of several sets of forbidden
patterns (some of them involving variable length patterns) and we derive a general
framework for the efficient generation of permutations avoiding them. The obtained
generating algorithms are based on succession functions, a notion which is a byproduct
of the ECO method introduced in the context of enumeration and random generation
of combinatorial objects by Barcucci et al. in 1999, and developed later by Bacchelli
et al. in 2004, for instance. For some classes of permutations falling under our general
framework, the corresponding counting sequences are classical in combinatorics, such
as Pell, Fibonacci, Catalan, Schröder and binomial transform of Padovan sequence.

Keywords : pattern avoiding permutation, right-justified forbidden pattern, exhaustive gen-

erating algorithm, succession function, ECO method.

1 Introduction

Given a class of combinatorial objects, it is a common problem to list exhaustively (with
no repetitions nor omissions) all the objects with a given size in the class. Exhaustive
generation can be used to test hypotheses about a class of objects, to support a conjecture
or find counterexamples, to analyze or prove programs, etc, and often an exhaustive gen-
erating algorithm exhibits new properties of the class under consideration. Two books,
that of F. Ruskey [12] and more recently that of D. Knuth [11] are entirely devoted to the
exhaustive generation of combinatorial objects.

When generating combinatorial objects, the time complexity of a generating algorithm
is crucial since the cardinality of a class is, in general, an exponential function of the size
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of the generated objects. If a generating algorithm produces combinatorial objects so
that only a constant amount of computation is done between successive objects, in an
amortized sense, then one says that it runs in constant amortized time (or CAT) [12].

The field of pattern avoiding permutations has been showing an increasing interest in
the last two decades. However little has been done so far on the exhaustive generation
of such classes of permutations. A very powerful way to define, enumerate and construct
recursively such permutation classes is the ECO method [1, 3]. This is a general recursive
description of combinatorial classes which explains how an object of a given size can
be reached uniquely from an object of smaller size. More specifically, the ECO method
specifies through a succession function how many objects of larger size can be obtained
from an object of a given size.

In this paper, which is an enhanced version of the conference version [7], we give a
general framework for the efficient (that is, CAT) exhaustive generation of some classes
of pattern avoiding permutations. The classes under consideration are defined by means
of regular and colored regular set of forbidden patterns, both defined in this paper. They
cover a wide range of pattern avoiding permutations and many of them are enumerated
by classical integer sequences. A main ingredient for our generating algorithms is the
succession function corresponding to the set of forbidden patterns.

After the presentation of some basic definitions at the end of this section, the remainder
of the paper is structured as follows. In Section 2 we recall the notion of right-justified
set of forbidden patterns, originally introduced in [6, 8], and we give a characterization of
such sets of patterns. Section 3 is devoted to regular sets of forbidden patterns, a subclass
of right-justified ones where the succession functions are computationally efficient. We
show that a particular set of forbidden patterns involving two variable length patterns is
regular, and some instances of it yield known counting sequences for the corresponding
pattern avoiding permutations. This notion is further refined in Section 4 to colored
regular sets of forbidden patterns, and we show the colored-regularness of some sets of
forbidden patterns (one of them involving a variable length pattern) and, as previously,
some known enumerating sequences are obtained. Notice that the idea of color labeling in
the ECO generating context has previously been mentioned in [2, 4]. In the last section
we present a general framework for the efficient exhaustive generation for permutations
avoiding a regular or a colored regular set of forbidden patterns. Finally, in Appendix,
we give a list of regular and colored regular sets of forbidden patterns together with their
succession functions. Each of these classes can be exhaustively generated in constant
amortized time by our algorithms.

Pattern avoiding permutations

We denote by Sn the set of permutations on {1, 2, . . . , n}, n ≥ 0, and the empty permuta-
tion ǫ is the unique permutation in S0. We use the one-line notation: for π ∈ Sn we write
π = π(1)π(2) . . . π(n), where π(i) is the image of i by π, and n is said the length of π. A
permutation σ is contained in another permutation π if π has a (not necessarily contigu-
ous) subsequence whose terms are order isomorphic to (i.e., have same relative ordering
as) σ. In this context σ is called a pattern, and if σ is not contained in π we say that
π avoids σ. For example the permutation 461532 ∈ S6 contains the pattern 312 because
the sequence 413 (among others) is ordered in the same way as 312, whereas 24531 ∈ S5
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avoids 312.
For a set of patterns P we say that a permutation avoids P (or, it is P -avoiding), if

it avoids each pattern in P , and in this context P is called set of forbidden patterns. We
denote by Sn(P ) the set of length n permutations avoiding P :

Sn(P ) = ∩σ∈P {π ∈ Sn : π avoids σ},

and S(P ) = ∪n≥0Sn(P ). The set S(P ) is a downset in the permutation pattern involve-
ment order, that is, π belongs to S(P ) whenever π occurs as a pattern in a permutation in
S(P ). See S. Kitaev’s seminal book [10] for an extensive presentation of pattern avoidance
in permutations.

2 Right-justified forbidden patterns

Here we introduce the right-justified forbidden patterns, a particular class of forbidden
patterns defined in [6, 8], and we give a characterization of them. In the next two sections
we refine this notion to (colored) regular patterns.

Let P be a set of forbidden patterns. Each permutation in Sn(P ), n ≥ 1, can be
obtained from a unique one in Sn−1(P ) by inserting the entry n into the appropriate
position. Informally, P is said to be right-justified if, for any n ≥ 1, it satisfies the following
property: if the insertion of n into the position i of α ∈ Sn−1(P ) yields a permutation in
Sn(P ), then so does the insertion of n into any position to the right of i in α.

Let α be a length n permutation. We denote by α→ (resp. α←) the permutation
obtained from α by moving its largest entry n to the right (resp. left) one position; and
α→ (resp. α←) is defined only if α(n) 6= n (resp. α(1) 6= n). For instance, 3142→ = 3124
and 3142← = 3412.

Definition 1. The set of forbidden patterns P is said to be right-justified if α ∈ S(P )
implies α→ ∈ S(P ).

In other words, P is right-justified if for any length n permutation avoiding P by
moving n to the right we still obtain a permutation avoiding P .

Example 1.

• P = {132} is not right-justified since, for instance, 3412 ∈ S4(132) but 3412→ =
3142 /∈ S4(132). It is easily seen that P = {312} is right-justified, and in general, a
singleton set of forbidden patterns P = {τ} with τ ∈ Sk is right-justified if and only
if τ(1) = k.

• P = {312, 123} is not right-justified since, for instance, 132 ∈ S3(P ) but 132→ =
123 /∈ S3(P ). By contrast, P = {312, 132} is right-justified and Theorem 1 below
gives a characterization of right-justified forbidden patterns.

The right-justifiedness of a set of forbidden pattern is a prerequisite for its regularity,
a notion introduced in [8] and presented in the next section. Many permutation patterns
considered in the literature are regular, although their right-justifiedness was considered
only implicitly or even omitted. The next theorem gives a characterization of right-justified
patterns.
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Theorem 1. The set P of (possibly different lengths) forbidden patterns is right-justified
if and only if for any τ ∈ P , if τ← exists, then it contains a pattern in P .

Proof. Assume that P is a set of right-justified forbidden patterns. Let τ ∈ P and suppose
that τ← exists and it avoids P . Since P is right-justified, we have (τ←)→ = τ avoids P ,
which is a contradiction.
Conversely, let P be a set of forbidden patterns such that τ← contains a pattern in P for
any τ ∈ P , whenever τ← exists. We need to prove that α→ ∈ Sn(P ) for any α ∈ Sn(P )
whenever α→ exists. Let α ∈ Sn(P ) and let i < n be such that α(i) = n. Thus, by
definition

α→ = α(1) . . . α(i − 1)α(i + 1)n . . . α(n),

and let suppose that u = u1u2 . . . uk is an occurrence of the length k pattern τ ∈ P in the
permutation α→. We distinguish two cases.

If u does not contain simultaneously entries α(i+1) and n, then u is a subsequence of
α too, so α contains τ , which is a contradiction.

Otherwise, let u′ be the sequence obtained from u by transposing α(i+1) and n, that
is, u′ has the form u1u2 . . . n α(i + 1) . . . uk. Clearly, u′ is an occurrence of τ← in α, so
α contains τ←, which in turn contains a pattern in P , and thus α /∈ Sn(P ). This yields
again to a contradiction.

In particular, if the patterns of P have the same length, then we have the next simpler
characterization.

Corollary 1. Let P be a set of forbidden patterns of same length. Then P is right-justified
if and only if for each τ ∈ P we have τ← ∈ P , whenever τ← exists.

Below are several examples of sets of forbidden patterns whose right-justifiedness follows
directly from Theorem 1. Some of these patterns will be considered in more details in the
next two sections.

Example 2.

1. P = {321, 231}, and |Sn(P )| = 2n−1 for n ≥ 1 (sequence A000079 in OEIS [13]).

2. P = {321, 3412} and P = {312, 2431}, and for both |Sn(P )| gives the bisection of
Fibonacci sequence (A001519 in OEIS [13]).

3. P = {2134, 2143, 2413, 4213}, and |Sn(P )| gives the central binomial coefficients
(

2n−2
n−1

)

(sequence A000984 in OEIS [13]).

4. P = {312, 321, 23 . . . (p+1)1}, p ≥ 2, and |Sn(P )| gives the sequence of p-generalized
Fibonacci numbers. When p = 2, P becomes {312, 321, 231} and |Sn(P )| gives the
sequence of Fibonacci numbers (A000045 in OEIS [13]), see for instance [2, 4].

5. P = {312, 2431, (p + 1)p . . . 21}, p ≥ 2. When p = 3, P becomes {312, 2431, 4321}
and |Sn(P )| is the binomial transform of Padovan sequence (A034943 in OEIS [13]),
see [4].

6. P = {321, p(p + 1)12 . . . (p− 1), (m + 1)12 . . . m}, p,m ≥ 2. In particular,
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• when p = 2, P = {231, 321, (m + 1)12 . . . m}, and |Sn(P )| gives again the gen-
eralized Fibonacci sequence. In particular, if m = 2, then P = {231, 312, 321}
and as above |Sn(P )| gives the sequence of Fibonacci numbers [2];

• when p = m = 3, P = {321, 3412, 4123}, and |Sn(P )| gives the sequence of Pell
numbers (A215928 in OEIS [13]), see for instance [2, 9].

3 Regular patterns

Let P be a set of right-justified forbidden patterns and α ∈ Sn(P ). As we have seen in the
previous section, if the insertion of (n+1) into the ith position of α yields a permutation
in Sn+1(P ), then so does the insertion of (n+1) into any position to the right of i. In order
to formalize this phenomenon, we define a site of a permutation as a position between two
of its entries, and before the first and after the last entries. Sites are numbered from right
to left, and so the rightmost site, that which follows the last entry of the permutation,
is numbered by one. And by convention, the length zero permutation ǫ has one site
(numbered by one).

For α ∈ Sn, we denote by α↓i the permutation obtained from α by inserting (n+1) into
its ith site. For a set of forbidden patterns P and α ∈ Sn(P ), a site i of α is called active
(with respect to P ) if α↓i ∈ Sn+1(P ). For a set P of right-justified forbidden patterns
active sites of a permutation α ∈ S(P ) form an interval of integers beginning by 1, and
if i is an active site of α ∈ S(P ) we denote by χP (i, α) the number of active sites of α↓i.
It follows that if β = α↓i ∈ Sn+1(P ) for some α ∈ Sn(P ) and an active site i of α, then
β↓j ∈ Sn+2(P ) if and only if j belongs to the interval [1, χP (i, α)]; and any permutation
in Sn+2(P ) can be obtained uniquely in this way from appropriate α, i and j.

It can happen that χP (i, α) does not depend on α but only on the number of active
sites of α, and we have the next definition.

Definition 2 (Regular pattern/succession function). A set P of right-justified forbidden
patterns is called regular if for any α ∈ Sn(P ), n ≥ 0,

• α has its first site active, and

• if α has k active sites, then for any i, 1 ≤ i ≤ k, the number χP (i, α) of active sites of
α↓i does not depend on α but solely on i and on k. In this case, χP (i, α) is denoted
by χP (i, k), and

χP : {(i, k) | k ∈ N
+, 1 ≤ i ≤ k} → N

+

is called a succession function.

Even we will not use explicitly later, it is worth to mention that for regular sets of
forbidden patterns P characterized by the succession function χP , the set of productions

{(k) (χP (1, k))(χP (2, k)) . . . (χP (k, k))}k≥1

is called succession rule corresponding to P . These productions are the core of ECO-
method introduced in [1] and were widely used afterwards in more general contexts, as
the enumeration or (random and exhausive) generation of combinatorial objects.

The following theorem gives the succession function for the set of right-justified for-
bidden patterns in Example 2.6, and thus shows that it is a set of regular such patterns.
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Theorem 2. The succession function corresponding to P = {321, p(p+1)12 . . . (p−1), (m+
1)12 . . . m}, p,m ≥ 2, is defined by:

χP (i, k) =















k + 1, if i = 1 and k < m
m, if i = 1 and k = m
i, if 1 < i < p
p− 1, otherwise.

Proof. Let α = α(1)α(2) . . . α(n) be a permutation in Sn(P ) with k active sites. We
consider the number of active sites of α↓i for each i, 1 ≤ i ≤ k, and since P is right-
justified, this number is precisely the maximum (i.e., the number of the leftmost) site j of
α↓i such that (α↓i)↓j avoids P . We rewrite α↓i as

α↓i = α(1)α(2) . . . α(n − i+ 1)(n + 1)α(n − i+ 2) . . . α(n).

Since α↓k avoids 321, the length (k − 1) suffix α(n− k + 2) . . . α(n) of α is increasing,
otherwise the suffix (n+1)α(n− k+2) . . . α(n) of α↓k contains the forbidden pattern 321.
Moreover, since α↓k avoids (m + 1)12 . . . m, we have k ≤ m, otherwise the same suffix
(n+ 1)α(n − k + 2) . . . α(n) of α↓k contains the forbidden pattern (m+ 1)12 . . . m.

If i = 1 and k < m, then the permutation (α↓1)↓(k+1) does not contain the pattern
(m + 1)12 . . . m because k < m. In addition, (α↓1)↓(k+1) contains neither 321 nor p(p +
1)12 . . . (p − 1), otherwise α↓k contains the same pattern.
Moreover, (α↓1)↓(k+2) contains at least one of the patterns in P , otherwise α↓(k+1) ∈
Sn+1(P ). It follows that, in this case, χP (i, k) = k + 1.

If i = 1 and k = m, reasoning in the same manner, the insertion of (n+2) into α↓1 in any
site less than or equal to m does not produce patterns in P , but the insertion of (n + 2)
into the (m+ 1)st site produces the pattern (m+ 1)12 . . . m as a suffix of (α↓1)↓(m+1). It
follows that, in this case, χP (i, k) = m.

If 1 < i < p, the insertion of (n + 2) into the (i + 1)st site of α↓i produces the pattern
321, whereas the insertion of (n + 2) into any site less than or equal to i of α↓i does not
produce patterns in P , thus in this case, χP (i, k) = i.

If i ≥ p, from i ≤ k it follows that p ≤ k, and so the insertion of (n+ 2) into the pth site
of α↓i produces the pattern p(p+1)12 . . . (p− 1), but the insertion of (n+2) into any site
of α↓i less than p does not produce patterns in P . Thus in this case χP (i, k) = p− 1.

Notice that, as mentioned in Example 2.6, particular instances of m and p give classical
set of patterns: when m = p = 3, P becomes {321, 3421, 4123} investigated in [2, 9] and
the corresponding P -avoiding permutations are counted by Pell numbers (A000129 in
OEIS [13]); and when p = 2 the obtained P -avoiding permutations are counted by the
generalized Fibonacci numbers.

We give succession functions for some sets of regular forbidden patterns in Table 2 in
Appendix.
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4 Colored regular patterns

Not surprisingly, any right-justified set of forbidden patterns P is not necessarily regular:
it can happen that α and β are P -avoiding permutations having the same number of
active sites, but the insertion of the next largest value into the ith active site of both α
and β yields permutations with different numbers of active sites. This section is devoted
to the investigation of a particular class of such right-justified forbidden patterns that we
call, following Barcucci et al. [2], colored regular forbidden patterns. For such forbidden
patterns we develop corresponding succession functions and explicit them for two sets of
forbidden patterns: that in Example 2.5 and the second one in Example 2.2.

Let α be a permutation with k active sites belonging to S(P ), with P a right-justified
set of forbidden patterns, and let i be an active site of α, 1 ≤ i ≤ k. Suppose that it exists
a procedure coloring by integer values the permutations in S(P ), so that: (i) the number
of active sites of α↓i does not depend on α but only on the three parameters i, k and the
color c of α; and (ii) the color of α↓i in turn, depends only on i, k and c. In this case we
extend the function χP in the previous section so that it transforms the triple (i, k, c) into
a pair of integers: the number of active sites and the color of α↓i. In order to anchor the
recursivity we set the color of the length zero permutation ǫ to 0, and we have the next
definition.

Definition 3 (c-regular pattern). A set P of right-justified forbidden patterns is called
colored regular (c-regular for short) if for any α ∈ S(P ),

• α has its first site active, and

• if α has k active sites and color c, then for any i, 1 ≤ i ≤ k

– the number of active sites of α↓i depends only on i, k and c, and we denote this
number by µP (i, k, c),

– the color of α↓i depends as above only on i, k and c, and we denote this color
by νP (i, k, c).

In this case, the succession function χP = (µP , νP ) becomes:

χP = (µP , νP ) : {(i, k, c) | k ∈ N
+, 1 ≤ i ≤ k, c ∈ C} → N

+ × C,

where C ⊂ N is the set of colors.

Notice that regular patterns are particular c-regular patterns, where the set of colors
collapses to {0}.

Now we consider the set of right-justified forbidden patterns P in Example 2.5, and
the next theorem shows that P is a c-regular set of forbidden patterns by giving explicitly
its colored succession function. We postpone its proof after giving some technical results.

Theorem 3. The colored succession function for the set of forbidden patterns P =
{312, 2431, (p+1)p . . . 21}, p ≥ 2, is χP (i, k, c) = (µP (i, k, c), νP (i, k, c)), with set of colors
{0, 1} and:

µP (i, k, c) =

{

i+ 1 if i = 1 or (i = k and c = 0 and k < p)
i otherwise,
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and

νP (i, k, c) =

{

0 if i = 1 or (i = k and c = 0)
1 otherwise.

Lemma 1.

1. If α = α(1)α(2) . . . α(n) is a length n permutation avoiding 312, and i is such that
α(i) = n, then the suffix α(i)α(i + 1) . . . α(n) of α is decreasing.

2. Let P be the set of forbidden patterns in Theorem 3. If α ∈ Sn(P ) has k active sites,
and β = α↓i ∈ Sn+1(P ) for some i, 1 ≤ i ≤ k, then β has either i or i + 1 active
sites.

Proof. For the first point, since α avoids 312 and α(i) = n is the largest value of the suffix
α(i)α(i + 1) . . . α(n), it follows that this suffix is decreasing.
For the second point, the insertion of (n + 2) into the ith site of β = α↓i produces no
patterns in P (the entries (n + 1) and (n + 2) are consecutive in β), and the insertion of
(n + 2) into the (i + 2)nd site of β produces the forbidden pattern 312, and since P is a
right-justified set of forbidden patterns the result follows.

The following result is a direct consequence of the second point of the previous lemma,
and we state it in the next corollary in order to refer to it later.

Corollary 2. Let P be the set of forbidden patterns in Theorem 3. If α ∈ Sn(P ), n ≥ 1,
has k active sites, then α = λ↓k or α = λ↓(k−1) for some λ ∈ Sn−1(P ).

As one can see below, the pattern 231 is of particular interest for the definition of the
color of a permutation in Theorem 3. If in an arbitrary permutation α ∈ Sn, n is involved
in an occurrence of the pattern 231, then n plays the role of 3 in this occurrence and we
have the following easy to understand result.

To each permutation α in Sn(P ), P = {312, 2431, (p + 1)p . . . 21}, we associate an
integer d(α) ∈ {0, 1} as: d(α) is 0 if and only if at least one of the following two conditions
is fulfilled: n is not involved in an occurrence of the pattern 231 in α, or the length p
suffix of α is decreasing. Equivalently, d(α) is 1 if and only if n plays the role of 3 in an
occurrence of the pattern 231 in α and the length p suffix of α is not decreasing. Thus d
is a function d : S(P ) → {0, 1}.

Proof of Theorem 3. Actually, we will prove by induction on n the following:
(1) the color of a permutation α ∈ S(P ) defined in Theorem 3 by means of νP is d(α);
(2) the statement of Theorem 3.

If n = 0, then (1) and (2) trivially hold.

Proof of (1): Supposing that (1) and (2) are satisfied by length n permutations, n ≥ 0,
we prove (1) for length n+ 1 permutations.
Let α be a permutation in Sn(P ) with k active sites, n ≥ 0.
First we show that i = 1, or i = k and d(α) = 0 implies d(α↓i) = 0.

If i = 1, clearly (n+ 1) is not involved in an occurrence of 231 in α↓1, so d(α↓1) = 0.

If i = k > 1 and d(α) = 0, we have n > 0, and we distinguish two cases.

8



• k = p. By Lemma 1.1, the length p suffix of α↓i = α↓p is decreasing and so d(α↓i) = 0.

• k < p. By Corollary 2 it follows that α = λ↓(k−1) or α = λ↓k for some λ ∈ Sn−1(P ).
If α = λ↓(k−1), since α has k active sites and (n + 1) and n are conscutive entries
in α↓k = (λ↓(k−1))↓k it follows that n is not involved in an occurrence of 231 in α
(otherwise α↓k contains the forbidden pattern 2431), and (n + 1) is not involved in
an occurrence of 231 in α↓k, so d(α↓k) = 0. But α = λ↓k is not possible, indeed
α = λ↓k implies either:

– λ has j active sites with j > k, and in this case n is involved in an occurrence
of 231 in α which is in contradiction with d(α) = 0; or

– λ has (as α) k active sites which implies that the number of active sites of α
follows the second rule in the definition of µP in the statement of the present
theorem, which in our case happens when the the color of λ is 1, hence the color
of α = λ↓k follows the second rule in the definition of νP , which again leads to
a contradiction.

Conversely, it is routine to check that when i > 1 and (i < k or d(α) = 1) the insertion of
(n+1) into the ith active site of α produces a new occurrence of the pattern 231, but not
a length p decreasing suffix, and so d(α↓i) = 1.

Proof of (2): Supposing that (1) and (2) are satisfied by length n permutations, n ≥ 0,
we prove (2) for length n + 1 permutations. In light of (1) it is enough to show that the
number of active sites of a permutation in Sn+1(P ) is that specified by µp and considering
its color given by the function d.

Let α be a permutation in Sn(P ) with k active sites and color c, and let β = α↓i be
the permutation obtained from α by inserting (n + 1) into its ith active site, 1 ≤ i ≤ k.
By Lemma 1.2, β has i or i + 1 active sites. If the condition ‘i = 1 or (i = k and c = 0
and k < p)’ is satisfied, then the insertion of (n + 2) into the (i + 1)st site of β produces
no forbidden pattern, and so β has i+ 1 active sites.

By contrast, if the above condition is violated, then the insertion of (n + 2) into the
(i + 1)st site of β produces a forbidden pattern. To prove this, it is enough to show that
β↓(i+1) contains a forbidden pattern if i satisfies one of the following conditions: (i) i > 1
and (i < k or c = 1), or (ii) i = k = p.

If i > 1 and (i < k or c = 1), then (n + 1) plays the role of 3 in an occurrence of the
pattern 231 in α↓i (see the last part of the proof of (1)), and thus β↓(i+1) contains the
forbidden pattern 2431.
If i = k = p, then β↓(i+1) contains the forbidden pattern (p+ 1)p . . . 1.

In particular, when p = 3 the set of forbidden patterns in Theorem 3 becomes P =
{312, 2431, 4321} and the corresponding counting sequence is the binomial transform of
Padovan sequence (A034943 in OEIS [13]). An illustration of the underlying tree of the
succession function for this set of forbidden patterns is given in Figure 1. It turns out that
in this particular case the number of active sites of a permutation in Sn(P ) is either 2 or
3 (except for the empty permutation ǫ), and we have the next corollary.

Corollary 3. The succession function for the set of forbidden patterns P = {312, 2431, 4321}
is given by:

9
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µP (i, k, c) =

{

2 if i = 1 or i = 2 and (c = 1 or k = 3)
3 otherwise,

and

νP (i, k, c) =

{

0 if i = 1 or (i = k and c = 0)
1 otherwise.

Notice that the binomial transform of Padovan sequence also counts permutations
avoiding {321, 2413, 3142}, see [14]. However, by Theorem 1, this set of forbidden patterns
is not right-justified whereas P = {312, 2431, 4321} is regular.

In the same vein, we give below without proof the colored succession function for the
second set of patterns in Example 2.2. Its proof is similar with that of Theorem 3 when
the variable length pattern is omitted.

Proposition 1. The succession function for the set of forbidden patterns P = {312, 2431}
is χP (i, k, c) = (µP (i, k, c), νP (i, k, c)), with

µP (i, k, c) =

{

i+ 1 if i = 1 or (i = k and c = 0)
i otherwise,

and

νP (i, k, c) =

{

0 if i = 1 or (i = k and c = 0)
1 otherwise.

We give succession functions for some sets of c-regular forbidden patterns in Table 3
in Appendix.

ǫ
(1,0)

1

(2,0)

12
(2,0)

123
(2,0)

1234
(2,0)

1243
(3,0)

132
(3,0)

1324
(2,0)

1342
(2,1)

1432
(3,0)

21
(3,0)

213
(2,0)

2134
(2,0)

2143
(3,0)

231
(2,1)

2314
(2,0)

2341
(2,1)

321
(3,0)

3214
(2,0)

3241
(2,1)

3421
(3,0)

Figure 1: The first levels of the tree induced by the succession function in Theorem 3 when p = 3
(Corollary 3). Each node of the tree is labeled α

(k,c) , with α a permutation in Sn(P ), 0 ≤ n ≤ 4,

P = {312, 2431, 4321}, k the number of active sites and c the color of α.

5 Efficient generating algorithms

In this section, we present exhaustive generating algorithms for permutations avoiding a
set of forbidden regular and c-regular patterns and we show that they are efficient.
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For a set of forbidden patterns P and for α ∈ Sn(P ), since α↓(i+1) = (α↓i)←, we have
that α↓i and α↓(i+1) differ by a transposition of two adjacent entries, one of them being
(n + 1). In our algorithms we represent permutations α ∈ Sn by length n global arrays.
The insertion of an element into an array is not an efficient operation, except when a next
largest entry is inserted after the last entry of the array. By contrast, the transposition of
two adjacent elements requires only a constant time and we express insertions by iterating
transpositions of adjacent entries, and this is crucial for the efficiency of our generating
algorithms. In the algorithms in Table 1, α · (i, j) is the permutation obtained from α by
transposing the entries in positions i and j; and [α, length] is the permutation in Slength(P )
obtained from α ∈ Slength−1(P ) by inserting the integer length after the last entry of α,
that is the permutation α↓1.

Given an explicit implementation of the succession function χP , the generating algo-
rithms in Table 1 produce exhaustively the length n P -avoiding permutations, for a set
of regular or c-regular forbidden patterns P . In particular, the algorithm (a) (which is
first mentioned by Duckes et al. [8] in the context of Gray code generation) mimes the
succession rules given after Definition 2; and tree induced by the recursive calls of the
algorithm (b) for the permutations in Corollary 3 with n ≤ 4 is depicted in Figure 1.

procedure Gen Avoid(length, k)
local i
if length = n then

Print(α)
else

length := length+ 1
α := [α, length]
Gen Avoid(length, χP (1, k))
for i := 2 to k do

α := α · (length− i+2, length− i+1)
Gen Avoid(length, χP (i, k))

end for

for i := k downto 2 do

α := α · (length− i+ 2, length− i+ 1)
end for

end if

end procedure

procedure Gen Avoid(length, k, c)
local i, u, v
if length = n then

Print(α)
else

length := length+ 1
α := [α, length]
(u, v) := χP (1, k, c)
Gen Avoid(length, u, v)
for i := 2 to k do

α := α · (length− i+2, length− i+1)
(u, v) := χP (i, k, c)
Gen Avoid(length, u, v)

end for

for i := k downto 2 do

α := α · (length− i+ 2, length− i+ 1)
end for

end if

end procedure

(a) (b)

Table 1: (a) Algorithm for generating permutations avoiding: (a) a regular pattern characterized
by the succession function χP , with the initial call Gen Avoid(0, 1); and (b) a c-regular pattern
characterized by the succession function χP , with the initial call Gen Avoid(0, 1, 0). In both cases
the initial permutation is the length zero permutation ǫ.

A recursive generating algorithm is said to run in constant amortized time (CAT) if it
generates each object in O(1) time, in amortized sense. Such an algorithm is also called a
CAT algorithm. The following CATness principle is due to Frank Ruskey.

Proposition 2. ([12]) A recursive generating algorithm is a CAT one if it satisfies the

11



following properties:

• Each recursive call generates at least one object (there is no dead-end recursive call);

• The amount of computation in each recursive call is proportional to the degree of the
call (that is, the number of subsequent recursive calls produced by the current call);

• The number of recursive calls having degree one (if any) is O(N), where N is the
number of generated objects.

Let P be a set of regular or c-regular forbidden patterns, and α ∈ Sn(P ), n ≥ 0. By
the defintion of regularity, α↓1 belongs to Sn+1(P ), and if α↓1 has only one active site (or
equivalenty, (α↓1)↓2 contains a pattern in P ), then there is a length k ≥ 2 permutation
τ = τ(1)τ(2) . . . τ(k − 2)k(k − 1) belonging to P .

The number of recursive calls produced by a current call of our algorithms is given
by χP , and combining Proposition 2 with the considerations above we have the following
theorem.

Theorem 4. If P is a set of regular or c-regular forbidden patterns for which the corre-
sponding succession function χP can be computed in constant time, and P does not contain
patterns τ of the form τ(1)τ(2) . . . τ(k− 2)k(k − 1), k ≥ 2, then the algorithms in Table 1
generate in constant amortized time the set Sn(P ), n ≥ 0.

In Tables 2 and 3 in Appendix we list several regular and c-regular sets of forbidden
patterns satisfying Theorem 4. For some of them, the corresponding succession functions
are given in Sections 3 and 4 of the present paper.

The generating order of our algorithms is not the lexicographical one, and we have the
next proposition.

Proposition 3. Let Ln(P ), n ≥ 0, be the ordered list for the set Sn(P ) produced by
algorithms in Table 1. Then α precedes β in this list if either n ≥ 1 and α′ precedes β′

in Ln−1(P ), where α′ and β′ are the permutations obtained from α and β by erasing their
largest element n; or i < j, where i and j are the positions (from right to left) of n in α
and β.

Finally, if for a set of right-justified forbidden patterns P , P r (resp. P c) denotes the
set of patterns obtained by reversing (resp. complementing) each pattern in P (see for
example [10] for the definition of these two operations), then our algorithms can easily be
adapted to generate Sn(P

r) and Sn(P
c) provided they generate Sn(P ).
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Appendix

Counting sequence/class P χP (i, k)

2n−1[2]
{321, 312} 2

Pell numbers [2, 9]
(A000129 in OEIS [13])

{321, 3412, 4123}
particular instance of Theorem 2

3 if i = 1
2 otherwise.

{312, 4321, 3421}
3 if i = 2
2 otherwise.

{321, 3412}
particular instance of Theorem 2

k + 1 if i = 1
2 otherwise.

Bisection of Fibonacci sequence [2, 9]
(A001519 in OEIS [13])

{321, 4123}
particular instance of Theorem 2

3 if i = 1
i otherwise.

{312, 4321}
3 if k = 3 and i = 3
i+ 1 otherwise.

Catalan numbers [15]
(A000108 in OEIS [13])

{312} i+ 1

{321}
k + 1 if i = 1
i otherwise.

Schröder numbers [9]
(A006318 in OEIS [13])

{4123, 4213}
k + 1 if i = k − 1 or i = k

i+ 2 otherwise.
Fibonacci numbers [4]
(A000045 in OEIS [13])

{321, 231, 312}
particular instance of Theorem 2

1 if i = 2
2 otherwise.

{321, (p + 1)12 . . . p} [2, 5]
particular instance of Theorem 2

k + 1 if i = 1 and k < p

p if i = 1 and k = p

i otherwise.
A pattern of length 3 and

a variable length pattern
{321, p(p+ 1)12 . . . (p− 1)} [2, 5]
particular instance of Theorem 2

k + 1 if i = 1
i if 1 < i < p− 1
p − 1 otherwise.

{312, (p+ 1)p . . . 21} [5]
p if k = p and i = p

i+ 1 otherwise.
A pattern of length 3,
a pattern of length 4 and
a variable length pattern

{321, 3412, (p + 1)12 . . . p} [2]
particular instance of Theorem 2

k + 1 if i = 1 and k < p

p if i = 1 and k = p

2 otherwise.

Generalized Fibonacci
numbers

{321, 231, (p + 1)12 . . . p} [2]
particular instance of Theorem 2

k + 1 if i = 1 and k < p

k if i = 1 and k = p

1 otherwise.

A pattern of length 3 and
two variable length patterns

{321, p(p+ 1)12 . . . (p− 1), (p + 1)12 . . . p} [2]
particular instance of Theorem 2

k + 1 if i = 1 and k < p

p if i = 1 and k = p

p − 1 if i = p and k = p

i otherwise.

{321, p(p+ 1)12 . . . (p− 1), (m + 1)12 . . .m}
Theorem 2

k + 1 if i = 1 and k < m

m if i = 1 and k = m

i if 1 < i < p

p − 1 otherwise.

Table 2: A sample of regular forbidden patterns P . Their succession function (last column) is
either folklore or easy to check, or given in the corresponding reference.
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Counting sequence/class P µP (i, k, c) νP (i, k, c)

Bisection of Fibonacci sequence
(A001519 in OEIS [13])

{312, 2431}
Proposition 1

i+ 1 if i = 1 or
(i = k and c = 0)

i otherwise.

0 if i = 1 or
(i = k and c = 0)

1 otherwise.

Binomial transform of
Padovan sequence
(A034943 in OEIS [13])

{312, 2431, 4321}
Corollary 3

2 if i = 1 or i = 2 and
(c = 1 or k = 3)

3 otherwise.

0 if i = 1 or
(i = k and
c = 0)

1 otherwise.

Generalized Fibonacci
numbers

{321, 312, 23 . . . (p+ 1)1} [4]
1 if c = p− 2

and i = 2
2 otherwise.

0 if i = 1 or
c = p− 2

c− 1 otherwise.
A 3-length pattern,
a 4-length pattern
and a variable
length pattern

{321, 4123, 34 . . . (p + 1)12} [2]
2 if i = 2 or (i = 3

and c = p − 3)
3 otherwise.

c+ 1 if i = 3
and c < p− 3

0 otherwise.

{312, 2431, (p + 1)p . . . 21}
Theorem 3

i+ 1 if i = 1 or
(i = k < p and
c = 0)

i otherwise.

0 if i = 1 or
(i = k < p and
c = 0)

1 otherwise.

Table 3: A sample of c-regular forbidden patterns P together with the χP (i, k, c) =
(µP (i, k, c), νP (i, k, c)) functions.
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